首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 864 毫秒
1.
The optimized BCR sequential extraction procedure was applied to nine roadside soil samples for the determination of Cd, Cr, Pb and Ni. The extractable metals were isolated into three operationally defined fractions viz: acid extractable, reducible and oxidizable. The residue was treated with aqua regia solution. Metal analysis was done using flame atomic absorption spectrophotometry with air–acetylene flame. Results obtained showed the concentrations of the metals as relative abundance in the mobile phases of the samples (based on the sum of the first three fractions) are in the following order: Cd(91.9) > Pb(82.8) > Ni(49.5) > Cr(39.0). The most non-mobilizable metals were Cr and Ni which are generally lithogenic, associated with the silicate matrix, and the order is as follows: Cr(61.0) > Ni(50.5) > Pb(17.2) > Cd(8.1). The recovery of all the metals expressed as the ratio of total metal concentration to fractional sum of the optimized BCR sequential extraction procedure was of the order: Cr(95.6) > Pb(95.0) > Ni(94.8) > Cd(92.4).  相似文献   

2.
The optimized BCR sequential extraction procedure (proposed by the Standards, Measurements and Testing Programme (SM&T) of the European Union) was applied to seven topsoil samples from refuse dump sites for the determination of Cu, Zn, Ni, Pb and Cd. The metals were partitioned into four operationally defined chemical fractions: acid extractable, reducible, oxidizable and residual, and analysed using flame atomic absorption spectrophotometry, FAAS. The results were compared with total metal concentrations obtained using HNO3, HClO4 and HF digestion procedures. Results for total metal analysis ranged from - 15.55 to 43.45 for Cu, 37.15 to 222.35 for Zn, 5.15 to 12.10 for Ni, 10.30 to 93.05 for Pb and 0.35 to 3.75 for Cd in μgg−1 dry weight. The results of the partitioning study showed that zinc prevailed in the more soluble fractions and was distributed between the acid-extractable (32.4%) and the reducible (40.3%) fractions, whereas Pb was distributed mainly in the reducible fraction. Copper and nickel were predominantly associated with the reducible and residual fractions - 53.4, 33.3 and 51.1, 24.1% respectively. The ranking of the four fractions for the partitioning of cadmium was: reducible > residual > oxidizable > acid extractable. The percentage recovery for all metals when comparing total metal concentration with the fractional sum of the optimized BCR procedure, were of the order: Zn(93%) > Pb(83%) > Cu(78) > Cd > (68%) > Ni(63%).  相似文献   

3.
We studied the fractionation of zinc (Zn) in 49 contaminated soils as influenced by Zn content and soil properties using a seven-step sequential extraction procedure (F1: NH4NO3; F2: NH4-acetate, pH 6; F3: NH3OHCl, pH 6; F4: NH4-EDTA, pH 4.6; F5: NH4-oxalate, pH 3; F6: NH4-oxalate/ascorbic acid, pH 3; F7: residual). The soils had developed from different geologic materials and covered a wide range in soil pH (4.0-7.3), organic C content (9.3-102 g kg(-1)), and clay content (38-451 g kg(-1)). Input of aqueous Zn with runoff water from electricity towers during 26 to 74 yr resulted in total soil Zn contents of 3.8 to 460 mmol kg(-1). In acidic soils (n = 24; pH <6.0), Zn was mainly found in the mobile fraction (F1) and the last two fractions (F6 and F7). In neutral soils (n = 25; pH > or =6.0), most Zn was extracted in the mobilizable fraction (F2) and the intermediate fractions (F4 and F5). The extractability of Zn increased with increasing Zn contamination of the soils. The sum of mobile (F1) and mobilizable (F2) Zn was independent of soil pH, the ratio of Zn in F1 over F1+F2 plotted against soil pH, exhibited the typical shape of a pH sorption edge and markedly increased from pH 6 to pH 5, reflecting the increasing lability of mobilizable Zn with decreasing soil pH. In conclusion, the extractability of Zn from soils contaminated with aqueous Zn after decades of aging under field conditions systematically varied with soil pH and Zn content. The same trends are expected to apply to aqueous Zn released from decomposing Zn-bearing contaminants, such as sewage sludge or smelter slag. The systematic trends in Zn fractionation with varying soil pH and Zn content indicate the paramount effect of these two factors on molecular scale Zn speciation. Further research is required to characterize the link between the fractionation and speciation of Zn and to determine how Zn loading and soil physicochemical properties affect Zn speciation in soils.  相似文献   

4.
The recycling of sewage sludge on agriculture land represents an alternative, advantageous, disposal of this waste material. The aim of the present study was to evaluate the feasibility of using industrial sewage sludge, produced in Pakistan, as a fertiliser. Agricultural soil amended with 25% (w/w) sewage sludge with or without lime treatment was used for growing a variety of sorghum (PARC-SS-1). The mobility of the heavy metals (HMs) (Cd, Cu, Cr, Ni, Pb and Zn) and metalloid (As) in the untreated industrial waste water sewage sludge (UIWS) samples were assessed by applying a modified BCR (Community Bureau of Reference) sequential extraction procedure. The single extraction procedure comprised of the application of mild extractant (CaCl2) and water for the estimation of the proportion of easily soluble metal fractions. The precision and accuracy of BCR was evaluated by using a certified reference material of soil amended with sewage sludge BCR 483. The plant available metal contents, as extracted by the deionised water and 0.01 M CaCl2 solution and exchangeable fraction of BCR sequential, decreased with lime application in the range of 10–44% for As, Cr, Ni, Pb and Zn, except in the cases of Cd and Cu, where their mobility was increased by 10% and 24%, respectively. Sludge amendment enhanced the dry weight yield of sorghum and the increase was more obvious after liming up to 25%. The uptake of HMs were lower in test samples (3.2–21.8%), except for Cu and Cd, which was higher (4%), while they were below the permissible limit of these metals. The present experiment demonstrates that liming was important in factors facilitating the growth of sorghum in sludge-amended soil.  相似文献   

5.
A continuous-flow extraction system was developed to speed up, facilitate, and improve the accuracy of the chemical fractionation of metals in solid materials. A three-step sequential extraction scheme was used to evaluate the novel system by analyzing calcium (Ca), iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) in a soil certified reference material (National Institute of Standards and Technology [NIST] SRM 2710). In the proposed system, extraction occurred in a closed chamber through which extractants were passed sequentially. The extracts were collected in a number of subfractions for subsequent name atomic absorption analysis. Apart from the advantages of simplicity, speed, and less risk of the contamination that flow analysis systems usually possess, the continuous-flow system can improve the accuracy of chemical fractionation of metals by sequential extraction. The system ensures that extraction is performed at designated pH values without any need of adjustment. Variation of sample weight to chamber volume ratios from 1:12 to 1:40 had no effect on the extractability of the metals studied. In the extraction of the acid soluble fraction, concentrations of acetic acid in the range 0.11 to 0.5 mol L(-1) had no significant effect on the amounts of metals extracted, except Fe. Increasing the concentration of hydroxylamine in the reducible fraction step from 0.04 to 0.5 mol L(-1) affected the extraction efficiency for Fe, Mn, and Zn. The extraction profile, rather than a single value of extracted concentration, of each element offers additional information about the kinetics of leaching processes and chemical associations between elements in the solid materials.  相似文献   

6.
The modified three-step sequential extraction procedure proposed by the Community Bureau of Reference (or Bureau Communautaire de Reference, BCR) was used to predict trace element mobility in soils affected by an accidental spill comprising arsenopyrite- and heavy metal-enriched sludge particles and acid waste waters. The procedure was used to obtain the distribution of both the major (Al, Ca, Fe, Mg, and Mn) and trace elements (As, Bi, Cd, Cu, Pb, Tl, and Zn) in 13 soils of contrasting properties with various levels of contamination and in the sludge itself. The distributions of the major elements enabled us to confirm the main soil fractions solubilized in each of the three steps, and, in turn, to detect the presence of pyritic sludge particles by the high Fe extractability obtained in the third step. Cadmium was identified as being the most mobile of the elements, having the highest extractability in the first step, followed by Zn and Cu, Lead, Tl, Bi, and As were shown to be poorly mobile or nonmobile. In the case of some of the trace elements, the residual fractions decreased at higher levels of contamination, which was attributed to the anthropogenic contributions to the polluted samples. Comparison with soil-plant transfer factors, calculated in plants growing in the affected area, indicated that a relative sequence of trace element mobility was well predicted from data of the first step.  相似文献   

7.
The Akaki River, laden with untreated wastes from domestic, industrial, and commercial sources, serves as a source of water for irrigating vegetable farms. The purpose of this study is to identify the impact of waste-water irrigation on the level of heavy metals and to predict their potential mobility and bioavailability. Zn and V had the highest, whereas Hg the lowest, concentrations observed in the soils. The average contents of As, Co, Cr, Cu, Ni, Zn, V, and Hg of both soils; and Pb and Se from Fluvisol surpassed the mean + 2 SD of the corresponding levels reported for their uncontaminated counterparts. Apparently, irrigation with waste water for the last few decades has contributed to the observed higher concentrations of the above elements in the study soils (Vertisol and Fluvisol) when compared to uncontaminated Vertisol and Fluvisol. On the other hand, Vertisol accommodated comparatively higher average levels of Cr, Cu, Ni, Zn, etc V, and Cd, whereas high contents of Pb and Se were observed in Fluvisol. Alternatively, comparable levels of Co and Hg were found in either soil. Except for Ni, Cr, and Cd in contaminated Vertisol, heavy metals in the soils were not significantly affected by the depth (0–20 and 30–50 cm). When the same element from the two soils was compared, the levels of Cr, Cu, Ni, Pb, Se, Zn, V, Cd at 0–20 cm; and Cr, Ni, Cu, Cd, and Zn at 30–50 cm were significantly different. Organic carbon (in both soils), CEC (Fluvisol), and clay (Vertisol) exhibited significant positive correspondences with the total heavy metal levels. Conversely, Se and Hg contents revealed perceptible associations with carbonate and pH. The exchangeable fraction was dominated by Hg and Cd, whereas the carbonate fraction was abounded with Cd, Pb, and Co. conversely, V and Pb displayed strong affinity to reducible fraction, where as Cr, Cu, Zn, and Ni dominated the oxidizable fraction. Cr, Hg, Se, and Zn (in both soils) showed preference to the residual fraction. Generally, a considerable proportion of the total levels of many of the heavy metals resided in non residual fractions. The enhanced lability is generally expected to follow the order: Cd > Co > Pb > Cu > Ni > Se > V and Pb > Cd > Co > Cu > Ni > Zn in Vertisol and Fluvisol, respectively. For the similar wastewater application, the soil variables influence the status and the distribution of the associated heavy metals among the different soil fractions in the study soils. Among heavy metals that presented relatively elevated levels and with potential mobility, Co, Cu, Ni (either soil), V (Vertisol), Pb, and Zn (Fluvisol) could pose health threat through their introduction into the food chain in the wastewater irrigated soils.  相似文献   

8.
Heavy metals in the aquatic environment have, to date, come essentially from naturally occurring geochemical resources. However, this has been enhanced by anthropogenic activities such as crude oil exploration and exploitation activities, resulting in pollution in the Taylor Creek aquatic ecosystem. The catfish species Bagrus bayad and other environmental segments were collected from five selected sites along Taylor Creek, southern Nigeria, and total metal concentration determined. The concentration levels of the metals in B. bayad were higher than the values reported in the literature for fresh fish and may lead to a higher risk of harmful effects. The bivariate regression models relating metals in B. bayad and metals in the surface waters were significant (R 2 ≥ 0.9002). The log (bio-concentration factor; BCF) values of Cr and Zn in B. bayad were the highest, whereas the lowest was found for Ni. The ecological distribution of the log (BCF) values was, for all the heavy metals, moderately stable over the creek. All log-transformed bio-magnification factors (BMF) in the creek were positive, which indicates that the metal concentration was greater in B. bayad than in suspended particulate matter (SPM). The absolute log (BMF) values of heavy metals can, therefore, be ranked in order of decreasing magnitude: Cr (3.26) > Zn (2.99) > Cd (2.93) > Fe (2.76) > Pb (2.66) > Mn (2.36) > Ni (2.24). This sequence indicates that toxic metals such as Cd, Cr and Pb are undergoing significant bio-reduction from SPM to B. bayad. The degree of correlation between the metals was different in B. bayad, which suggests that the sources of the metals polluting Taylor Creek were diverse.  相似文献   

9.
The distribution of some heavy metals, namely Cd, Pb, Zn, Fe, Cu, Cr and Mn in epipellic sediments of Igbede, Ojo and Ojora rivers of Lagos was studied weekly in the early summer (November) of 2003. The levels of selected trace metals were determined using Atomic Absorption Spectrophotometer (UNICAM 969 AAS SOLAR). Trends in heavy metal burdens in the sediments revealed weekly variations in all the rivers assessed. Statistical analyses also showed different mean levels of trace metals in the aquatic environments, the distribution of which followed the sequence Fe > Zn > Mn > Pb > Cu > Cr > Cd, Fe > Zn > Cu > Mn > Pb > Cr > Cd and Fe > Zn > Mn > Cu > Cr > Pb > Cd in Igbede, Ojo and Ojora rivers respectively. Fe recorded the highest concentration levels (1,582.95 ± 96.57 μ g/g–1,910.34 ± 723.19 μ g/g) in all the sediments investigated while the Cd levels (0.06 ± 0.10 μ g/g–0.47 ± 0.36 μ g/g) were the lowest. Expectedly, trace metal concentrations in fine grain muddy sediments of the Igbede and Ojo coastline were much higher than those of Ojora which consist of coarse and sandy deposits covering the near shore area. Generally, the results obtained fell within tolerable limits stipulated by World Health Organization (WHO).  相似文献   

10.
Speciation of some heavy metals in River Nile sediments,Cairo, Egypt   总被引:1,自引:0,他引:1  
River sediments are basic components of our environment. It also constitutes a major source of persistent bioaccumulative toxic chemicals which may pose threats to ecological and human health even after contaminants are no longer released from point and non-point sources. Therefore, the aim of this study was to investigate the mobility and the availability of metals in sediments from different sites along the Nile River in Cairo district using sequential chemical extraction technique. The speciation data showed that most metals were associated with organic/sulfide and residual fractions. The order of total metal concentrations in sediment samples was found to be Fe > Mn > Zn > Ni > Cu ≥ Cr > Pb > Cd.  相似文献   

11.
Characteristic levels of metal ions in post dredged sediment and dredged sediments materials of a municipal creek in the Niger Delta show that significant concentrations of heavy metals are found to be accumulated more on the surface (0–15cm depth) of the dredged material as compared to the sub surface (15–30cm) and post dredged sediments. The distribution patterns were in the following order Fe > Mn > Zn > Cu > Pb > Ni > Cd and Fe > Mn > Zn > Pb > Cu > Ni > Cd for the post dredged sediment and dredged sediment materials respectively. The levels of the various metals were far below the EPA screening levels for open water disposal, consequently total levels of heavy metal found in these sediments pose no problem by open-water or upland disposal  相似文献   

12.
Heavy metal concentrations in black mussels (Mytilus galloprovincialis) collected from Cape Town Harbour were determined using energy dispersive X-ray fluorescence (EDXRF) and inductively coupled plasma-mass spectrometry (ICP-MS). EDXRF showed that tissue portions of the mussels contained K, Ca, Fe, Cu, Zn, Si, Sr, Al and Au, while the shell portion contained K, Ca, Fe, Cr, Zn, Si and Sr. In addition to these metals, EDXRF also revealed the presence of Al in the shells of the largest mussels. Highest concentrations of Cu and Zn were recorded in the tissues of the smallest mussels. Due to poorer detection limits of EDXRF, ultra-trace elements (Mn, Pb, As, Hg, V, Cr, Sn, Cd, Ni and Co) were determined in mussels using ICP-MS. The average metal concentrations found in the mussels are as follows; Pb (7.30 ± 0.67), Cd (1.98 ± 0.13), Hg (4.92 ± 0.60), As (6.94 ± 0.04), Sn (2.63 ± 0.13), Ni (1.88 ± 0.05), Cr (3.54 ± 0.05), V (4.17 ± 0.23), Co (0.74 ± 0.01) and Mn (35.20 ± 1.46). ANOVAs, Pearson correlation and principal component analysis (PCA) were employed in data analysis. The order of the abundance of metals in the mussels is Mn > Pb > As > Hg > V > Cr > Sn > Cd > Ni > Co. The average metal concentrations found in the mussels were higher than the permissible Food and Agriculture Organization (FAO) limits and other international guidelines.  相似文献   

13.
The characterization of total and leachable metals in foundry molding sands   总被引:1,自引:0,他引:1  
Waste molding sands from the foundry industry have been successfully used as a component in manufactured soils, but concern over metal contamination must be addressed before many states will consider this beneficial use. Since there is little data available on this topic, the purpose of this study was to characterize total and leachable metals from waste molding sands. A total elemental analysis for Ag, Al, As, B, Ba, Be, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, V, and Zn was conducted on 36 clay-bonded and seven chemically bonded molding sands. Total metal concentrations in the molding sands were similar to those found in agricultural soils. The leaching of metals (i.e. Ag, As, Ba, Be, Cd, Cr, Cu, Ni, Pb, Sb, and Zn) was assessed via the toxicity characteristic leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), and ASTM water leach test. Based on the TCLP data, none of the 43 molding sands would meet the Resource Conservation and Recovery Act (RCRA) characteristic for toxicity due to high Ag, As, Ba, Cd, Cr, and Pb. Compared to the TCLP results, the metal concentrations were generally lower in the SPLP and ASTM extracts, which is likely related to the buffering capacity of the extraction fluids.  相似文献   

14.
Four soil profiles located near a copper smelter in Poland were investigated for the distribution and chemical fractions of Cu, Pb, and Zn and their mobility in relation to soil properties. Contamination with heavy metals was primarily restricted to surface horizons and the extent of contamination was 7- to 115-fold for Cu, 30-fold for Pb, and 6-fold for Zn as compared with subsurface horizons. In the less-contaminated fine-textured soil, the metals were distributed in the order: residual > Fe-Mn oxides occluded > organically complexed > exchangeable and specifically adsorbed, while the order for sandy soils was: residual > organically complexed > Fe-Mn oxides occluded > exchangeable and specifically adsorbed. The contaminated surface horizons of these profiles showed no consistent pattern of metal distribution. However, the common features of highly contaminated soils were very low percentage of residual fraction and the dominance of the NH4OAc extractable fraction. The sum of mobile metal fractions was generally < 10% in subsurface horizons, while in the contaminated surface horizons these fractions made up 50% of the total metal contents. Soil properties contributed more to the relative distribution of the metal fractions in the studied profiles than did the distance and direction to the source of pollution. The amounts of metal extracted by 0.01 M CaCl2 accounted for only a small part of the same metals extracted by NH4OAc. The mobility indexes of metals correlated positively and significantly with the total content of metals and negatively with the clay content.  相似文献   

15.
The concentrations of heavy metals (mg/g) Pb, Ni, Cu, Cr, Fe, Co, Cd, and Hg in the tissues of young and adult toads exposed to petroleum-polluted environment were determined in order to assess the impact of petroleum-processing activities in Ekpan. The data showed that the levels of these Metals ranged between 0.15–1.18 and 0.10–0.48 in young and adult toads respectively. The heavy metals concentrations reported for the young toads have an abundance trend in the order of Pb > Fe > Ni > Cr > Cu > Co > Cd > Hg, while those of the adult toads are in the order of Pb > Fe > Cr > Ni > Cu > Cd > Hg > Co. The control analysis was carried out in a non-oil polluted area (Obiaruku) and the values served as base line values for the study.  相似文献   

16.
Agroforestry systems (AFSs) have an important role in capturing above and below ground soil carbon and play a dominant role in mitigation of atmospheric CO2. Attempts has been made here to identify soil organic matter fractions in the cacao-AFSs that have different susceptibility to microbial decomposition and further represent the basis of understanding soil C dynamics. The objective of this study was to characterize the organic matter density fractions and soil size fractions in soils of two types of cacao agroforestry systems and to compare with an adjacent natural forest in Bahia, Brazil. The land-use systems studied were: (1) a 30-year-old stand of natural forest with cacao (cacao cabruca), (2) a 30-year-old stand of cacao with Erythrina glauca as shade trees (cacao + erythrina), and (3) an adjacent natural forest without cacao. Soil samples were collected from 0-10 cm depth layer in reddish-yellow Oxisols. Soil samples was separated by wet sieving into five fraction-size classes (>2000 μm, 1000–2000 μm, 250–1000 μm, 53–250 μm, and <53 μm). C and N accumulated in to the light (free- and intra-aggregate density fractions) and heavy fractions of whole soil and soil size fraction were determined. Soil size fraction obtained in cacao AFS soils consisted mainly (65 %) of mega-aggregates (>2000 μm) mixed with macroaggregates (32–34%), and microaggregates (1–1.3%). Soil organic carbon (SOC) and total N content increased with increasing soil size fraction in all land-use systems. Organic C-to-total N ratio was higher in the macroaggregate than in the microaggregate. In general, in natural forest and cacao cabruca the contribution of C and N in the light and heavy fractions was similar. However, in cacao + erythrina the heavy fraction was the most common and contributed 67% of C and 63% of N. Finding of this study shows that the majority of C and N in all three systems studied are found in macroaggregates, particularly in the 250–1000 μm size aggregate class. The heavy fraction was the most common organic matter fraction in these soils. Thus, in mature cacao AFS on highly weathered soils the main mechanisms of C stabilization could be the physical protection within macroaggregate structures thereby minimizing the impact of conversion of forest to cacao AFS.  相似文献   

17.
Inter-seasonal studies on the trace metal load of surface water, sediment and Tympanotonus fuscatus var. radula of Iko River were conducted between 2003 and 2004. The impact of anthropogenic activities especially industrial effluent, petroleum related wastes, gas flare and episodic oil spills on the ecosystem are remarkable. Trace metals analyzed included cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), lead (Pb), manganese (Mn), nickel (Ni), vanadium (V) and zinc (Zn). Sediment particle size analysis revealed that they were characteristically psammitic and were predominantly of medium to fine grained sand (>73%), less of silt (<15%) and clay (<10%). These results correlated with low levels of trace elements such as Pb (0.03 ± 0.02 mg kg−1), Cr (0.22 ± 0.12 mg kg−1), Cd (0.05 ± 0.03 mg kg−1), Cu (0.04 ± 0.02 mg kg−1) and Mn (0.23 ± 0.22 mg kg−1) in the sediment samples. This observation is consistent with the scarcity of clayey materials known to be good scavengers for metallic and organic contaminants. Sediments indicated enhanced concentration of Fe, Ni and V, while other metal levels were relatively low. The concentrations of all the metals except Pb in surface water were within the permissible levels, suggesting that the petroleum contaminants had minimal effect on the state of pollution by trace metals in Iko River. Notably, the pollutant concentrations in the sediments were markedly higher than the corresponding concentrations in surface water and T. fuscatus tissues, and decreased with distance from point sources of pollution.  相似文献   

18.
Long-term land application of sewage sludge (SS) has caused concern over the potential release of trace metals into the environment following the degradation of organic matter (OM). This study was performed to assess the impact of OM degradation on the relative distribution of Cu, Zn, Pb, and As in SS and SS-amended soils. Three SSs of different ages and two soils treated with SS were subjected to incubation and direct chemical oxidation using diluted HO, followed by a sequential extraction. The majority of Cu, Pb, and As were bound to OM, whereas the majority of Zn was bound with Fe/Mn oxides for all three SSs. Incubation of SS for 6 mo did not result in a substantial decrease in OM content or a change in the relative distribution of Cu, Zn, Pb, and As. Direct OM oxidation to 30 and 70% by diluted HO resulted in a significant decrease in organically bound Cu but increased its exchangeable, carbonate-bound, and Fe/Mn-bound fractions. Oxidation of OM slightly decreased organically bound Zn but significantly increased exchangeable Zn in all SSs. Oxide- and carbonate-bound Zn also decreased following OM oxidation. Exchangeable fractions of As and Pb were minute before and after OM degradation, indicating that release into the environment would be unlikely. The relative distribution of Cu, Zn, Pb, and As in SS-treated soils was similar to that of SS, suggesting a dominant role of SS properties in controlling metal distribution following OM oxidation. Overall, OM oxidation increased the mobility and bioavailability of Zn and Cu, whereas it had less impact on Pb and As.  相似文献   

19.
Chemical fractionation of seven heavy metals (Cd, Cr, Cu, Mn, Ni, Pb and Zn) was studied using a modified three-step sequential procedure to assess their impacts in the sediments of the Seyhan River, Turkey. Samples were collected from six representative stations in two campaigns in October 2009 and June 2010, which correspond to the wet and dry seasons, respectively. The total metal concentrations in the sediments demonstrated different distribution patterns at the various stations. Cadmium was the only metal that was below detection at all stations during both sampling periods. Metal fractionation showed that, except for Mn and Pb, the majority of metals were found in the residual fraction regardless of sampling time, indicating that these metals were strongly bound to the sediments. The potential mobility of the metals (non-residual fractions) is reflected in the following ranking: Pb > Mn > Zn > Cu > Ni > Cr in October 2009 and Mn > Pb > Zn > Cu > Ni > Cr in June 2010. The second highest proportion of metals was bound to organic matter/sulfides, originating primarily from anthropogenic activities. Non-residual metal fractions for all stations were highest in June 2010, which may be linked to higher organic matter concentrations in the sediment samples with 1.40% and 15.1% in October 2009 and June 2010, respectively. Potential sediment toxicity was evaluated using the Risk Assessment Code (RAC). Based on RAC classification, Cd and Cr pose no risk, Cu and Ni pose low risk, Pb and Zn were classified as medium risk metals, while the environmental risk from Mn was high. In addition, based on the sediment quality guidelines (SQG), the Seyhan River can be classified as a river with no, to moderate, toxicological risks, based on total metal concentrations.  相似文献   

20.
The characteristic levels of heavy metals (Cd, Cr, Cu, Pb, Ni and Zn) of soil profiles of automobile mechanic waste dumps were studied. The concentration of heavy metals decreased with the depth of the profile and lateral distance from the dumpsites. The levels found in this study exceeded background concentrations and limits for agricultural and residential purposes. The distribution pattern of heavy metals in the soil profiles were in the following order Pb > Zn > Cu > Cd > Ni > Cr. The mechanic waste dumps represent potential sources of heavy metal pollution to environment. The elevated levels of heavy metals in these soil profiles constitute a serious threat to both surface and groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号