首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Residues of pyrethrin-I (Py-I) and pyrethrin-II (Py-II), the major insecticidal components of the pyrethrum daisy (Tanacetum cinerariifolium) as well as residues of piperonyl butoxide (PBO, a pyrethrum synergist) were determined in soil and on potato foliage grown under field conditions. A pyrethrum formulation (Multi-Purpose Insecticide) containing the three active ingredients was sprayed twice at the rate of 6 lbs of formulated product.acre(-1) ( 5.4 and 27.2 g A.I. of pyrethrin and PBO, respectively) on potato foliage during the growing season. In soil, three management practices (yard waste compost, grass filter strips, and a no mulch treatment) were used to study the impact of surface soil characteristics on the amount of pyrethrins (Pys) and PBO retained in soil. Soil samples and potato leaves were collected at different time intervals after spraying. Samples were purified and concentrated using solid-phase extraction columns containing C18-Octadecyl bonded silica. Residues were quantified by high-performance liquid chromatograph equipped with a UV detector. The first spray resulted in mean initial deposits of 0.18, 0.40, and 0.99 microg.g(-1) potato leaves for Py-I, Py-II, and PBO, respectively. Residues in soil were higher in compost treatments compared to no mulch treatments.  相似文献   

2.
Endosulfan 3 EC, a mixture of α- and β-stereo isomers, was sprayed on field-grown pepper, melon, and sweet potato plants at the recommended rate of 0.44 kg A.I. acre(-1). Plant tissue samples (leaves, fruits, or edible roots) were collected 1 h to 30 days following spraying and analyzed for endosulfan isomers (α- and β-isomers). Analysis of samples was accomplished using a gas chromatograph (GC) equipped with a mass detector in total ion mode. The results indicated the formation of endosulfan sulfate as the major metabolite of endosulfan sulfite and the relatively higher persistence of the β-isomers as compared to the α-isomer. The initial total residues (α- and β-isomers plus endosulfan sulfate) were higher on leaves than on fruits. On pepper and melon fruits, the α-isomer, which is the more toxic to mammals, dissipated faster (T(1/2) = 1.22 and 0.95 d, respectively) than the less toxic β-isomer (T(1/2) = 3.0 and 2.5 d, respectively). These results confirm the greater loss of the α-isomer compared to the β-isomer, which can ultimately impact endosulfan dissipation in the environment. Additionally, the higher initial residues of endosulfan on pepper and sweet potato leaves should be considered of great importance for timing field operations and the safe entry of harvesters due to the high mammalian toxicity of endosulfan.  相似文献   

3.
Pest management is facing economic and ecological challenges in the United States and worldwide due to pest resistance, human and environmental hazards caused by use of synthetic pesticides. Natural product-based pesticides offer advantages that they are specific to the target species and typically have unique modes of action with little mammalian toxicity. Studies conducted at Kentucky State University revealed that the insecticidal and acaricidal performance of crude extracts from the fruits of Capsicum species justified the need for developing a natural pesticide formulation for agricultural use. Analysis of hot pepper extracts indicated the presence of three compounds having pesticidal efficacy: capsaicin, dihydrocapsaicin, and pentadecanoic acid methyl ester. The main objectives of this investigation were to: i) determine the half-live (T1/2 value) of capsaicin, dihydrocapsaicin, and pentadecanoic acid methyl ester in soil sprayed with hot pepper formulation and ii) assess the impact of hot pepper formulation on total soil enzyme activity. Analysis of soil sprayed with pepper extracts indicated that T1/2 values of capsaicin, dihydrocapsaicin, and pentadecanoic acid methyl ester were 7.3, 1.5, and 10.2 d, respectively. Hydrolysis of the fluorescein diacetate [3, 6-diacetylfluorescein (FDA)], used for measuring overall soil enzyme activities, indicated that total enzyme activities was slightly enhanced by 2% in soil sprayed with hot pepper extracts.  相似文献   

4.
Endosulfan 3 EC, a mixture of α- and β-stereo isomers, was sprayed on field-grown pepper, melon, and sweet potato plants at the recommended rate of 0.44 kg A.I. acre?1. Plant tissue samples (leaves, fruits, or edible roots) were collected 1 h to 30 days following spraying and analyzed for endosulfan isomers (α- and β-isomers). Analysis of samples was accomplished using a gas chromatograph (GC) equipped with a mass detector in total ion mode. The results indicated the formation of endosulfan sulfate as the major metabolite of endosulfan sulfite and the relatively higher persistence of the β-isomers as compared to the α-isomer. The initial total residues (α- and β-isomers plus endosulfan sulfate) were higher on leaves than on fruits. On pepper and melon fruits, the α-isomer, which is the more toxic to mammals, dissipated faster (T1/2 = 1.22 and 0.95 d, respectively) than the less toxic β-isomer (T1/2 = 3.0 and 2.5 d, respectively). These results confirm the greater loss of the α-isomer compared to the β-isomer, which can ultimately impact endosulfan dissipation in the environment. Additionally, the higher initial residues of endosulfan on pepper and sweet potato leaves should be considered of great importance for timing field operations and the safe entry of harvesters due to the high mammalian toxicity of endosulfan.  相似文献   

5.
The adsorption and mobility of pyrethrins (Pys), the major insecticidal components obtained from the pyrethrum daisy Tanacetum cinerariifolium, and piperonyl butoxide (PBO), a pyrethrum synergist, were determined in soil using batch-equilibrium and reverse-phase thin-layer chromatographic techniques. Two soil management practices were used, soil mixed with yard waste compost (COM) at 50 t acre(-1) on dry weight basis and no-mulch (NM) bare soil. Adsorption isotherm experiments were carried out using known concentrations of Pys (Py-I and Py-II) and PBO mixed with known amounts of COM or NM soil at constant temperature and pressure until equilibrium was attained. Pys and PBO in soil extracts were purified and concentrated using solid-phase extraction cartridges containing C18-octadecyl bonded silica. Pys and PBO residues were quantified using a high-performance liquid chromatograph equipped with a UV detector. Adsorption studies showed that compost amended soil adsorbed more Pys and PBO than native (NM) soil. Py-I adsorption was greater than Py-II and PBO. Adsorption of Pys and PBO to humic and fulvic acids was also studied by reverse-phase thin layer chromatography (RPTLC). Results indicated that humic acid, a significant component of organic matter, reduced Pys and PBO mobility. Pys and PBO mobility decreased as the concentration of humic acid in the mobile phase increased.  相似文献   

6.
Abstract

Levels of acephate (OrtheneR) and its principle metabolite, methamidophos, in/on greenhouse‐grown pepper and cucumber fruits and leaves in relation to the applied methamidophos were monitored. Dislodgeable and total residues of acephate and methamidophos were determined by gas‐liquid chromatography equipped with a flame ionization detector (GC‐FID) and were confirmed by nitrogen phosphorus detector (GC‐NPD). The dissipation curves of the residues followed first‐order kinetics (R2> 0.96). Initial residues of acephate on fruits varied between pepper (15.12 ppm) and cucumber (2.16 ppm) . Total residues in fruits and leaves determined at intervals following application revealed the greater persistence of acephate on pepper fruits (half‐life [t1/2] of 6 d) than on cucumber fruits (t1/2 was 3.7 d) . T1/2 values for the applied methamidophos were 4.7 and 5.3 d on pepper and cucumber fruits, respectively. Deacety‐lation of acephate (formation of its metabolite) was detectable 1 d following acephate treatment and reached a maximum of 2.05% of initial acephate residues 3 d after application on pepper fruits. On cucumber fruits, acephate metabolite reached a maximum of 2.12% one wk following application. No acephate residues were detected above the limit of detection of 0.001 ppm in pepper fruits 50 d following acephate application while its metabolite was detectable at that time (detectability limit was 0.0001 ppm).  相似文献   

7.
A field study was conducted on a Lowell silty loam soil of 2.7% organic matter at the Kentucky State University Research Farm, Franklin County, Kentucky. Eighteen universal soil loss equation (USLE) standard plots (22 x 3.7 m each) were established on a 10% slope. Three soil management practices were used: (i) class-A biosolids (sewage sludge), (ii) yard waste compost, each mixed with native soil at a rate of 50 ton acre(-1) on a dry-weight basis, and (iii) a no-mulch (NM) treatment (rototilled bare soil), used for comparison purposes. Devrinol 50-DF "napropamide" [N,N-diethyl-2-(1-naphthyloxy) propionamide] was applied as a preemergent herbicide, incorporated into the soil surface, and the plots were planted with 60-day-old sweet bell pepper seedlings. Napropamide residues one hour following spraying averaged 0.8, 0.4, and 0.3 microg g(-1) dry soil in sewage sludge, yard waste compost, and no-mulch treatments, respectively. Surface runoff water, runoff sediment, and napropamide residues in runoff were significantly reduced by the compost and biosolid treatments. Yard waste compost treatments increased water infiltration and napropamide residues in the vadose zone compared to sewage sludge and NM treatments. Total pepper yields from yard waste compost amended soils (9187 lbs acre(-1)) was significantly higher (P < 0.05) than yield from either the soil amended with class-A biosolids (6984 lbs acre(-1)) or the no-mulch soil (7162 lbs acre(-1)).  相似文献   

8.
Increasing concern about persistence and environmental impact of synthetic pesticide residues require development of biodegradable and environmentally safe alternatives. The potential of using fruit extracts of hot pepper as alternatives to synthetic acaricides for controlling the two-spotted spider mite, Tetranychus urticae Koch, is explored in this study. Twenty-four Capsicum accessions (Solanaceae) were screened for their toxicity and repellency to the spider mites. Crude extracts from fruits of C. chinense, C. frutescens, C. baccatum, C. annuum, and C. pubescens were prepared in methanol and tested for their acaricidal properties. Spider mite mortality was greatest (45%) when fruit extract of accession Grif-9169 (C. annuum) was used. Results from diving board bioassays indicated that mites avoided filter paper strips treated with hot pepper extracts from accessions PI-596057 (C. baccatum), PI-195299 (C. annuum), and Grif- 9270 (C. annuum). This investigation suggests that methanolic extracts of these three accessions may have a great potential for repelling spider mites and should be field-tested on a large-scale to assess their value in managing populations of spider mites, which could reduce reliance on synthetic acaricides. An attempt was made to correlate repellency with chemical constituents of fruit extracts of the most repellent accessions to identify chemical sources of repellency. Capsaicin and dihydrocapsaicin, the pungent components of pepper fruit, were not correlated with toxicity or repellency, indicating that these are not likely related to the toxicity or repellency of the pepper fruit extracts. Other, unidentified chemicals are likely responsible for toxicity and repellency to the two-spotted spider mite.  相似文献   

9.
Kakko I  Toimela T  Tähti H 《Chemosphere》2000,40(3):301-305
Pyrethrins are widely used insecticides in both agriculture and households. In many commercial formulations piperonyl butoxide (PBO) is used with pyrethrins. PBO is a well-known synergist of pyrethrins, used to intensify their effects. One of the cellular targets of pyrethrins is the sodium channel in the membrane. In the present study, the activity of the membrane-bound integral protein ATPase was studied as a biomarker for the membrane effects of pyrethrin and PBO. Cerebral synaptosomes of rat brain were used in the study. The isolation of synaptosomes was performed with the Percoll gradient method. Both total ATPase and Mg2+ activated ATPase were studied by determining inorganic phosphate. Exposure to 0.1-1000 microM of pyrethrin and to 0.4-4000 microM of PBO decreased ATPase activity dose-dependently. The most efficient mixture was the one consisting of one part of pyrethrin and four parts of PBO. The activity of total ATPase decreased 15% in concentrations of 0.1-10 microM pyrethrin, and a 50% decrease was found at 100 microM pyrethrin. The mixture of pyrethrin and PBO caused a 15-60% decrease in the total ATPase activity at 0.1-10 microM pyrethrin and 0.4-40 microM PBO. A 85% decrease was found after exposure to the mixture of 100 microM pyrethrin and 400 microM PBO. PBO alone had no effect at 0.4-40 microM concentrations, but a marked effect was seen at over 40 microM concentrations. The results indicate that PBO is an effective synergist of pyrethrin and that it is very toxic in high concentrations. The results also confirm that neuronal sodium homeostasis is one target of the neurotoxic effect of pyrethroid compounds.  相似文献   

10.
In order to see the effect of time lapse between the last application of methamidophos and harvesting insecticide was applied on lettuce plants (6,84 μCi in one experiment and 4,03 μCi in the other experiment). Analysis of the crops harvested 3 days after last application showed 9,7 ppm residues on leaves, while crops harvested 1 day after application showed residues of 12,7 ppm (25% more). Treatment of tomato plants (39,65 μCi, 1,01 kg/ha) gave residues in fruits 4,92 ppm after 8 days interval between last application and harvesting. 40 days gap between the last application and harvesting leaved residues of 0,7 ppm in fruits which is much less as recommended by FAO/WHO (1 – 2 ppm).Degradation of this insecticide is dependent on the matrix of the soil, this breakdown is observed in the first ten days and than after it remains constant. C-14 radioactivity extracted from soil and plant analysis was methamidophos (92%)  相似文献   

11.
Dissipation of spiromesifen and its metabolite, spiromesifen-enol, on tomato fruit, tomato leaf, and soil was studied in the open field and controlled environmental conditions. Sample preparation was carried out by QuEChERS method and analysis using LC-MS/MS. Method validation for analysis of the compounds was carried out as per “single laboratory method validation guidelines.” Method validation studies gave satisfactory recoveries for spiromesifen and spiromesifen-enol (71.59–105.3%) with relative standard deviation (RSD) < 20%. LOD and LOQ of the method were 0.0015 μg mL?1 and 0.005 mg kg?1, respectively. Spiromesifen residues on tomato fruits were 0.855 and 1.545 mg kg?1 in open field and 0.976 and 1.670 mg kg?1 under polyhouse condition, from treatments at the standard and double doses of 125 and 250 g a.i. ha?1, respectively. On tomato leaves, the residues were 5.64 and 8.226 mg kg?1 in open field and 6.874 and 10.187 mg kg?1 in the polyhouse. In soil, the residues were 0.532 and 1.032 mg kg?1 and 0.486 and 0.925 mg kg?1 under open field and polyhouse conditions, respectively. The half-life of degradation of spiromesifen on tomato fruit was 6–6.5 days in the open field and 8.1–9.3 days in the polyhouse. On tomato leaves, it was 7–7.6 and 17.6–18.4 days and in soil 5.6–7.4 and 8.4–9.5 days, respectively. Metabolite, spiromesifen-enol, was not detected in any of the sample throughout the study period. Photodegradation could be the major route for dissipation of spiromesifen in the tomato leaves, whereas in the fruits, it may be the combination of photodegradation and dilution due to fruit growth. The results of the study can be utilized for application of spiromesifen in plant protection of tomato crop under protected environmental conditions.  相似文献   

12.
Four test groups of small songbirds (Zebra Finch, Poephila guttata) were sprayed in a chamber with varying concentrations of fenitrothion. Exposure levels were assessed by monitoring air concentrations, deposits of the active ingredient (AI) on glass plates and droplets/cm2 on Kromekote cards. All indices of exposure were linearly correlated and the mean AI deposit on glass plates for the four groups tested with equivalent to 38, 51, 139 and 255 g/ha or 14%, 18%, 50% and 91% of the highest permissible emitted rate for broadscale forest spraying in Canada. Significant depression in body weights and brain acetylcholinesterase levels were noted only for the highest exposure group. Fenitrothion residues in blood were detectable only at the highest exposure level, and in liver at the two higher levels. Carcass and feather residues were much higher than those in blood and liver, and were detectable at all exposure levels but the residues did not increase linearly with exposure. For one of the spray groups, we were able to compute an equivalent acute oral dose based on matching acetylcholinesterase inhibition.  相似文献   

13.
Abstract

A field study was conducted on a Lowell silty loam soil of 2.7% organic matter at the Kentucky State University Research Farm, Franklin County, Kentucky. Eighteen universal soil loss equation (USLE) standard plots (22 × 3.7 m each) were established on a 10% slope. Three soil management practices were used: (i) class-A biosolids (sewage sludge), (ii) yard waste compost, each mixed with native soil at a rate of 50 ton acre?1 on a dry-weight basis, and (iii) a no-mulch (NM) treatment (rototilled bare soil), used for comparison purposes. Devrinol 50-DF “napropamide” [N,N-diethyl-2-(1-naphthyloxy) propionamide]was applied as a preemergent herbicide, incorporated into the soil surface, and the plots were planted with 60-day-old sweet bell pepper seedlings. Napropamide residues one hour following spraying averaged 0.8, 0.4, and 0.3 μ g g? 1 dry soil in sewage sludge, yard waste compost, and no-mulch treatments, respectively. Surface runoff water, runoff sediment, and napropamide residues in runoff were significantly reduced by the compost and biosolid treatments. Yard waste compost treatments increased water infiltration and napropamide residues in the vadose zone compared to sewage sludge and NM treatments. Total pepper yields from yard waste compost amended soils (9187 lbs acre?1) was significantly higher (P < 0.05) than yield from either the soil amended with class-A biosolids (6984 lbs acre?1) or the no-mulch soil (7162 lbs acre ?1).  相似文献   

14.

Increasing concern about persistence and environmental impact of synthetic pesticide residues require development of biodegradable and environmentally safe alternatives. The potential of using fruit extracts of hot pepper as alternatives to synthetic acaricides for controlling the two-spotted spider mite, Tetranychus urticae Koch, is explored in this study. Twenty-four Capsicum accessions (Solanaceae) were screened for their toxicity and repellency to the spider mites. Crude extracts from fruits of C. chinense, C. frutescens, C. baccatum, C. annuum, and C. pubescens were prepared in methanol and tested for their acaricidal properties. Spider mite mortality was greatest (45%) when fruit extract of accession Grif-9169 (C. annuum) was used. Results from diving board bioassays indicated that mites avoided filter paper strips treated with hot pepper extracts from accessions PI-596057 (C. baccatum), PI-195299 (C. annuum), and Grif- 9270 (C. annuum). This investigation suggests that methanolic extracts of these three accessions may have a great potential for repelling spider mites and should be field-tested on a large-scale to assess their value in managing populations of spider mites, which could reduce reliance on synthetic acaricides. An attempt was made to correlate repellency with chemical constituents of fruit extracts of the most repellent accessions to identify chemical sources of repellency. Capsaicin and dihydrocapsaicin, the pungent components of pepper fruit, were not correlated with toxicity or repellency, indicating that these are not likely related to the toxicity or repellency of the pepper fruit extracts. Other, unidentified chemicals are likely responsible for toxicity and repellency to the two-spotted spider mite  相似文献   

15.
Abstract

It is crucial to develop practical procedures for the control and reduction of pesticide residues in oil productions from farm to dining table. In this study, the dissipation behaviors of typical fungicide from rapeseed to oil production were studied to reveal relationship among spraying stage, application dosage, household oil processing stage, and pesticide residues. In the field trials, rape plants were sprayed with carbendazim at three different dosages during flowering period. Transfer assessment of carbendazim residues from rapeseed to oil production during household oil processing via different press techniques was determined using high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC–MS/MS). The recoveries of carbendazim in rapeseed samples, meals after squeezing samples, and rapeseed oil samples ranged from 82.5% to 93.6% with relative standard deviations (RSDs) <5.2%. The validation results illustrated that the methods were reliable and sensitive. The average processing factor (PF) during household oil processing via hot press technique and cold press technique was 0.15 and 0.51, respectively. This study demonstrated that household oil processing could significantly reduce the pesticide residues, especially by hot press technique.  相似文献   

16.
With the public perception that synthetic pesticides leave harmful residues in crop produce for human consumption, there has been increased interest in using natural products for pest control. The potential of using fruit extracts of hot pepper for controlling the cabbage looper, Trichopulsia ni (Hübner) and spider mite, Tetranychus urticae Koch is explored in this investigation. Crude extracts from fruits of Capsicum chinense, C. frutescens, C. baccatum, and C. annuum, were prepared and tested under laboratory conditions for their insecticidal and acaricidal performance. Mortality was greatest (94%) when fruit extract of accession PI-593566 (C. annuum) was sprayed on larvae of the cabbage looper, while crude extracts of accessions PI-241675 (C. frutescens) and PI-310488 (C. annuum) were repellent to the spider mite. We investigated differences in chemical composition of the crude fruit extracts that may explain the observed differences in mortality and repellency between accessions. Gas Chromatography-Mass Spectrometry spectrometric analysis revealed that capsaicin and dihydrocapsaicin, the pungent components of pepper fruit, were not correlated with toxicity or repellency, indicating that the two capsaicinoids are not likely related to the efficacy of pepper fruit extracts. Major compounds in hot pepper fruit extracts were detected and identified as pentadecanoic acid methyl ester, hexadecanoic acid methyl ester, and octadecanoic acid methyl ester. Spectrometric analysis and toxicity to cabbage looper larvae revealed that pentadecanoic acid methyl ester is likely related to cabbage looper mortality. However, the concentration of pentadecanoic acid methyl ester in some accessions was insufficient to explain the observed mortality of cabbage looper and repellency of spider mite. Fruit extracts of accessions PI-593566 (C. annuum) and PI-241675 (C. frutescens) could be useful for managing populations of cabbage loopers and spider mites, which could reduce reliance on synthetic pesticides. Further study is needed to investigate performance of hot pepper extracts under ultra-violet light and field conditions.  相似文献   

17.
Abstract

Four test groups of small songbirds (Zebra Finch, Poephila guttata) were sprayed in a chamber with varying concentrations of fenitrothion. Exposure levels were assessed by monitoring air concentrations, deposits of the active ingredient (AI) on glass plates and droplets/cm2 on Kromekote® cards. All indices of exposure were linearly correlated and the mean AI deposit on glass plates for the four groups tested were equivalent to 38, 51, 139 and 255 g/ha or 14%, 18%, 50% and 91% of the highest permissible emitted rate for broadscale forest spraying in Canada. Significant depression in body weights and brain acetylcholinesterase levels were noted only for the highest exposure group. Fenitrothion residues in blood were detectable only at the highest exposure level, and in liver at the two higher levels. Carcass and feather residues were much higher than those in blood and liver, and were detectable at all exposure levels but the residues did not increase linearly with exposure. For one of the spray groups, we were able to compute an equivalent acute oral dose based on matching acetylcholinesterase inhibition.  相似文献   

18.
Thirty-day-old seedlings of rice plants (IR-20 variety) from the nursery were transplanted into experimental plots and after 52 days were sprayed with phosphamidon (Dimecron 85% EC) at two dose-rates (0.38 kg a.i. ha(-1) and 0.76 kg a.i. ha(-1)). Residues of phosphamidon in the plant, soil and water were analysed by GLC, at various time intervals, and were found to decrease steadily up to 15 days. A second application of the pesticide was made on day 113 and grains harvested on day 138. The residue level in the plants was 0.12 microg g(-1) and in the grains 0.04 microg g(-1) with the high dose. This is slightly below the EPA prescribed tolerance level of 0.05 microg g(-1). The residues in both soil and water were very low, 24 h after spraying.  相似文献   

19.
A procedure to assess pesticide emission to the air and characterise possible air pollution sources was carried out using a tracer dye and 2 mm PVC lines during air-assisted spraying of an artificial vineyard. Three experiments were performed to evaluate the method feasibility, quantify upward movements of sprayed droplets and investigate the influence of microclimatic variables on pesticide emission. During each experiment two test series were carried out with two droplet size distributions (very fine and fine spray, according to the BCPC classification). The amount of sprayed liquid collected at 2.5 m above ground varied between 9.0% and 10.7% of the total dose applied for very fine spray and between 5.6% and 7.3% for fine spray. In stable atmospheric conditions the spray drifted along the mean wind direction over the crop whereas in unstable conditions the sprayed liquid plume was larger, with a greater amount of material sent to higher levels. A statistical model based on a simple multiple regression featuring droplet characteristics and microclimatic variables (wind speed, temperature, stability parameter and relative humidity) provided a robust estimate of spray loss just above the crop, with an acceptable determination coefficient (R2=0.84). This method is therefore suitable for quantifying spray drift and provides a way to study the influence of several variables on the amount of pesticide released into the atmosphere by air-assisted spraying, with suitable accuracy.  相似文献   

20.
Peppers, a significant component of the human diet in many regions of the world, provide vitamins A (β-carotene) and C, and are also a source of many other antioxidants such as capsaicin, dihydrocapsaicin, and phenols. Enhancing the concentration of antioxidants in plants grown in soil amended with recycled waste has not been completely investigated. Changes in pepper antioxidant content in relation to soil amendments and fruit development were investigated. The main objectives of this investigation were to: (i) quantify concentrations of capsaicin, dihydrocapsaicin, β-carotene, ascorbic acid, phenols, and soluble sugars in the fruits of Capsicum annuum L. (cv. Xcatic) grown under four soil management practices: yard waste (YW), sewage sludge (SS), chicken manure (CM), and no-much (NM) bare soil and (ii) monitor antioxidant concentrations in fruits of plants grown under these practices and during fruit ripening from green into red mature fruits. Total marketable pepper yield was increased by 34% and 15% in SS and CM treatments, respectively, compared to NM bare soil; whereas, the number of culls (fruits that fail to meet the requirements of foregoing grades) was lower in YW compared to SS and CM treatments. Regardless of fruit color, pepper fruits from YW amended soil contained the greatest concentrations of capsaicin and dihydrocapsaicin. When different colored pepper fruits (green, yellow, orange, and red) were analyzed, orange and red contained the greatest β-carotene and sugar contents; whereas, green fruits contained the greatest concentrations of total phenols and ascorbic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号