首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Female mammals commonly employ behavioral tactics of modulating activity levels and foraging behavior to counter the energetic burden of reproduction; these behavioral changes are reflected as intersexual differences. Traditional views of Malagasy primates posit that high reproductive costs select for female dominance which guarantees to energetically stressed females priority of resource access. I tested predictions regarding reproductive influences on sex differences in time budgets and foraging behavior using two groups of Milne-Edwards' sifaka (Propithecus diadema edwardsi) in southeastern Madagascar. Compared to males, females increased neither feeding nor resting time during gestation or lactation. Sex differences were essentially absent in all foraging time variables examined (time, duration, rate). In contrast, dietary composition diverged between the sexes in some months. The possibility that females selected particular food items to boost nutrient and energetic intake to meet increased requirements during reproduction must be further clarified with nutritional analyses. Sex differences in plant part choices coincided with lactation in one of the two study groups. Thus, the timing of sex differences in feeding patterns of P. d. edwardsi only partially supports the prediction that sex differences are most pronounced during the period of greatest female energetic demand. A comparative review indicated no tight association between female dominance and sex differences in foraging among Malagasy primates. Traditional female dominance theory falls short of explaining the observed patterns. The results of my study coupled with recent evidence suggest that non-behavioral tactics involving energy conservation and storage require further attention as mechanisms by which female lemurs cope with reproductive costs. Received: 12 June 1998 / Accepted after revision: 10 October 1998  相似文献   

2.
Considerable attention has focused on inter- and intraspecific variation in trophic niches of marine predators. Although this has revealed evidence for sexual segregation in distribution in some species, few studies have been able to address sex-related dietary specialisation. Stable isotope analysis of blood cells collected from albatrosses and petrels at South Georgia during chick-rearing indicated a difference in δ13C, suggesting that females fed to the north of males, only in two species with male-biased sexual size dimorphism; in no species did sexes differ in trophic level (δ15N). Based on a wider review, significant differences between sexes in isotope signatures were much more common in seabirds during the pre-laying or breeding than the nonbreeding period, presumably reflecting greater between-sex partitioning of resources when foraging ranges are more constrained and competition is greater. Sex differences, or their absence, were usually consistent across successive stages during the pre-laying and breeding periods, but not necessarily year-round nor between populations. Significant differences in isotope signatures between males and females were extremely rare in monomorphic species, suggesting a link between sexual size dimorphism and segregation in diet or distribution. Among the Southern Ocean albatrosses, sex differences in δ13C suggested the underlying mechanism was related to habitat specialisation, whereas in other size-dimorphic taxa (both male- and female-biased), sex differences were more common in δ15N than δ13C and therefore more consistent with size-mediated competitive exclusion or dietary specialisation.  相似文献   

3.
Sexual conflict develops when the optimal reproductive strategy for one sex inflicts fitness costs upon the other sex. Among species with intense within-group feeding competition and high costs of reproduction, females are expected to experience reduced foraging efficiency by associating with males, and this may compromise their reproductive ability. Here, we test this hypothesis in chimpanzees, a species with flexible grouping patterns in which female avoidance of large subgroups has been attributed to their relatively high costs of grouping. In an >11-year study of the Kanyawara community of East African chimpanzees (Pan troglodytes schweinfurthii) in the Kibale National Park, Uganda, the availability of sexually receptive females was a key determinant of the number of males in parties. In turn, females experienced significantly lower C-peptide of insulin levels, indicative of reduced energy balance, during periods when they associated with more males. Female associates did not produce the same negative effect. C-peptide levels positively and significantly predicted female ovarian steroid production, indicating that the costs of associating with males can lead to downstream reproductive costs. Therefore, we conclude that Kanyawara chimpanzees exhibit sexual conflict over subgroup formation, with the large groupings that allow males to compete for mating opportunities inflicting energetic and reproductive costs on females. Because association with males is central to female chimpanzees’ anti-infanticide strategy, and males may confer other benefits, we propose that reproductive success in female chimpanzees hinges on a delicate balance between the costs and benefits of associating with male conspecifics.  相似文献   

4.
In diving seabirds, sexual dimorphism in size often results in sex-related differences of foraging patterns. Previous research on Magellanic penguins, conducted during the breeding season, failed to reveal consistent differences between the sexes on foraging behavior, despite sexual dimorphism. In this paper, we tested the hypothesis that male and female Magellanic penguins differ in diet and foraging patterns during the non-breeding period when the constraints imposed by chick rearing activities vanish. We used stable isotope ratios of carbon and nitrogen in feather and bone to characterize the diet and foraging patterns of male and female penguins in the South Atlantic at the beginning of the 2009–2010 and 2010–2011 post-breeding seasons (feathers) and over several consecutive breeding and migratory seasons (bone). The mean δ13C and δ15N values of feathers showed no differences between the sexes in any of the three regions considered or in the diet composition between the sexes from identical breeding regions; however, Bayesian ellipses showed a higher isotopic niche width in males at the beginning of the post-breeding season. Stable isotope ratios in bone revealed the enrichment of males with δ13C compared with females across the three regions considered. Furthermore, the Bayesian ellipses were larger for males and encompassed those of females in two of the three regions analyzed. These results suggest a differential use of winter resources between the sexes, with males typically showing a larger diversity of foraging/migratory strategies. The results also show that dietary differences between male and female Magellanic penguins may occur once the constraints imposed by chick rearing activities cease at the beginning of the post-breeding season.  相似文献   

5.
Highly dimorphic species like southern elephant seals (Mirounga leonina, SES hereafter) frequently exhibit resource partitioning according to sex and/or age classes. We measured carbon and nitrogen stable isotopes (δ13C and δ15N) of 404 blood samples (136 males and 268 females from Kerguelen Islands, 49°21′S, 70°18′E) from 2004 to 2011. Assuming that the distribution of carbon isotopes (δ13C value) reflects the two main foraging grounds (Polar Frontal and Antarctic Zones), we quantified the proportion of SES foraging within each zone in relation with size, a proxy for their age. We found a clear shift from Polar Frontal to Antarctic waters as male SES aged, but no relation as far as females is concerned. We also observed a widening range of nitrogen isotopic (δ15N) values, suggesting that both males and females expanded their diet spectra with age. Whereas males increased their trophic level, females remained constant on average, with some adult females feeding both at lower and at higher trophic levels than juveniles.  相似文献   

6.
Summary Sex differences in energy allocation were studied in wild stock house mice (Mus domesticus). Peripubertal animals of both sexes, either intact or gonadectomized, were subjected for 8 weeks to one of two feeding requirements by using a caging system in which a pellet dispenser was controlled by activity on a running wheel. Recently weaned animals were required to run 200 vs 300 or more wheel revolutions to obtain a pellet of food. The 200 revolution requirement allowed normal body growth and reproductive development; the 300+ requirement was adjusted weekly to maintain food intake at a level that allowed survival but did not permit normal body growth. Reproductive development was completely inhibited in intact females at 300+ revolutions whereas intact males at 300+ revolutions, despite stunted growth, all experienced normal sexual development. At both feeding requirements, however, females exhibited more total locomotor activity and consumed more food than males, regardless of gonadectomy. Furthermore, at the 200 revolution requirement we often observed extensive running activity beyond that needed to generate the amount of food actually eaten, especially among females. This extra locomotor activity was gonad-dependent in males, but not so in females. These results suggest that male and female house mice employ different strategies when relating their behavior and reproductive development to existing foraging conditions. Females appear more resource-dependent than males.  相似文献   

7.
Predicting the biological impacts of climate change requires an understanding of how temperature alters organismal physiology and behavior. Given differences in reproductive physiology between sexes, increases in global temperature may be experienced differently by the males and females of a species. This study tested for sex-specific effects of increased air temperature on foraging, growth, and survival of an intertidal snail, Nucella ostrina (San Juan Island, Washington, 48–30′44″N, 123–08′43″W). Snails exhibited periodic peaks in foraging. Subjecting snails to elevated low tide air temperatures did not alter the timing or magnitude of this pattern. Despite similar temporal patterns in foraging, females foraged more than males, even when the risk of thermal stress was high. While males and females appear to have a similar body temperature threshold for optimal growth, females were more likely to cross that threshold resulting in a loss of body mass when exposed to daily increases in air temperature. These results suggest that the consequences of a warming climate in the short term may be different for males and females of N. ostrina, but also imply longer-term costs of reduced reproductive output, abundance, and distribution of this ubiquitous intertidal predator. Generally, this study points to the possible significance of sex-specific responses in an increasingly warm world.  相似文献   

8.
Sex allocation is an important reproductive decision for parents. However, it is often assumed that females have substantial control over sex allocation decisions, and this is particularly true in haplodiploid insects, in which females apparently determine sex by deciding whether to fertilise an egg (and produce a diploid daughter) or not (and produce a haploid son). Mechanisms by which males may influence sex allocation are not so straightforward, and their potential influence on sex ratios has been somewhat neglected. Here, we test whether males influence offspring sex ratios in the parasitoid wasp Nasonia vitripennis. We show that some of the variation in observed sex ratios can be attributed to males when comparing the affect of male strain on sex ratio. We did not find among-male variation in sex ratio with a less powerful experiment using males from only one strain or an effect of male mating environment. Our data suggest that males can influence female sex ratios and contribute to the variation around the sex ratios optimal for females. However, the influence is not large, suggesting that females have more influence on sex allocation than do males. We conclude by considering whether male influences on sex ratio represent differences in male reproductive competence or deliberate attempts by males to increase their fitness by influencing daughter production.  相似文献   

9.
The availability of food resources has been suggested as a major factor in the substantial increase in reproductive output, survival, recruitment and, ultimately, population growth rates in most organisms. In fact, the artificial increase in food availability resulting from human activities has been suggested as a factor in the substantial increase in population size of several seabirds in recent decades. In the present study, our primary aim was to estimate the importance of the main natural prey and two alternative feeding resources, fishery discards and the invasive American crayfish Procambarus clarkii, for an opportunistic seabird, the Audouin’s gull Larus audouinii. We also assessed the influence of age and sex in the use of those three types of food. For this purpose, we compared the analyses of δ15N and δ13C in blood of male and female adults of known age and chicks with those in their potential prey. Our results reveal sex-related and age-related differences in the consumption of fish discards, small pelagic fish and American crayfish. Differences in the diet of males and females and also between adults and chicks could be related to different nutritional requirements. Age differences were probably related to their different foraging proficiency and the tendency of young breeders to opportunistically exploit anthropogenically derived food. This study illustrates the importance of considering the age and sex of individuals to obtain feasible dietary information and to understand how the exploitation of food of human origin could affect population growth.  相似文献   

10.
Main MB 《Ecology》2008,89(3):693-704
Sexual segregation in ungulates has important conservation and theoretical implications, but despite numerous studies, the impetus for this behavioral pattern remains a topic of debate. Sexual segregation hypotheses can be broadly grouped into social and ecological explanations, but only ecological explanations can adequately describe why sexes use different areas and habitats. The reproductive strategy hypothesis (RSH) and forage selection hypothesis (FSH) are leading ecological explanations, and although both have received support in the literature, neither the collective basis for that support nor overlap between these hypotheses has been adequately evaluated. This review analyzed seasonal sex comparisons of habitat forage quantity (n=66), quality (n=67), and diet (n=63) from peer-reviewed studies of north temperate ruminants to test predictions of each hypothesis. Empirical data supported predictions of the RSH, but did not support two of three key predictions of the FSH. Males used habitats with greater forage quantity significantly more than females. But, contrary to predictions of the FSH, females did not use habitats with superior forage quality nor consume higher-quality diets more than males. Sexes typically used habitats and consumed diets of similar quality, and when differences were reported, males used higher-quality habitats significantly more than females. Results refute FSH arguments that differences in dietary requirements associated with sexual dimorphism are a universal explanation for sexual segregation in ungulates, but the physiological mechanism on which the FSH is predicated may explain why males consume poorer-quality diets when high-quality forage is scarce. The FSH, therefore, operates at a proximate level because it explains diet and habitat selection by males under certain environmental conditions, but multiple environmental factors may influence sexual segregation, and no single proximate explanation adequately describes this behavioral pattern. The RSH explains sexual segregation as the evolutionary response to differences in reproductive strategies: males choose habitats to maximize energy gains in preparation for rut, and females select habitats with combinations of resources that contribute to offspring survival. Consequently, the RSH provides an ultimate explanation that can be used to explain and interpret studies of sexual segregation in ungulates.  相似文献   

11.
Summary We estimated reproductive effort (energy expenditures for reproduction, as opposed to maintenance) in Adélie penguins breeding at Palmer Station, Antarctica. Data on body composition changes and metabolic rate were obtained using isotopic methods. Adelie breeding behavior consists of an initial courtship stage (during which both sexes fast), incubation, the guard stage (when chicks are 1 to 18–28 days old), and the creche stage (from the end of guarding until chicks are 28–45 days old). Both males and females lost considerable mass during the initial stages of the reproductive season, but males fasted longer and lost more mass. Mass losses of both sexes consisted of 66% depot fat and 34% lean tissue. Mass and body composition remained constant once birds resumed feeding. The metabolic expenditure for the foraging necessary to accumulate the mass lost while fasting — one component of reproductive effort —was about 63 MJ in males and 39 MJ in females. Field metabolic rates (FMR) were low during courtship and while incubating, increasing more than 2-fold when birds resumed foraging. Although mean FMR increased between incubation and the creche stage, differences between stages were small and not significant. We used FMR data and an energy balance model to estimate the cost of feeding chicks. Results suggest a maintenance FMR of about 2.7 × basal metabolism (BMR), increasing to 3.4–3.6 × BMR during the creche stage. The reproductive effort (as metabolic expenditures) associated with feeding chicks is 31 MJ (males) to 36 MJ (females). Cumulative reproductive effort is 94 MJ in males and 75 MJ in females, or 5.3–6.2% of the annual energy budget. The reproductive effort devoted to chick care does not appear to be constrained by physiological or time limitations. Instead, selection to reduce the risk of predation may prevent the evolution of increased parental care. Correspondence to: M.A. Chappell  相似文献   

12.
At least three general categories of environmental pressure - predation, resource distribution, and demographics - shape the costs and benefits of group-living for animals. Among the demographic factors that influence individual survival and reproduction, the composition of social groups can play an important role. Census data drawn from 26 populations of howler monkeys (Alouatta spp.) were used to determine if the composition of groups explained variation in their reproductive performance. Each group's reproductive performance was estimated by calculating the difference between the observed number of immatures and the number expected from its population average. Of four group structure variables tested, only one - the residual of the adult and subadult sex ratio - was a consistent correlate of reproductive performance across the howler monkey populations. Groups with a greater proportion of adult and subadult males contained more juveniles than expected from the population average. I propose that the survival or retention of immatures within howler monkey groups depends in part on the behavior of resident males. Of particular importance, the relative proportions of resident males and females were more informative than the absolute number of males or females. On this basis, I evaluate the possible role of males in protection from predation, conspecific aggression, and resource competition. The techniques used here can also be used to forecast major changes in demographic structure within populations.  相似文献   

13.
Behavior of male and female groupers, Cephalopholis spiloparaea, observed, between 1990 and 1991 in Sasanhaya Bay, Rota, Northern Mariana Islands, was compared to detect differences in proportional use between sexes, and between daylight and pre-courtship time periods. This species has male-dominated haremic groups. Time partitioning could not be measured exactly. Instead, the numbers of intra-and interspecific interactions, foraging, resting, swimming, and maintenance behaviors of each sex were measured during the observation periods. The proportion of acts in each category out of the total number of acts, termed effort, was used in comparisons. Males were predicted to devote more effort toward intra-and interspecific interactions compared to females and to maximize reproductive success. Females were predicted to devote more effort towards foraging, compared to males. This behavior maximizes reproductive effort. Both were predicted to engage in greater intra-and interspecific interactions during the pre-courtship period, corresponding both to the approaching time of courtship and to increases in the numbers of potential spatial and trophic competitors. Intra-and interspecific interactions of both males and females were greater during the pre-courtship period. Differences in all classes of behavior between sexes were only weakly significant for two, however. Males had greater effort in intra-and interspecific interactions. Females had greater effort only in maintenance behavior. Both differences were evident only during the pre-courtship period. Foraging behavior by both sexes was virtually absent during daylight and pre-courtship periods. Fish sought shelter and were not incidentally observed foraging after dusk, suggesting that this species actively forages later at night or during early morning hours, just prior to and during sunrise.  相似文献   

14.
Diet quality is a key determinant of population dynamics. If a higher trophic level, more fish-based diet is of higher quality for marine predators, then individuals with a higher trophic level diet should have a greater body mass than those feeding at a lower trophic level. We examined this hypothesis using stable isotope analysis to infer dietary trophic level and foraging habitat over three years in eastern rockhopper penguins Eudyptes chrysocome filholi on sub-Antarctic Campbell Island, New Zealand. Rockhopper penguins are ‘Vulnerable’ to extinction because of widespread and dramatic population declines, perhaps related to nutritional stress caused by a climate-induced shift to a lower trophic level, lower quality diet. We related the stable nitrogen (δ15N) and carbon (δ13C) isotope values of blood from 70 chicks, 55 adult females, and 55 adult males to their body masses in the 2010, 2011, and 2012 breeding seasons and examined year, stage, age, and sex differences. Opposite to predictions, heavier males consumed a lower trophic level diet during incubation in 2011, and average chick mass was heavier in 2011 when chicks were fed a more zooplankton-based, pelagic/offshore diet than in 2012. Contrary to the suggested importance of a fish-based diet, our results support the alternative hypothesis that rockhopper penguin populations are likely to be most successful when abundant zooplankton prey are available. We caution that historic shifts to lower trophic level prey should not be assumed to reflect nutritional stress and a cause of population declines.  相似文献   

15.
Summary The effects of sex and seasonal changes in food abundance on foraging behavior was studied in squirrel monkeys (Saimiri oerstedi) in Costa Rica over an eleven-month period. Females searched for and ate food at significantly greater frequencies than did males throughout the study. The frequency of the specific foraging techniques used occasionally differed significantly within seasons, but not across the study period. Few differences were found in the foraging behaviors of nonreproductive sexually mature females compared to females that were pregnant or lactating. The major exception was that during the month following parturition reproductive females foraged for flowers and fruits more frequently than did non-reproductive females. The reduction of time spent by males in foraging activities gives them more time for other activities, especially anti-predator vigilance. Foraging techniques and the proportions of different food types in the diet changed seasonally. Foraging for arthropods was most frequent in the season when arthropod abundance was lowest, resulting in the amount of time spent eating arthropods to vary less across the seasons. Fruits and flowers were not eaten in a direct relationship to availability, but were used more than expected relative to availability when arthropod abundance was reduced. Individuals were more dispersed when foraging compared to other activities. Overall, there was little evidence of any direct foraging benefits for a squirrel monkey from being social.  相似文献   

16.
Availability of food resources and individual characteristics can influence foraging behaviour, which can differ between males and females, leading to different patterns of food/habitat selection. In dimorphic species, females are usually more selective in food choice, show greater bite rates and spend more time foraging than males. We evaluated sexual differences in foraging behaviour in Apennine chamois Rupicapra pyrenaica ornata, during the warm season, before the rut. Both sexes selected nutritious vegetation patches and spent a comparable amount of time feeding. However, males had a significantly greater feeding intensity (bite rate) and a lower search effort for feeding (step rate), as well as they spent more time lying down than females. Females selected foraging sites closer to refuge areas than males. In chamois, sexual size dimorphism is seasonal, being negligible in winter–spring, but increasing to 30–40 % in autumn. Our results suggest that males enhance their energy and mass gain by increasing their food intake rate during the warm season, to face the costs of the mating season (November). Conversely, females seem to prioritize a fine-scale selection of vegetation and the protection of offspring. A great food intake rate of males in the warm season could have developed as a behavioural adaptation leading herbivores to the evolutionary transition from year-round monomorphism to permanent dimorphism, through seasonal dimorphism.  相似文献   

17.
We study interactions between resource distributions, grouping, and diet development in foragers who learn by trial-and-error. We do this by constructing an individual-based model where individuals move and forage in groups in a 2-D space with high resource diversity and learn what to eat. By comparing diet development in different resource distributions, and in gregarious and solitary individuals, we elucidate how these factors affect patterns of diet variation. Our results indicate that different resource distributions have profound effects on learning opportunities, and thereby lead to contrasting phenomena. In uniform environments, local resource depletion by gregarious individuals, in interaction with learning, leads to diet differentiation. In patchy environments, grouping leads to enhanced diet overlap within groups and leads to differences in diet between groups. Surprisingly, mixed environments can generate all these phenomena simultaneously. Our results predict relationships between diet variation, trial-and-error learning, and resource distributions. The phenomena we describe are not evolved strategies, but arise spontaneously when groups of individuals learn to forage in certain resource distributions. This suggests that describing diet specialization or diet homogenization as the result of behavioral strategies may not always be justified.  相似文献   

18.
In sexually dimorphic ungulates, males generally spend less time foraging than females, possibly because of difference in body mass or because of the energetic requirements of lactation. The relationship between body size and foraging time has received little attention at the intra-specific level, because few studies have documented activity budgets for individuals of known size. Bighorn rams are a good model to explore how body mass affects foraging time, because they range in mass from 55 to 140 kg. We examined how the foraging time of bighorn rams varied according to individual characteristics. We observed rams in a marked population and constructed time budgets during the 3 months preceding the rut. We determined ram social rank based on agonistic encounters and collected fecal samples to count lungworm larvae. Time spent foraging was negatively correlated with body mass. After accounting for age differences, larger rams spent less time foraging and more time lying than smaller rams. Among rams aged 6–12 years, dominants spent less time feeding than subordinates, while fecal output of lungworm larvae was negatively correlated with foraging time for rams of all ages. Body mass accounts for much of the individual variation in foraging time, suggesting that sexual dimorphism is important in explaining differences in feeding time between males and females.Communicated by P. Heeb  相似文献   

19.
In a sex role reversed pipefish, Syngnathus typhle, we found that basic life history allocations were directly influenced by sexual selection. We investigated time allocation to foraging and mating, respectively, in a choice experiment, giving males and females, of small or large body size, a choice between food and a potential partner. We found that males were more interested in foraging than mating, i.e., were more frequently observed in front of the food than in front of the partner, whereas females were more interested in the potential partner. This reflects sexual selection operating differently on the two sexes, as males and females are relatively similar in other life history traits, such as growth, mortality, age of maturity, dispersal, and parental expenditure. Moreover, large individuals allocated more time to mating activities, small to feeding. Individuals more interested in mating compared to food were subsequently more critical when given a choice between a large (high-quality) and a small (low-quality) partner, whereas individuals more interested in food were not selective. These findings are consistent with our predictions: sex-role reversed males can be relatively sure of achieving one or more matings, and should allocate more time to feeding and, hence, to parental investment, growth and/or future reproduction. Females, on the other hand, have more uncertain mating prospects and should allocate time to imminent reproductive activities, thereby foregoing other life history traits such as growth and future egg production. By this, they also sacrifice future fecundity and attractiveness.  相似文献   

20.
The costs of courtship and mating may include increased risks of predation, the transmission of pathogens, and a loss of foraging opportunities. Thus, a female's decision to tolerate a courting male will depend upon how these costs offset the benefits of mating, which will depend on her reproductive and nutritional status. While these costs may be similar for mated and unmated females, the benefits of mating will be less for mated than virgin females. However, the cost of lost foraging opportunities may be higher for females with fewer nutritional reserves necessary for forming eggs. We examined how these costs and benefits influence the courtship and mating behaviour of male and female orb-web spiders, Argiope keyserlingi. In the field, females on webs that also contained a courting male intercepted fewer prey items per hour than females on webs without a male. In the laboratory, the presence of a courting male at the hub also attracted mantid predators to the web, increasing the risk of predation for both male and female. Staged mating experiments in the laboratory revealed that the frequency of female attacks and pre-copulatory cannibalism was greater among mated than virgin females. Feeding history did not affect aggression in virgin females but, among mated females, food-deprived spiders attacked and cannibalized males more frequently than sated females and only the latter ever remated. These differences in female behaviour influenced male mating strategies. Choice experiments demonstrated that males preferred to venture onto the silk threads of virgin rather than those of mated females. Similar patterns of mate selectivity were observed in the field; females with narrow abdomens attracted more males to the webs than females with broad abdomens, and copulations were observed more frequently among females with narrow abdomens. These smaller females are likely to be virgins that have recently molted. Males that preferentially mate with virgin females will not only avoid potentially fatal attacks but also obtain, on average, a higher fertilization success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号