首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 398 毫秒
1.
含有锡铜铅锌的鼓风炉水淬渣经矿热电炉还原熔炼产出锡铜铅铁多元合金.用氯气浸出该合金,以硫酸铅的形式分离出铅,合金粉还原铜产出海绵铜,中和水解分离锡和铁,进而实现锡铜铅铁多元合金的有效分离.  相似文献   

2.
日前,华锡集团河池冶金化工厂成功地从转前渣(铅锑综合渣)中回收金属铜和铋,解决了困扰该厂多年的铅锑综合产品杂质含量高的技术难题。   河冶厂现已建成了一座年产铅锑综合产量15000吨的冶炼工艺流程。过去由于生产技术落后,对含有大量金属铜(品位3%~5%)和铋(品位3%~4%)的转前渣无法进行回收。今年,河冶厂成立了新产品开发办,抽出精干的技术人员进行科技攻关,使铜、铋开路(分别回收)试验获得成功,降低了铅锑产品中铜铋的金属含量,提高了产品质量。铜铋炉窑投产后,年铜产品产量达到30吨,铋12吨,直接创造经济效益120多万元。 (黄若斌)  相似文献   

3.
铜的火法冶炼过程中会产生大量的转炉渣,该转炉渣富含铜金等有价金属,通过磨碎选别得以回收,大量的渣尾作为废料排放.如某铜业公司每年产出含铜金转炉渣8万t,渣尾排放每年达7万t,堆存这些渣尾不仅占用大片土地,而且严重污染环境.渣尾中含有大量的铁硅成分,是水泥生产中的铁质校正材料.  相似文献   

4.
废印制线路板真空热解产物分析   总被引:1,自引:0,他引:1  
在自行设计的间歇式固定床真空热解装置中热解废印制线路板(PCB),对热解产物进行了分析.在热解温度为550 ℃、热解压力为20 kPa、恒温时间为60 min的条件下,得到的热解产物质量分数为:热解渣70%;热解油3%~4%;不可冷凝热解气26%~27%.经气相色谱-质谱联用(GC-MS)分析,热解油经常压蒸馏后得到的低沸点液态油中含有29种化合物,主要有苯酚、对异丙基酚、3-乙基酚、4-甲酚及2-溴苯酚,还含有少量含溴化合物和含氯化合物.热解油经简单的蒸馏就可达到回收酚类化合物的目的.热解渣经风选可实现铜与黏附有碳黑的玻璃纤维的分离,其中铜质量分数约30%,黏附有碳黑的玻璃纤维质量分数约70%.  相似文献   

5.
<正>专利申请号:CN201811070437公开号:CN109161688A申请日:2018.09.13公开日:2019.01.08申请人:白银有色集团股份有限公司本发明公开了一种从铜镉渣中回收利用铜、镉的方法,属于冶炼工程副产品回收利用技术领域。本发明利用铜镉渣中锌、镉及其氧化物易溶于硫酸,铜不溶于硫酸的原理达到  相似文献   

6.
专利资讯     
正专利名称:一种铜镉渣提镉残渣资源回收的方法专利申请号:CN201510319706.9公开号:CN106282569A申请日:2015.06.12公开日:2017.01.04申请人:陕西瑞凯环保科技有限公司本发明公开了一种铜镉渣提镉残渣资源回收的方法。首先在常压高温下按一定液固比加硫酸,鼓空气浸出铜镉渣提镉的副产品铜渣并固液分离,得到铅银渣和浸出液;然后用选择性电沉积产出的活性铜粉在高温条件下脱除浸出液中  相似文献   

7.
正专利申请号:CN201710613380.X公开号:CN107557589A申请日:2017.07.25公开日:2018.01.09申请人:昆明理工大学本发明涉及一种从湿法炼锌铜镉渣中回收有价金属的方法,属于有色冶金中的湿法炼锌技术领域。首先将铜镉渣进行一次浸出得到富镉液和一次浸出渣;将得到的一次浸出  相似文献   

8.
用硫酸烧渣制取硫酸亚铁   总被引:1,自引:0,他引:1  
冯俊瑜 《化工环保》1994,14(5):311-312
用硫酸烧渣制取硫酸亚铁在硫酸的生产过程中,排出硫酸烧渣,其中含有58%的铁和一些有色金属。目前,我国对此废渣尚未很好地利用。我们采用一种廉价的还原剂,将其先与此烧渣进行还原反应,使烧渣中的三价铁全部转化为低价铁,而后再用硫酸厂的废硫酸浸取还原渣,浸出...  相似文献   

9.
利用流化床电极从铜镉渣中回收有价成份   总被引:1,自引:0,他引:1  
利用流化床电极从铜镉渣中回收铜、镉及锌,其中铜、镉经一次电解后的回收率和纯度都在99%以上;锌以ZnSO_4的形式回收,其回收率大于95%。该工艺简单、快速、分离效果较好、无二次污染。采用该技术可取得较好的环境效益和经济效益。  相似文献   

10.
陈伟初 《化工环保》1991,11(6):376-377
在生产聚氯乙烯(PVC)的过程中,排出大量的电石渣(一般呈稀糊状,俗称电石糊)。无锡县电化厂年产 PVC 4000吨,排出的电石渣(含固量约为15%,重量)折算成于电石渣约为8000吨。以前,对这种电石糊所采用的处理方法是:将其放置在露天池内进行沉降,然后将沉降下来的浓渣运出,用于民用建筑。由于沉降浓渣中仍含有大量的水份,在运输过程中沿途滴漏,造成环境污  相似文献   

11.
The flash smelting process has been used in the copper industry for a number of years and has replaced most of the reverberatory applications, known as conventional copper smelting processes. Copper smelters produce large amounts of copper slag or copper flotation waste and the dumping of these quantities of copper slag causes economic, environmental and space problems. The aim of this study was to perform a laboratory investigation to assess the feasibility of immobilizing the heavy metals contained in copper flotation waste. For this purpose, samples of copper flotation waste were immobilized with relatively small proportions of red mud and large proportions of clinoptilolite. The results of laboratory leaching demonstrate that addition of red mud and clinoptilolite to the copper flotation waste drastically reduced the heavy metal content in the effluent and the red mud performed better than clinoptilolite. This study also compared the leaching behaviour of metals in copper flotation waste by short-time extraction tests such as the toxicity characteristic leaching procedure (TCLP), deionized water (DI) and field leach test (FLT). The results of leach tests showed that the results of the FLT and DI methods were close and generally lower than those of the TCLP methods.  相似文献   

12.
Within the European Union, it is estimated that between 8 and 9 million tonnes of waste electric and electronic equipment (WEEE) arises annually, of which television sets and computers account for an important part. Traditionally, Cathode Ray Tubes (CRT) have been used for TVs and computer monitors, but are rapidly being replaced by flat-screen technology. Only part of the discarded CRT glass is being recycled. Primary smelters use large amounts of silica flux to form iron-silicate slag, and can, in most cases, tolerate lead input. Use of discarded CRT glass in copper smelting is a potential alternative for utilization of the glass.The mineralogical composition of a slag sampled during ordinary slag praxis has been compared with that of a mixture of slag and CRT glass when re-melted and slowly cooled. Slag (iron-silicate slag) from Boliden Mineral AB, Sweden, was used for the experiments. Slag and glass have been mixed in various proportions: pure slag, pure glass, 90% slag-10% glass and 65% slag-35% glass, and heated in an inert atmosphere up to 1400 °C in a Netzsch Thermal Analysis (TA) instrument. The re-melted material has been analyzed using X-ray diffraction (XRD) and scanning electron microscopy (SEM) to determine changes in mineralogical composition after mixing with glass.The results show that the main mineralogical component of the slag is fayalite; the CRT glass is amorphous. The main crystalline phases of the slag do not change with addition of glass. An amorphous phase appears when the addition of glass is increased, which gives the sample a different structure.  相似文献   

13.

In the process of lead production from lead-bearing materials generated in copper metallurgy, a large amount of hazardous waste in the form of slag is produced. To assess the effect of the slag on the environment, its physicochemical properties were determined. In this study, the following methods were used: wavelength dispersive X-ray fluorescence (WD XRF), X-ray diffraction (XRD), and Bunte-Baum-Reerink method to determine softening and melting points, as well as viscosity examination and leaching tests. The measurements were performed on the slag produced with two different amounts of iron addition to the lead smelting process. The resulting slags, an oxide rich phase slag and a sulfide rich phase slag have different compositions and physicochemical properties. It was found that the increase in iron addition causes an increase in the softening melting point of the oxide rich phase slag by about 100 °C, and a twofold increase in the viscosity of both slag phases. The increase in iron addition also results in the decrease in As leachability and increase in Zn, Fe, and Cu leachability from the slags. Slag produced with increased iron addition has a greater impact on the environment.

  相似文献   

14.
About 2.5 million tonnes of copper smelter slag are available in Küre, northern part of Turkey. This slag contains large amounts of metallic values such as copper and cobalt. A representative slag sample containing 0.98% Cu, 0.49% Co and 51.47% Fe was used in the experimental studies. Two different methods, direct acid leaching and acid baking followed by hot water leaching were used for recovering Cu and Co from the slag. The effects of leaching time, temperature and acid concentration on Cu- and Co-dissolving efficiencies were investigated in the direct acid leaching tests. The optimum leaching conditions were found to be a leaching time of 2 h, acid concentration of 120 g L(-1), and temperature of 60 degrees C. Under these conditions, 78% Cu and 90% Co were extracted. In the acid baking + hot water leaching tests, 74% Co was dissolved after 1 h of roasting at 200 degrees C using a 3:1 acid:slag ratio, whereas the Cu-dissolving efficiency was 79% and the total slag weight loss was approximately 50%.  相似文献   

15.
One of the major problems in copper-producing countries is the treatment of the large amount of copper slag or copper flotation waste generated from copper slag which contains significant amounts of heavy metals such as Cu, Zn, Pb and Co. Dumping or disposal of such large quantities of flotation waste from copper slag causes environmental and space problems. In this study, the treatment of flotation waste from copper slag by a thermal method and its use as an iron source in the production of inorganic brown and black pigments that are used in the ceramic industry were investigated. The pigments were produced by calcining different amounts of flotation waste and chromite, Cr2O3, ZnO and CoO mixtures. The pigments obtained were added to transparent ceramic glazes and porcelainized tile bodies. Their colours were defined by L*a*b* measurements with a spectrophotometer. The results showed that flotation waste from copper slag could be used as an iron source to produce brown and black pigments in both ceramic body and glazes.  相似文献   

16.
万斯 《化工环保》2015,35(6):614-619
将物质流分析应用于我国再生铅冶炼行业典型工艺(铅膏炼前预脱硫—还原熔炼—精炼)的铅污染研究,构建了再生铅冶炼过程的铅元素流图,并针对铅污染提出了应对措施。研究结果表明:再生铅典型工艺的铅直收率、铅回收率、铅废物循环利用率分别为85.38%,93.96%,97.57%;应重点监控的铅有组织排放依次为外排烟气、熔炼渣、脱硫石膏渣;针对外排烟气中铅烟尘的PM2.5占比高及铅烟尘活性较高易于释放的特点,应选用高效除尘器,进一步提高细烟尘的捕集率;铅无名损失的重点工序依次为熔炼工序、电解精炼工序、合金熔铸工序;冶炼烟尘返回熔炼炉时,应增加制粒工序,以降低熔炼炉的烟尘率。  相似文献   

17.
The shortage of waste landfill space for waste disposal and the high demand for fill materials for land reclamation projects in Singapore have prompted a study on the feasibility of using spent copper slag as fill material in land reclamation. The physical and geotechnical properties of the spent copper slag were first assessed by laboratory tests, including hydraulic conductivity and shear strength tests. The physical and geotechnical properties were compared with those of conventional fill materials such as sands. The potential environmental impacts associated with the use of the spent copper slag for land reclamation were also evaluated by conducting laboratory tests including pH and Eh measurements, batch-leaching tests, acid neutralization capacity determination, and monitoring of long-term dissolution of the material. The spent copper slag was slightly alkaline, with pH 8.4 at a solid : water ratio of 1 : 1. The batch-leaching test results show that the concentrations of the regulated heavy metals leached from the material at pH 5.0 were significantly lower than the maximum concentrations for their toxicity limits referred by US EPA's Toxicity Characteristic Leaching Procedure (TCLP). It was also found that the material is unlikely to cause significant change in the redox condition of the subsurface environment over a long-term period. In terms of physical and geotechnical properties, the spent copper slag is a good fill material. In general, the spent copper slag is suitable to be used as a fill material for land reclamation.  相似文献   

18.
Clean processing of copper converter slag to reclaim cobalt and copper could be a challenge. An innovative and environmentally sound approach for recovering valuable metals from such a slag has been developed in the present study. Curing the slag with strong sulphuric acid, without re-smelting or roasting as practiced currently in the industry, render it accessible to leaching, and more than 95% of cobalt and up to 90% of copper was extracted together with iron by water leaching, leaving silica behind in a residue. The copper in the leach liquor was recovered by cementation with iron and the dissolved iron crystallized as ferrous sulphate monohydrate. The cobalt in the mother-liquor rich in iron was recovered by either cementation or sulphide precipitation. Operation variables in the new process were also investigated and optimized.  相似文献   

19.
采用离子交换膜电解技术处理铜冶炼过程产生的含氯及重金属的废酸。考察了废酸处理工艺、电解温度、电解时间、电流密度和催化剂的添加等条件对处理效果的影响。实验结果表明:采用先沉淀重金属后脱氯的废酸处理工艺,氯离子和铜离子的去除效果均较好;当以钛盐为催化剂时,在电解温度为40 ℃、电解时间为2.0 h、电流密度为825 A/m2的最佳工艺条件下,处理后废酸中的氯离子质量浓度为0.22 g/L,氯离子去除率为98.59%,铜离子质量浓度为0.45 g/L,铜离子去除率为95.08%,其他重金属大部分也得到有效去除。净化后的废酸可回用至铜冶炼的生产过程中。  相似文献   

20.
郝雅琼 《化工环保》2017,36(5):566-571
建立了金属冶炼进口物料的固体废物鉴别方法,并利用该方法对海关查扣的3种金属冶炼进口物料进行了固体废物鉴别。鉴别结果显示:物料1、2和3的自然属性分别为砷含量超标铜精矿、锰阳极泥、回转窑氧化锌,产生来源分别为有害物质超标的产品、污染控制设施产生的物质、有意识加工的目标产物;物料1和2属于我国禁止进口的固体废物,物料3不属于固体废物。本文建立的固体废物鉴别方法可行,可为金属冶炼进口物料的固体废物鉴别和监管提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号