首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In 2002, about 17.1 million bales of cotton were ginned in the United States and the estimated cotton gin waste was 2.25 × 109 kg. The disposal of cotton gin waste (CGW) is a significant problem in the cotton ginning industry, but CGW could be potentially used as feedstock for bioethanol. Freshly discharged CGW and stored CGW were characterized for storage stability and potential for ethanol production by determining their summative compositions. The bulk densities of the fresh wet and dry CGW were 210.2 ± 59.9 kg m−3 and 183.3 ± 52.2 kg m−3, respectively. After six months of storage the volume of piles A, B, and C decreased by 38.7%, 41.5%, and 33.3%, respectively, relative to the volume of the pile at the start of the storage. The ash content of the CGW was very high ranging from 10% to 21% and the acid-insoluble fraction was high (21–24%). The total carbohydrate content was very low and ranged from 34% to 49%. After three months storage, chemical compositional analysis showed the loss of total carbohydrates was minimal but after six months, the losses were as high as 25%. This loss of carbohydrates suggests that under open storage conditions, the feedstock must be processed within three months to reduce ethanol yield losses.  相似文献   

2.
3.
Although it was indicated through various studies from around the world that resource efficiency can be adapted in metal processing plants, a very limited number of projects could be realized in Turkish metal processing industry so far. In this study it was aimed at investigating process modifications and management practices to increase water and chemical use efficiency thus increasing environmental and economic performance of a metal processing company. As a result of the applications in heat treatment and zinc phosphating processes total water consumption of the company was reduced by 34.1% corresponding to an annual water saving of 18,831 m3. Moreover, total chemical consumption in zinc phosphating as one of the most chemical intensive processes in the company, was decreased by 1401 kg/year (26.1%). Applications in zinc phosphating process led to a significant decrease in the amount of treated wastewater and wastewater treatment sludge which is labelled as hazardous waste according to national legislations. Total wastewater generation was decreased by 3255 m3/year (50.9%) while wastewater treatment sludge was reduced 4656 kg/year (16.9%). Moreover, energy consumption of the company was reduced by 32.647 kW h/year which corresponds to 36% energy saving in water pumping. Implementation cost of the applications were 34,233$ which is calculated to be paid back in 2.3 years. This study is expected to fill a gap in Turkey by demonstrating that environmental performance in metal processing industry could be improved by process modifications and improved management practices resulting in tangible economic gains.  相似文献   

4.
This paper clarifies household income, living and working conditions of dumpsite waste pickers at Bantar Gebang final disposal site for municipal solid waste generated in Jakarta, and investigates the feasibility of integrating the informal sector into formal waste management in Indonesia. The first author did fieldwork for totally 16 months at the site and quantitative field surveys were conducted twice during the period. All respondents in the first round quantitative survey (n = 1390) were categorized as follows: waste pickers, family workers, wage labors, bosses, family of the bosses, housewives, pupils/students, preschoolers, the unemployed, and others. Based on the results of the second round quantitative survey (n = 69 households), their average household income was estimated to be approximately US 216 dollars per month (n = 59 households), which was virtually equivalent to the minimum wage in Jakarta in 2013. Living conditions of scavengers at the site were horrible, and their working conditions were dangerous due to medical waste and other sharp waste. Polluted groundwater was one of the serious environmental problems at the site. Despite the social, health and environmental problems, they were attracted to the freedom of entering the informal recycling system in Bantar Gebang and withdrawing from the system, in which a lot of opportunities were provided for the people having few marketable skills to obtain cash earnings. The freedom of their choice should be guaranteed as a prerequisite before integrating the informal sector into formal waste management. Furthermore, special attentions are required when incomes of scavengers are the same level as minimum wages and the national economy is rapidly growing, because scavengers cannot easily change their jobs due to few marketable skills. Indonesian national waste laws and regulations should be properly applied to facilitate a socialization process at final disposal sites. Measures need to be taken to prevent children from working as informal recycling actors, especially for waste pickers aged 15 or younger.  相似文献   

5.
In this article, for the treatment of two specific pharmaceutical waste solvents the resource consumption of an on-site distillation process is evaluated and compared with an off-site incineration process. Both techniques are evaluated based on a thermodynamic quantitative method. The exergy approach and the cumulative exergy extracted from the natural environment (CEENE) are envisaged in order to evaluate the overall resource intake at different levels. Scenarios are constructed to make a fair comparison of both techniques. Two waste solvents, toluene (TOL) and dichloromethane (DCM), from the pharmaceutical industry which are frequently sent to distillation were evaluated. The functional unit for the comparison of both treatment alternatives is the treatment of 1 kg waste solvent + the incineration of W kg low calorific hazardous waste + the delivery of X kg “recovered” solvent + the production of Y MJ heat and Z MJ electricity. W, X, Y and Z depend on the waste solvent properties. In terms of resource requirements, distillation requires 17% (TOL) and 66% (DCM) less resources than incineration. It can be concluded that the waste solvent properties, the efficiency of the distillation process and the efficiency of the fresh solvent production process are of major importance on the resource consumption and the final choice between incineration and distillation. For a full environmental impact analysis of both treatment options, also the emissions should be taken into account. It also has to be stressed that in practice, only solvents go to incineration which cannot be distilled due to the type and degree of pollution/composition of the solvent. If distillation is not feasible, then such solvents are sent to incineration with energy recovery, according to the EU directive 2006/12/EG.  相似文献   

6.
The environmental impacts of food waste management strategies and the effects of energy mix were evaluated using a life cycle assessment model, EASEWASTE. Three different strategies involving landfill, composting and combined digestion and composting as core technologies were investigated. The results indicate that the landfilling of food waste has an obvious impact on global warming, although the power recovery from landfill gas counteracts some of this. Food waste composting causes serious acidification (68.0 PE) and nutrient enrichment (76.9 PE) because of NH3 and SO2 emissions during decomposition. Using compost on farmland, which can marginally reduce global warming (−1.7 PE), acidification (−0.8 PE), and ecotoxicity and human toxicity through fertilizer substitution, also leads to nutrient enrichment as neutralization of emissions from N loss (27.6 PE) and substitution (−12.8 PE). A combined digestion and composting technology lessens the effects of acidification (−12.2 PE), nutrient enrichment (−5.7 PE), and global warming (−7.9 PE) mainly because energy is recovered efficiently, which decreases emissions including SO2, Hg, NOx, and fossil CO2 during normal energy production. The change of energy mix by introducing more clean energy, which has marginal effects on the performance of composting strategy, results in apparently more loading to acidification and nutrient enrichment in the other two strategies. These are mainly because the recovered energy can avoid fewer emissions than before due to the lower background values in power generation. These results provide quantitative evidence for technical selection and pollution control in food waste management.  相似文献   

7.
The present study focuses on the recycling of gneiss rock waste generated by the ornamental rock industry for manufacturing vitrified floor tile products. The gneiss rock waste came from a rock-cutting plant located in Santo Antônio de Pádua-RJ, Brazil. Initially the waste sample was characterized for chemical composition, X-ray diffraction, particle size, morphology, and pollution potential. Floor tiles containing up to 47.5 wt.% waste were prepared. The tiles were tested to determine their physical-mechanical properties (linear shrinkage, water absorption, apparent density, and flexural strength). Microstructural evolution was carried out by scanning electron microscopy. The results indicate that the gneiss rock waste could be used for vitrified floor tile production, resulting in a new possibility for recycling this waste and conserving natural resources.  相似文献   

8.
Wastewater treatment practices should pay more attention to their environmental performances due to their resources consumption and emissions’ impact. While reclaimed water reuse seems to have become a promising practice, is it always feasible in any condition? To address this issue, this study carried out an extended emergy evaluation of a holistic wastewater treatment system. On one hand, this method was extended to include the emissions’ impact. On the other hand, this study integrated a wastewater treatment plant, its excess sludge disposal system and treated water disposal system into an integrated wastewater treatment system (IWTS), so as to evaluate its performances more completely. And then several indicators, including cost per unit pollutant eliminated (CUPE), ratio of positive output (RPO), environmental load ratio (ELR), and sustainability index (SI), were proposed for evaluating the performances of an IWTS. Two scenarios (scenario A: wastewater treatment + sludge landfilling + treated water discharges; scenario B: wastewater treatment + sludge landfilling + reclaimed water reuse) for a livestock wastewater treatment plant in Sichuan Agricultural University located in Ya’an City in Southwest China, as cases, were researched. The results show that scenario B has lower positive output efficiency and greater environmental load than scenario A. Meanwhile, the reclaimed water reuse raises cost per unit pollutant eliminated compared with the treated water being discharged directly; emissions’ impact enhances the environmental load of the two scenarios to different degree; emissions’ impact has decisive effect on the sustainability of the two scenarios. These results mean that the reclaimed water reuse should not be advocated in this case. This study provides some policy implications: (1) wastewater treatment process should be comprehensively evaluated from its resources consumption and impact of emissions; (2) reclaimed water reuse should be carefully evaluated from its pros and cons simultaneously; (3) the local conditions should be considered when implementing reclaimed water reuse, such as local water body conditions, market demands, the related laws and regulations, corporations’ economic conditions, etc.  相似文献   

9.
Fenton oxidation pretreatment was investigated for enhancement of biodegradability of wastewater sludge (WWS) which was subsequently used as substrate for the production of value- added products. The Response surface method with fractional factorial and central composite designs was applied to determine the effects of Fenton parameters on solubilization and biodegradability of sludge and the optimization of the Fenton process. Maximum solubilization and biodegradability were obtained as 70% and 74%, respectively at the optimal conditions: 0.01 ml H2O2/g SS, 150 [H2O2]0/[Fe2+]0, 25 g/L TS, at 25 °C and 60 min duration. Further, these optimal conditions were tested for the production of a value added product, Bacillus thuringiensis (Bt) which is being used as a biopesticide in the agriculture and forestry sector. It was observed that Bt growth using Fenton oxidized sludge as a substrate was improved with a maximum total cell count of 1.63 × 109 CFU ml?1 and 96% sporulation after 48 h of fermentation. The results were also tested against ultrasonication treatment and the total cell count was found to be 4.08 × 108 CFU ml?1 with a sporulation of 90%. Hence, classic Fenton oxidation was demonstrated to be a rather more promising chemical pre-treatment for Bt - based biopesticide production using WWS when compared to ultrasonication as a physical pre-treatment.  相似文献   

10.
Inadequate management of household solid waste is a serious problem in many developing cities. The study aimed to evaluate the quantities and composition of household solid waste generation in Abuja within different socioeconomic groups. The wastes from 74 households across different socioeconomic levels in Abuja were collected, weighted and classified on a daily basis for seven days in February 2012. The result showed that the average daily per capita household waste generation is 0.634 kg/capita/day. The characteristic of solid waste in Abuja are typical for the developing cities and dominated by organic waste. Households waste consisted of 63.6% organic waste, 9.7% paper, 8.7% plastics, 3.2% metal, 2.6% glass, 1.6% textile and 10.6% others (unclassified) and the bulk density was 240 kg/m3. The evaluation of relationship between income and daily per capita household waste generation showed a positive relationship. The study revealed a statistically significant difference between household size and daily per capita household waste generation in high-income group; a slight significant difference between household size and daily per capita household waste generation in medium income group and no statistically significant difference between household size and daily per capita household waste generation in low-income group.  相似文献   

11.
Phosphorus (P) is a finite and non-substitutable resource that is essential to sustaining high levels of agricultural productivity but is also responsible for environmental problems, e.g., eutrophication. Based on the methodology of Material Flow Analysis, this study attempts to quantify all relevant flows and stocks of phosphorus (P) in Austria, with a special focus on waste and wastewater management. The system is modeled with the software STAN, which considers data uncertainty and applies data reconciliation and error propagation. The main novelty of this work lies in the high level of detail at which flows and stocks have been quantified to achieve a deeper understanding of the system and to provide a sound basis for the evaluation of various management options. The budget confirms on the one hand the dependence of mineral P fertilizer application (2 kg cap−1 yr−1), but it highlights on the other hand considerable unexploited potential for improvement. For example, municipal sewage sludge (0.75 kg cap−1 yr−1) and meat and bone meal (0.65 kg cap−1 yr−1) could potentially substitute 70% of the total applied mineral P fertilizers. However, recycling rates are low for several P flows (e.g., 27% of municipal sewage sludge; 3% of meat and bone meal). Therefore, Austria is building up a remarkable P stock (2.1 kg P cap−1 yr−1), mainly due to accumulation in landfills (1.1 kg P cap−1 yr−1) and agricultural soils (0.48 kg P cap−1 yr−1).  相似文献   

12.
The quality of recyclable and residual municipal solid waste (MSW) is, among other factors, strongly influenced by the seasonal variation in MSW composition. However, a relatively marginal amount of published data on seasonal MSW composition especially in East European countries do not provide sufficient information on this phenomenon. This study provides results from municipal waste composition research campaigns conducted during the period of 2009–2011 in four cities of Eastern European countries (Lithuania, Russia, Ukraine and Georgia). The median monthly MSW generation values ranged from 18.70 in Kutaisi (Georgia) to 38.31 kg capita−1 month−1 in Kaunas (Lithuania). The quantitative estimation of seasonal variation was performed by fitting the collected data to time series forecasting models, such as non-parametric seasonal exponential smoothing, Winters additive, and Winters multiplicative methods.  相似文献   

13.
To reduce the consumption of freshwater in the laundry industry, a new trend of closing the water cycle has resulted in the reuse/recycling of water. In this study, the performance of a full-scale submerged aerobic membrane bioreactor (9 m3) used to treat/reuse industrial laundry wastewater was examined over a period of 288 days. The turbidity and total solids (TS) were reduced by 99%, and the chemical oxygen demand (COD) effluent removal efficiencies were between 70% and 99%. The levels of COD removed by the membrane were significantly greater than the levels of biodegraded COD. This enabled the bioreactor to sustain COD levels that were below 100 mg/L, even during periods of low wastewater biodegradation due to bioreactor sludge. An economic evaluation of the membrane bioreactor (MBR) system showed a savings of 1.13 € per 1 m3 of water. The payback period for this system is approximately 6 years. The energy and maintenance costs represent only 5% of the total cost of the MBR system.  相似文献   

14.
This study was undertaken to evaluate the quantity and composition of household solid waste to identify opportunities for waste recycling in Can Tho city, the capital city of the Mekong Delta region in southern Vietnam. Two-stage survey of 100 households was conducted for dry season and rainy season in 2009. Household solid waste was collected from each household and classified into 10 physical categories and 83 subcategories. The average household solid waste generation rate was 285.28 g per capita per day. The compostable and recyclable shares respectively accounted for 80.02% and 11.73%. The authors also analyzed the relations between some socioeconomic factors and household solid waste generation rates by physical categories and subcategories. The household solid waste generation rate per capita per day was positively correlated with the population density and urbanization level, although it was negatively correlated with the household size. The authors also developed mathematical models of correlations between the waste generation rates of main physical categories and relevant factors, such as household size and household income. The models were proposed by linear models with three variables to predict household solid waste generation of total waste, food waste, and plastic waste. It was shown that these correlations were weak and a relationship among variables existed. Comparisons of waste generation by physical compositions associated with different factors, such as seasonal and daily variation were conducted. Results presented that the significant average differences were found by the different seasons and by the different days in a week; although these correlations were weak. The greenhouse gas baseline emission was also calculated as 292.25 g (CO2 eq.) per capita per day from biodegradable components.  相似文献   

15.
Municipal solid waste management in China: Status,problems and challenges   总被引:1,自引:0,他引:1  
This paper presents an examination of MSW generation and composition in China, providing an overview of the current state of MSW management, an analysis of existing problems in MSW collection, separation, recycling and disposal, and some suggestions for improving MSW systems in the future. In China, along with urbanization, population growth and industrialization, the quantity of municipal solid waste (MSW) generation has been increasing rapidly. The total MSW amount increased from 31.3 million tonnes in 1980 to 212 million tonnes in 2006, and the waste generation rate increased from 0.50 kg/capita/day in 1980 to 0.98 kg/capita/year in 2006. Currently, waste composition in China is dominated by a high organic and moisture content, since the concentration of kitchen waste in urban solid waste makes up the highest proportion (at approximately 60%) of the waste stream. The total amount of MSW collected and transported was 148 million tonnes in 2006, of which 91.4% was landfilled, 6.4% was incinerated and 2.2% was composted. The overall MSW treatment rate in China was approximately 62% in 2007. In 2007, there were 460 facilities, including 366 landfill sites, 17 composing plants, and 66 incineration plants. This paper also considers the challenges faced and opportunities for MSW management in China, and a number of recommendations are made aimed at improving the MSW management system.  相似文献   

16.
The bioavailability of cobalt and its transfer from soil to vegetables and rice were investigated. Among 312 soils collected from vegetable and paddy fields in the suburban areas of some major cities of Fujian Province, southeast China, total soil Co ranged from 3.5 to 21.7 mg kg?1, indicating a slight accumulation compared with the background value of the province. DTPA extracted 0.1–8.5% of soil total Co. Total and DTPA-extractable Co correlated with soil pH, CEC, free Fe, total Mn, clay and silt content more significantly in paddy soils than in the soils from vegetable fields. The average Co concentrations in the edible parts of vegetables and rice were 15.4 μg kg?1 and 15.5 μg kg?1, respectively. The transfer factor (the ratio of plant Co to soil DTPA-extractable Co, TFDTPA) ranged from 0.003 to 0.126 with a median of 0.049. The TFDTPA decreased in the order of leafy vegetables > fruit vegetables > root vegetables > rice. The TFDTPA of all crops decreased with increasing DTPA-extractable Co. Increase in pH, CEC, organic matter, clay, silt, free iron and total Mn limited the soil-to-plant transfer of Co to varying degrees. The transfer of Co from the soils to the edible parts of the crops was lower than that of Zn, Cu and Cd, but higher than that of Pb in the same areas. The concentrations of Co in rice and vegetables in the study areas were considered to be safe for the local residents because of the slight anthropogenic input and the low transfer potential to the edible parts of Co from the soils.  相似文献   

17.
Based on the method of material flow analysis (MFA), a static model of Austrian aluminum (Al) flows in 2010 was developed. Extensive data research on Al production, consumption, trade and waste management was conducted and resulted in a detailed model of national Al resources. Data uncertainty was considered in the model based on the application of a rigorous concept for data quality assessment. The model results indicated that the growth of the Austrian “in-use” Al stock amounts to 11 ± 3.1 kg yr−1 cap−1. The total “in-use” Al stock was determined using a bottom-up approach, which produced an estimate of 260 kg Al cap−1. Approximately 7 ± 1 kg of Al yr−1 cap−1 of old scrap was generated in 2010, of which 20% was not recovered because of losses in waste management processes. Quantitatively, approximately 40% of the total scrap input to secondary Al production originated from net imports, highlighting the import dependency of Austrian Al refiners and remelters. Uncertainties in the calculation of recycling indicators for the Austrian Al system with high shares of foreign scrap trade were exemplarily illustrated for the old scrap ratio (OSR) in secondary Al production, resulting in a possible range of OSRs between 0 and 66%. Overall, the detailed MFA in this study provides a basis to identify resource potentials as well as resource losses in the national Al system, and it will serve as a starting point for a dynamic Al model to be developed in the future.  相似文献   

18.
This paper examines the 1-year anthropogenic stocks and flows of silver as it progresses from extraction to final disposal on the European continent. The primary flows of silver include production, fabrication and manufacturing, use, and waste management. A substance flow analysis (SFA) was used to trace the flows and inventory data, and mass balance equations were used to determine the quantity of flows. The results reveal that Europe has a low level of silver mine production (1580 Mg Ag/year) and instead relies on silver imports and the recycling of scrap in production and fabrication. In the year 1997, Europe imported 1160 Mg Ag of ore concentrate and 2010 Mg Ag of refined silver, and recycled 2750 Mg Ag of new and old scrap. There is a net addition of 3320 Mg Ag/year into silver reservoirs at the use stage. This is the result of a greater amount of silver entering the system from manufacturing than is leaving the system into waste management. The waste flow with the highest content of silver is municipal solid waste, which contains 1180 Mg Ag/year. In total, 62% of all discarded silver is recycled and 38% is sent to landfills. The results of this study and other element and material flow analyses can help guide resource managers, environmental policy makers, and environmental scientists in their efforts to increase material recovery and recycling, address resource sustainability, and ameliorate environmental problems.  相似文献   

19.
Environmental concerns are increasing rapidly, and the public and industry are concerned about natural resources. The products are produced to meet the customer's demand as to quality. However, today it is equally important to take into account cost, ecological factors in production and recycling of products. The same way, the dentistry must contribution with a recasting the alloys used to rehabilitation oral.This study evaluated the effect of the condition of Ti (as-received and re-cast) on its mechanical properties, microstructure and fractography. Castings (n = 6) with Ti in the as-received and once recast condition were made in a centrifugal casting machine using a high-purity argon gas. The ultimate tensile strength (UTS), proportional limit (PL) and elongation (EL) of the as-received specimens were evaluated in a universal testing machine at a crosshead speed of 1 mm/min. The fractured specimens were polished down for Vicker's microhardness (VHN) measurement (100 g/15 s) from 25 μm below the cast surface, then at depths of 50, 100, 200 and 500 μm. The microstructures of the alloys were also revealed. Scanning electron microscopy fractography was undertaken for the fractured surfaces after testing. The data from the mechanical tests and hardness were subjected to the Student's t-test and two-way repeated measures ANOVA, respectively. Tukey's test was used for pairwise comparison (α = 0.05). Higher UTS, PL and VHN and lower EL were observed for recast cp Ti. The microstructure was not influenced by recasting, but the mode of fracture was.The use of the recasting procedure can lower the costs of cp Ti castings and can be safely in dentistry.  相似文献   

20.
The selective collection and recycling of municipal solid waste are presented as stages of an integrated program of solid waste management to minimize the environmental impact of the treatment and final disposal of solid waste. Therefore, this program aims to save natural resources, such as energy and raw materials, in the manufacture of new products and to conserve areas for sites, such as to minimize the use of existing landfill sites, and to minimize the need for new waste treatment sites. A university is composed of educational professionals aware of their societal responsibilities, and, therefore, they play a fundamental role in the management of the university's solid waste. This study presents the design and implementation of a Permanent Selective Collection Program (PSCP) at the Federal University of Itajubá (Universidade Federal de Itajubá, UNIFEI), Itajubá-MG, Brazil. The material requirements for initiating the PSCP have been identified, and an action plan for continuous program improvement, which is initially based on the collection of performance indicator data for the PSCP campus, has been developed. Finally, the data from the PSCP performance indicators and software from the United States Environmental Protection Agency, the Landfill Gas Generation Model (LandGEM) and the Waste Reduction Model (WARM), were used to evaluate the impact of implementing PSCP in terms of energy and the generation of greenhouse gases (GHG). The results were promising, showing that there has been an improvement, since the inception of PSCP in 2006, in separating materials for selective collection, even though paper (41.00 wt%), plastic (6.00 wt%) and organic matter (26.00 wt%) are still highly generated wastes. The WARM simulations for a scenario in which 90% of the waste is sent for recycling resulted in an economy of −7 tCO2 or −74.91 GJ (on an energy basis). The LandGEM (USEPA) simulations estimated 1424.60 kWh of energy in the peak production year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号