首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: The quality of ground water in any aquifer takes its final form due to natural mixture of waters, which may originate from different sources. Water quality varies from one aquifer to another and even within the same aquifer itself. Different ground water quality is obtained from wells and is mixed in a common reservoir prior to any consumption. This artificial mixing enables an increase in available ground water of a desired quality for agricultural or residential purposes. The question remains as to what proportions of water from different wells should be mixed together to achieve a desired water quality for this artificial mixture. Two sets of laboratory experiments were carried out, namely, the addition of saline water to a fixed volume of fresh water. After each addition, the mixture volume and the electric conductivity value of the artificially mixed water were recorded. The experiments were carried out under the same laboratory temperature of 20°C. A standard curve was developed first experimentally and then confirmed theoretically. This curve is useful in determining either the volume or discharge ratio from two wells to achieve a predetermined electrical conductivity value of the artificial mixture. The application of the curve is given for two wells within the Quaternary deposits in the western part of the Kingdom of Saudi Arabia.  相似文献   

2.
The current paper discusses the multi‐strainer technique developed to augment usable water by the combined use of saline and non‐saline aquifers in locations where a freshwater aquifer is underlain or overlain by a saline water aquifer. The multi‐strainer technique evaluates design criteria for the formulation of multi‐strainer schemes to supply water at an acceptable salinity limit by combined use of the saline and non‐saline aquifers. The design ratio of discharges can be maintained by adjusting the strainers’ lengths in the saline and non‐saline aquifers. The multi‐strainer scheme has been applied in the coastal aquifers of Bangladesh and found to be effective at lowering the water salinity concentrations to acceptable levels, thus increasing the availability of water for sustainable use. The multi‐strainer scheme should be designed based on the thickness of the aquifer layers to be screened, the salinity concentrations of the screened layers, and the level of salinity concentration to be maintained.  相似文献   

3.
ABSTRACT: A groundwater quality change of +0.13 millimhos electrical conductivity was documented between 1940 and 1 972 in the Safford Valley. The change is attributable to four principal mechanisms: pumping-encouraged saline artesian aquifer leakage, natural recharge of the water table aquifer by saline waters, leaching of agricultural waters into the aquifer and the lateral flow of groundwater through saline lacustrine beds. A hydrologic study of the area has shown the first of these mechanisms to be predominant. Salinity modeling has shown three regions of salinity change, and salinity increase projections for each are determined. An economic analysis and an economic model are then combined with the physical model, yielding information as to when certain economic conditions are reached with respect to the salinity increase. This combined model shows that, based on projected salinity trends, cotton, the principal agricultural crop of the valley, will remain economical to cultivate for a significant time beyond the model's limit of prediction. Alfalfa, on the other hand, should go out of production in large areas of the valley by 1990, and not be under economical cultivation by 2040. A sociologic model, based on the cluster analysis of questionnaire data, shows an awareness of the salinity problems of the area but little concern over them. Interdisciplinary model based salinity control regulations are made.  相似文献   

4.
ABSTRACT: Salinity increases in water in some parts of the Nava-jo aquifer in southeastern Utah have been documented previously. The purpose of this paper is to use bromide, iodide, and chloride concentrations and del oxygen-18 and deuterium values in water from the study area to determine if oil-field brines (OFB) could be the source of increased salinity. Mixing-model results indicate that the bromide-to-chloride X 10,000 weight ratio characteristic of OFB in and outside the study area could not be causing the bromide depletion with increasing salinity in the Navajo aquifer. Mixing-model results indicate that a mixture of one percent OFB with 99 percent Navajo aquifer water would more than double the bromide-to-chloride weight ratio, instead of the observed decrease in the weight ratio with increasing chloride concentration. The trend of the mixing line representing the isotopically enriched samples from the Navajo aquifer does not indicate OFB as the source of isotopically enriched water; however, the simulated isotopic composition of injection water could be a salinity source. The lighter isotopic composition of OFB samples from the Aneth, Ratherford, White Mesa Unit, and McElmo Creek injection sites relative to the lsmay site is a result of continued recycling of injection water mixed with various proportions of isotopically lighter make-up water from the alluvial aquifer along the San Juan River. A mixing model using the isotopic composition of the simulated injection water suggests that enriched samples from the Navajo aquifer are composed of 36 to 75 percent of the simulated injection water. However, chloride concentrations predicted by the isotopic mixing model are up to 13.4 times larger than the measured chloride concentrations in isotopically enriched samples from the Navajo aquifer, indicating that injection water is not the source of increased salinity. Geochemical data consistently show that OFB and associated injection water from the Greater Aneth Oil Field are not the source of salinity increases in the Navajo aquifer.  相似文献   

5.
ABSTRACT; This paper presents a numerical model for the prediction of optimal ground water withdrawal from a two-aquifer system by observing a set of constraints determined by the ecological conditions of the ground water basin. The aquifer system consists of an upper unconfined and a lower confined aquifer with a leaky stratum between them. It is assumed that water is withdrawn from the confined aquifer only, but the unconfined aquifer will also be affected due to the leakiness of the layer separating the upper and lower aquifers. Simulation and linear programming are employed for developing a computer model for the optimal management of such systems, with the objectives of determining withdrawal rates for predetermined ground water levels.  相似文献   

6.
Increasing salinity is one of the most significant and widespread forms of groundwater pollution in coastal areas. This paper presents the causes and impacts of saline water intrusion in coastal areas. Various causes of salt water intrusion, and approaches for the determination of its extent and various measures to control the salt water intrusion are described. An aquifer performance test (APT) approach is presented to identify the extent of existing salt water intrusion in the study area located in the southwest coastal region of Gujarat State (India). A resistivity based experimental technique is used to identify the quality of the groundwater available at different depths. A methodology is presented to assess the extent of available fresh and saline groundwater and to find out the limit up to which lower saline groundwater can be withdrawn for industrial purposes without affecting the upper fresh water layer which can be made available for domestic purposes.  相似文献   

7.
Large volumes of CO2 captured from carbon emitters (such as coal-fired power plants) may be stored in deep saline aquifers as a means of mitigating climate change. Storing these additional fluids may cause pressure changes and displacement of native brines, affecting subsurface volumes that can be significantly larger than the CO2 plume itself. This study aimed at determining the three-dimensional region of influence during/after injection of CO2 and evaluating the possible implications for shallow groundwater resources, with particular focus on the effects of interlayer communication through low-permeability seals. To address these issues quantitatively, we conducted numerical simulations that provide a basic understanding of the large-scale flow and pressure conditions in response to industrial-scale CO2 injection into a laterally open saline aquifer. The model domain included an idealized multilayered groundwater system, with a sequence of aquifers and aquitards (sealing units) extending from the deep saline storage formation to the uppermost freshwater aquifer. Both the local CO2-brine flow around the single injection site and the single-phase water flow (with salinity changes) in the region away from the CO2 plume were simulated. Our simulation results indicate considerable pressure buildup in the storage formation more than 100 km away from the injection zone, whereas the lateral distance migration of brine is rather small. In the vertical direction, the pressure perturbation from CO2 storage may reach shallow groundwater resources only if the deep storage formation communicates with the shallow aquifers through sealing units of relatively high permeabilities (higher than 10?18 m2). Vertical brine migration through a sequence of layers into shallow groundwater bodies is extremely unlikely. Overall, large-scale pressure changes appear to be of more concern to groundwater resources than changes in water quality caused by the migration of displaced saline water.  相似文献   

8.
Desert springs, often the sole sources of water for wildlife and cattle, support wetland and wetland/upland transition ecosystems including rare and endemic species. In the basin and range province in Nevada, USA, springs in the Great Basin and Mojave deserts are sustained by interconnected deep carbonate and shallow basin-fill aquifers which are threatened by proposed groundwater withdrawal to sustain rapidly expanding urban areas, a common problem in arid regions worldwide. This paper draws on historic groundwater data, groundwater modeling, and studies of environmental controls of spring ecosystems to speculate on the potential effects of groundwater withdrawal and water table decline on spring-supported vegetation. The focus is on springs in the Great Basin and Mojave deserts representative of those that may be affected by future, planned groundwater withdrawal. Groundwater withdrawal is expected to reduce spring discharge directly through reduced flows from the shallow basin-fill aquifer or through reduction of the hydraulic head of the deep carbonate aquifer. This flow reduction will truncate the outflow stream, reducing the areal cover of wetland and wetland/upland transition vegetation. Lowering the local water table may also reduce the amount of upland phreatophytic vegetation by causing water levels to drop below plant rooting depths. Percolation of salts to surface soils may be reduced, eventually altering desert shrub cover from halophytes to nonhalophytes. The extent of these effects will vary among springs, based on their distance from extraction sites and location relative to regional groundwater flow paths. On-site monitoring of biotic variables (including cover of selected hygrophytes and phreatophytes) should be a necessary complement to the planned monitoring of local hydrologic conditions.  相似文献   

9.
ABSTRACT: Thermal energy storage involves the capture and storage of thermal energy (either heat or chill) during one time period for use at a later period. Storage of thermal energy in aquifers on a seasonal basis is one promising application of the technology that has been implemented in several foreign countries and is currently undergoing field testing in the U.S. Potential developers of aquifer thermal energy storage projects will face a number of regulatory requirements at the federal, state, and local level of government. These can include meeting: (1) surface land and ground water use restrictions, (2) regulations relating to withdrawal of ground water, and (3) requirements for reinjecting thermally altered ground waters. Separate permits for ground water withdrawal and reinjection may be required. The permit process is likely to involve opportunities for public comment and may involve contested proceedings.  相似文献   

10.
Abstract: The population of Collier and Lee Counties in southwestern Florida has increased 11‐fold from 1960 to 2004 with a concomitant increase in freshwater demand. Water levels and salinity within the water table aquifer over the past two to three decades have generally been stable, with more monitoring wells showing statistically significant temporal increases in water level than decreases. Residential development has had a neutral impact on the water table aquifer because the total annual evapotranspiration of residential communities is comparable to that of native vegetation and less than that of most agricultural land uses. Public water supply systems and private wells also result in net recharge to the water table aquifer with water produced from deeper aquifers. Confined freshwater aquifers have overall trends of decreasing water levels. However, with the exception of the mid‐Hawthorn aquifer, water levels in most areas recover to near background levels each summer wet season. Freshwater resources in humid subtropical areas, such as southwestern Florida, are relatively robust because of the great aquifer recharge potential from the excess of rainfall over ET during the wet season. Proper management can result in sustainable water resources.  相似文献   

11.
ABSTRACT: The geographical distribution of well water specific electrical conductivity and nitrate levels in a 932 km2 ground water quality study area in the Fresno-Clovis, California, indicated that frequently areas of lower ground water salinity were also areas of relatively greater soil and aquifer permeability. From these observations and certain assumptions we hypothesized that the quality of the well water should be better in areas with permeable soils and geological formations. Correlation and multiple linear regression analysis supported this hypothesis for well water salinity. However, well water nitrate levels were significantly negatively correlated with only the estimated equivalent specific yield of the aquifer system. The multiple R2 values of the most significant multiple linear regression models showed that only a fourth to a third of the variability in well water specific electric conductivity and nitrate levels could be ascribed to the effects of the hydrogeological parameters considered with more than 90 percent confidence. This indicates that three-fourths to two-thirds of the variability in ground water salinity and nitrate levels may be related to land use. Thus, there is considerable room for land use management techniques to improve ground water quality and reduce its variability.  相似文献   

12.
A series of laboratory experiments were carried out to examine the chromatographic partitioning of impurities contained in a stream of CO2 injected into a deep saline aquifer. The experiments were carried out under static (no flow) and dynamic conditions, mainly with H2S as the impurity in the CO2 stream, for 2%, 5% and 30% concentrations, and for in situ conditions of high pressure, temperature and water salinity, and also for pure water at a lower pressure and temperature. In addition, experiments were conducted using CH4, N2 and SO2 at 5% concentration as the ‘Impurity’ in the CO2 stream. The experiments show that gases in an impure stream of CO2 being injected into a deep saline aquifer will chromatographically partition at the leading edge of the gas advancing through the water-saturated porous medium as a result of differential solubility in aquifer water. The solubility of the impurity gas in the CO2 stream compared to that of CO2 is the most dominant factor in regard to the breakthrough time and initial gas concentrations in the effluent. The in situ conditions of pressure, temperature and water salinity also affect the chromatographic partitioning of CO2 and impurities contained in the injection stream through their general effect on the solubility of all gases. The concentration of the impurity gas in the feed gas stream has a secondary effect on the breakthrough and time lag decreasing with increasing concentration of the impurity gas. These experimental findings are significant for understanding the fate of the injected CO2 and associated impurities contained in an injection stream, in devising monitoring procedures and protocols, and in developing emergency response plans in case of leakage of CO2 and associated impurities.  相似文献   

13.
Liu, Clark C.K. and John J. Dai, 2012. Seawater Intrusion and Sustainable Yield of Basal Aquifers. Journal of the American Water Resources Association (JAWRA) 48(5): 861‐870. DOI: 10.1111/j.1752‐1688.2012.00659.x Abstract: Basal aquifers, in which freshwater floats on top of saltwater, are the major freshwater supply for the Hawaiian Islands, as well as many other coastal regions around the world. Under unexploited or natural conditions, freshwater and the underlying seawater are separated by a relatively sharp interface located below mean sea level at a depth of about 40 times the hydraulic head. With forced draft, the hydraulic head of a basal aquifer would decline and the sharp interface would move up. It is a serious problem of seawater intrusion as huge amounts of freshwater storage is replaced by saltwater. Also, with forced draft, the sharp interface is replaced by a transition zone in which the salinity increases downward from freshwater to saltwater. As pumping continues, the transition zone expands. The desirable source‐water salinity in Hawaii is about 2% of the seawater salinity. Therefore, the transition zone expansion is another serious problem of seawater intrusion. In this study, a robust analytical groundwater flow and salinity transport model (RAM2) was developed. RAM2 has a simple mathematical structure and its model parameters can be determined satisfactorily with the available field monitoring data. The usefulness of RAM2 as a viable management tool for coastal ground water management is demonstrated by applying it to determine the sustainable yield of the Pearl Harbor aquifer, a principal water supply source in Hawaii.  相似文献   

14.
ABSTRACT: The well field serving the Lyons Ferry Fish Hatchery has experienced reduced water temperatures following continued, periodic withdrawal of large volumes of water. In January 1985, the well field temperature was 49°F, which is less than the optimal 52°F for raising salmon and steelhead trout. The aquifer supplying the hatchery is in hydraulic and thermal connection with the Snake River and a flooded embayment of the Palouse River. Ground-water temperatures in the well field cycle on an annual basis in response to changes in surface water temperature and pumping rate. Numerical simulation of the well field, using a simplified mixing cell model, demonstrates the coupling of well field hydraulics and aquifer thermal response. Alternative pumping schedules indicate that it is feasible to adjust ground-water pumping to effectively store heat in the aquifer during the summer months when surface water temperatures are elevated. Sensitivity analysis of this model indicated that the primary controls of the system's thermal response are the volume of the aquifer assumed to contribute to the well field and temperature of the overlying surface water body.  相似文献   

15.
Large-scale deposition of animal manure can result in contamination of surface and ground water and in potential transfer of disease-causing enteric bacteria to animals or humans. We measured total coliform bacteria (TC), fecal coliform bacteria (FC), NO3, NH4, total P, and PO4 in ground water flowing from basalt and sand aquifers, in wells into basalt and sand aquifers, in irrigation water, and in river water. Samples were collected monthly for 1 yr. Total coliform and FC numbers were always higher in irrigation water than in ground water, indicating that soil and sediment filtered most of these bacteria before they entered the aquifers. Total coliform and FC numbers in ground water were generally higher in the faster flowing basalt aquifer than in the sand aquifer, indicating that the slower flow and finer grain size may filter more TC and FC bacteria from water. At least one coliform bacterium/100 mL of water was found in ground water from both basalt and sand aquifers, indicating that ground water pumped from these aquifers is not necessarily safe for human consumption according to the American Public Health Association and the USEPA. The NO3 concentrations were usually higher in water flowing from the sand aquifer than in water flowing from the basalt aquifer or in perched water tables in the basalt aquifer. The PO4 concentrations were usually higher in water flowing from the basalt aquifer than in water flowing from the sand aquifer. The main concern is fecal contamination of these aquifers and health consequences that may arise from human consumption.  相似文献   

16.
Rapid industrialization and population growth in the north Mexican desert city of Ciudad Juarez are placing a serious strain on the city's municipal water resources. Water deliveries and service area have more than doubled over the past decade, and plans for additional expansion are presently being implemented. This expansion is already contributing to water table declines and salinity increases in the Mexican portion of the Heuco Bolson, the sole source of water for the city. Continued mining of the limited fresh water reserves should produce serious water supply problems in the near future. New estimates of future water consumption incorporated into a digital aquifer simulation model indicate that these problems may show up much sooner than was anticipated in previous investigations. The results of this study point to the need to accelerate the gathering of basic data on alternative water resources. The problems faced by Cd. Juarez are illustrative of the kinds of difficulties likely to confront other rapidly developing cities of the arid zone.  相似文献   

17.
Additive or multiplicative models of crop response on which salinity management theory have been developed may lead to an erroneous perception regarding compensative interaction among salinity and other growth factors. We present results from studies of biomass production and transpiration of corn (Zea mays L. cv. Jubilee), melon (Cucumis melo L. subsp. melo cv. Galia), tomato (Lycopersicon esculentum Mill. cv. 5656), onion (Allium cepa L. cv. HA 944), and date palms (Phoenix dactylifera L. cv. Medjool) under salinity combined with water or nitrate (growth promoters) or with boron (growth inhibitor). The measured crop responses were to the more severe stress rather than to combinations of the individual effects of the various stresses. Consequences of shifting management of saline water to a dominant factor approach include reduction of environmental contamination and conservation of water resources.  相似文献   

18.
The traditional concept of Aquifer Storage and Recovery (ASR) has been emphasized and extensively applied for water resources conservation in arid and semi-arid regions using groundwater systems as introduced in Pyne's book titled Groundwater Recharge and Wells. This paper extends the ASR concept to an integrated level in which either treated or untreated surface water or reclaimed wastewater is stored in a suitable aquifer through a system of spreading basins, infiltration galleries and recharge wells; and part or all of the stored water is recovered through production wells, dual function recharge wells, or by streams receiving increased discharge from the surrounding recharged aquifer as needed. In this paper, the author uses the El Paso Water Utilities (EPWU) ASR system for injection of reclaimed wastewater into the Hueco Bolson aquifer as an example to address challenges and resolutions faced during the design and operation of an ASR system under a new ASR system definition. This new ASR system concept consists of four subsystems: source water, storage space-aquifer, recharge facilities and recovery facilities. Even though facing challenges, this system has successfully recharged approximately 74.7 million cubic meters (19.7 billion gallons) of reclaimed wastewater into the Hueco Bolson aquifer through 10 recharge wells in the last 18 years. This ASR system has served dual purposes: reuse of reclaimed wastewater to preserve native groundwater, and restoration of groundwater by artificial recharge of reclaimed wastewater into the Hueco Bolson aquifer.  相似文献   

19.
ABSTRACT: The biodegradation potential of two drinking water disinfection byproducts was investigated using aquifer materials obtained from approximately 100 and 200 meters below land surface in an aerobic aquifer system undergoing aquifer storage recovery of treated surface water. No significant biodegradation of a model trihalomethane compound, chloroform, was observed in aquifer microcosms under aerobic or anaerobic conditions. In contrast, between 16 and 27 percent mineralization of a radiolabeled model haloacetic acid compound, chloroacetic acid, was observed. These results indicate that although the potential for biodegradation of chloroacetic acid exists in deep aquifer systems, chloroform entrained within these aquifers or formed in situ will tend to persist. These results have important implications for water managers planning to meet anticipated lowered permissible levels of trihalomethanes in drinking water.  相似文献   

20.
Typical top-down regional assessments of CO2 storage feasibility are sufficient for determining the maximum volumetric capacity of deep saline aquifers. However, they do not reflect the regional economic feasibility of storage. This is controlled, in part, by the number and type of injection wells that are necessary to achieve regional CO2 storage goals. In contrast, the geomechanics-based assessment workflow that we present in this paper follows a bottom-up approach for evaluating regional deep saline aquifer CO2 storage feasibility. The CO2 storage capacity of an aquifer is a function of its porous volume as well as its CO2 injectivity. For a saline aquifer to be considered feasible in this assessment it must be able to store a specified amount of CO2 at a reasonable cost per ton of CO2. The proposed assessment workflow has seven steps that include (1) defining the storage project and goals, (2) characterizing the geology and developing a geomechanical model of the aquifer, (3) constructing 3D aquifer models, (4) simulating CO2 injection, (5,6) evaluating CO2 injection and storage feasibility (with and without injection well stimulation), and (7) determining whether it is economically feasible to proceed with the storage project. The workflow was applied to a case study of the Rose Run sandstone aquifer in the Eastern Ohio River Valley, USA. We found that it is feasible in this region to inject 113 Mt CO2/year for 30 years at an associated well cost of less than US $1.31/t CO2, but only if injectivity enhancement techniques such as hydraulic fracturing and injection induced micro-seismicity are implemented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号