首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
A central tenet of landscape ecology is that mobile species depend on complementary habitats, which are insufficient in isolation, but combine to support animals through the full annual cycle. However, incorporating the dynamic needs of mobile species into conservation strategies remains a challenge, particularly in the context of climate adaptation planning. For cold-water fishes, it is widely assumed that maximum temperatures are limiting and that summer data alone can predict refugia and population persistence. We tested these assumptions in populations of redband rainbow trout (Oncorhynchus mykiss newberrii) in an arid basin, where the dominance of hot, hyperproductive water in summer emulates threats of climate change predicted for cold-water fish in other basins. We used telemetry to reveal seasonal patterns of movement and habitat use. Then, we compared contributions of hot and cool water to growth with empirical indicators of diet and condition (gut contents, weight–length ratios, electric phase angle, and stable isotope signatures) and a bioenergetics model. During summer, trout occurred only in cool tributaries or springs (<20 °C) and avoided Upper Klamath Lake (>25 °C). During spring and fall, ≥65% of trout migrated to the lake (5–50 km) to forage. Spring and fall growth (mean [SD] 0.58% per day [0.80%] and 0.34 per day [0.55%], respectively) compensated for a net loss of energy in cool summer refuges (–0.56% per day [0.55%]). In winter, ≥90% of trout returned to tributaries (25–150 km) to spawn. Thus, although perennially cool tributaries supported thermal refuge and spawning, foraging opportunities in the seasonally hot lake ultimately fueled these behaviors. Current approaches to climate adaptation would prioritize the tributaries for conservation but would devalue critical foraging habitat because the lake is unsuitable and unoccupied during summer. Our results empirically demonstrate that warm water can fuel cold-water fisheries and challenge the common practice of identifying refugia based only on summer conditions.  相似文献   

3.
Approaches to assess the impacts of landscape disturbance scenarios on species range from metrics based on patterns of occurrence or habitat to comprehensive models that explicitly include ecological processes. The choice of metrics and models affects how impacts are interpreted and conservation decisions. We explored the impacts of 3 realistic disturbance scenarios on 4 species with different ecological and taxonomic traits. We used progressively more complex models and metrics to evaluate relative impact and rank of scenarios on the species. Models ranged from species distribution models that relied on implicit assumptions about environmental factors and species presence to highly parameterized spatially explicit population models that explicitly included ecological processes and stochasticity. Metrics performed consistently in ranking different scenarios in order of severity primarily when variation in impact was driven by habitat amount. However, they differed in rank for cases where dispersal dynamics were critical in influencing metapopulation persistence. Impacts of scenarios on species with low dispersal ability were better characterized using models that explicitly captured these processes. Metapopulation capacity provided rank orders that most consistently correlated with those from highly parameterized and data-rich models and incorporated information about dispersal with little additional computational and data cost. Our results highlight the importance of explicitly considering species’ ecology, spatial configuration of habitat, and disturbance when choosing indicators of species persistence. We suggest using hybrid approaches that are a mixture of simple and complex models to improve multispecies assessments.  相似文献   

4.
Attempts to identify predictors and mechanisms of invasion success have been weakened by poor data quality, mostly because monitoring does not begin immediately after introduction events. To overcome this issue, we used data from conservation translocations of threatened bird species. We analyzed information on >1200 translocation events of >150 bird species to investigate how life-history traits affect population establishment measured based on rates of survival and reproduction. Species position along the slow–fast life-history continuum was a key predictor of translocation success. Species with fast-paced life histories were less likely to survive (over both short- and mid-term) and more likely to breed successfully than species with slow life histories. The temporal partitioning of reproductive effort (number of clutches per year) also affected the probability of successful reproduction. Our results illustrate how conservation-motivated reintroduction programs can provide proxies for the initial stages of the invasion process, enabling empirical tests of predictions from life-history theory and informing management.  相似文献   

5.
Climate change is a key threat to biodiversity. To conserve species under climate change, ecologists and conservation scientists suggest 2 main conservation strategies regarding land use: supporting species’ range shifts to enable it to follow its climatic requirements by creating migration pathways, such as corridors and stepping stones, and conserving climate refugia (i.e., existing habitat areas that are somewhat buffered from climate change). The policy instruments that could be used to implement these conservation strategies have yet to be evaluated comprehensively from an economic perspective. The economic analyses of environmental policy instruments are often based on ecological effectiveness and cost-effectiveness criteria. We adapted these general criteria to evaluate policy instruments for species’ conservation under climate change and applied them to a conceptual analysis of land purchases, offsets, and conservation payments. Depending on whether the strategy supporting species’ range shifts or conserving climate refugia is selected, the evaluation of the policy instruments differed substantially. For example, to ensure ecological effectiveness, habitat persistence over time was especially important for climate refugia and was best achieved by a land-purchase policy instrument. In contrast, for the strategy supporting range shifts to be ecologically effective, a high degree of flexibility in the location of conserved sites was required to ensure that new habitat sites can be created in the species’ new range. Offset programs were best suited for that because the location of conservation sites can be chosen comparatively freely and may also be adapted over time.  相似文献   

6.
The ecological impacts of extreme climatic events on population dynamics and community composition are profound and predominantly negative. Using extensive data of an ecological model system, we tested whether predictions from ecological models remain robust when environmental conditions are outside the bounds of observation. We observed a 10-fold demographic decline of the Glanville fritillary butterfly (Melitaea cinxia) metapopulation on the Åland islands, Finland in the summer of 2018 and used climatic and satellite data to demonstrate that this year was an anomaly with low climatic water balance values and low vegetation productivity indices across Åland. Population growth rates were strongly associated with spatiotemporal variation in climatic water balance. Covariates shown previously to affect the extinction probability of local populations in this metapopulation were less informative when populations were exposed to severe drought during the summer months. Our results highlight the unpredictable responses of natural populations to extreme climatic events.  相似文献   

7.
There is increasing interestin broad-scale analysis, modeling, and prediction of the distribution and composition of plant species assemblages under climatic, environmental, and biotic change, particularly for conservation purposes. We devised a method to reliably predict the impact of climate change on large assemblages of plant communities, while also considering competing biotic and environmental factors. To this purpose, we first used multilabel algorithms in order to convert the task of explaining a large assemblage of plant communities into a classification framework able to capture with high cross-validated accuracy the pattern of species distributions under a composite set of biotic and abiotic factors. We applied our model to a large set of plant communities in the Swiss Alps. Our model explained presences and absences of 175 plant species in 608 plots with >87% cross-validated accuracy, predicted decreases in α, β, and γ diversity by 2040 under both moderate and extreme climate scenarios, and identified likely advantaged and disadvantaged plant species under climate change. Multilabel variable selection revealed the overriding importance of topography, soils, and temperature extremes (rather than averages) in determining the distribution of plant species in the study area and their response to climate change. Our method addressed a number of challenging research problems, such as scaling to large numbers of species, considering species relationships and rarity, and addressing an overwhelming proportion of absences in presence–absence matrices. By handling hundreds to thousands of plants and plots simultaneously over large areas, our method can inform broad-scale conservation of plant species under climate change because it allows species that require urgent conservation action (assisted migration, seed conservation, and ex situ conservation) to be detected and prioritized. Our method also increases the practicality of assisted colonization of plant species by helping to prevent ill-advised introduction of plant species with limited future survival probability.  相似文献   

8.
Population viability analysis (PVA) is a powerful conservation tool, but it remains impractical for many species, particularly species with multiple, broadly distributed populations for which collecting suitable data can be challenging. A recently developed method of multiple-population viability analysis (MPVA), however, addresses many limitations of traditional PVA. We built on previous development of MPVA for Lahontan cutthroat trout (LCT) (Oncorhynchus clarkii henshawi), a species listed under the U.S. Endangered Species Act, that is distributed broadly across habitat fragments in the Great Basin (U.S.A.). We simulated potential management scenarios and assessed their effects on population sizes and extinction risks in 211 streams, where LCT exist or may be reintroduced. Conservation populations (those managed for recovery) tended to have lower extinction risks than nonconservation populations (mean = 19.8% vs. 52.7%), but not always. Active management or reprioritization may be warranted in some cases. Eliminating non-native trout had a strong positive effect on overall carrying capacities for LCT populations but often did not translate into lower extinction risks unless simulations also reduced associated stochasticity (to the mean for populations without non-native trout). Sixty fish or 5–10 fish/km was the minimum reintroduction number and density, respectively, that provided near-maximum reintroduction success. This modeling framework provided crucial insights and empirical justification for conservation planning and specific adaptive management actions for this threatened species. More broadly, MPVA is applicable to a wide range of species exhibiting geographic rarity and limited availability of abundance data and greatly extends the potential use of empirical PVA for conservation assessment and planning.  相似文献   

9.
Applying Metapopulation Theory to Conservation of Migratory Birds   总被引:3,自引:0,他引:3  
Abstract: Metapopulation theory has proven useful for understanding the population structure and dynamics of many species of conservation concern. The metapopulation concept has been applied almost exclusively to nonmigratory species, however, for which subpopulation demographic independence—a requirement for a classically defined metapopulation—is explicitly related to geographic distribution and dispersal probabilities. Defining the degree of demographic independence among subpopulations of migratory animals, and thus the applicability of metapopulation theory as a conceptual framework for understanding population dynamics, is much more difficult. Unlike nonmigratory species, subpopulations of migratory animals cannot be defined as synonymous with geographic areas. Groups of migratory birds that are geographically separate at one part of the annual cycle may occur together at others, but co-occurrence in time and space does not preclude the demographic independence of subpopulations. I suggest that metapopulation theory can be applied to migratory species but that understanding the degree of subpopulation independence may require information about both spatial distribution throughout the annual cycle and behavioral mechanisms that may lead to subpopulation demographic independence. The key for applying metapopulation theory to migratory animals lies in identifying demographically independent subpopulations, even as they move during the annual cycle and potentially co-occur with other subpopulations. Using examples of migratory bird species, I demonstrate that spatial and temporal modes of subpopulation independence can interact with behavioral mechanisms to create demographically independent subpopulations, including cases in which subpopulations are not spatially distinct in some parts of the annual cycle.  相似文献   

10.
Carson HS  Cook GS  López-Duarte PC  Levin LA 《Ecology》2011,92(10):1972-1984
Recently researchers have gone to great lengths to measure marine metapopulation connectivity via tagging, genetic, and trace-elemental fingerprinting studies. These empirical estimates of larval dispersal are key to assessing the significance of metapopulation connectivity within a demographic context, but the life-history data required to do this are rarely available. To evaluate the demographic consequences of connectivity we constructed seasonal, size-structured metapopulation matrix models for two species of mytilid mussel in San Diego County, California, USA. The self-recruitment and larval exchange terms were produced from a time series of realized connectivities derived from trace-elemental fingerprinting of larval shells during spring and fall from 2003 to 2008. Both species exhibited a strong seasonal pattern of southward movement of recruits in spring and northward movement in fall. Growth and mortality terms were estimated using mark-recapture data from representative sites for each species and subpopulation, and literature estimates of juvenile mortality. Fecundity terms were estimated using county-wide settlement data from 2006-2008; these data reveal peak reproduction and recruitment in fall for Mytilus californianus, and spring for M. galloprovincialis. Elasticity and life-stage simulation analyses were employed to identify the season- and subpopulation-specific vital rates and connectivity terms to which the metapopulation growth rate (lambda) was most sensitive. For both species, metapopulation growth was most sensitive to proportional changes in adult fecundity, survival and growth of juvenile stages, and population connectivity, in order of importance, but relatively insensitive to adult growth or survival. The metapopulation concept was deemed appropriate for both Mytilus species as exchange between the subpopulations was necessary for subpopulation persistence. However, highest metapopulation growth occurred in years when a greater proportion of recruits was retained within the predominant source subpopulation. Despite differences in habitat and planktonic duration, both species exhibited similar overall metapopulation dynamics with respect to key life stages and processes. However, different peak reproductive periods in an environment of seasonal current reversals led to different regional (subpopulation) contributions to metapopulation maintenance; this result emphasizes the importance of connectivity analysis for spatial management of coastal resources.  相似文献   

11.
Establishing protected areas, where human activities and land cover changes are restricted, is among the most widely used strategies for biodiversity conservation. This practice is based on the assumption that protected areas buffer species from processes that drive extinction. However, protected areas can maintain biodiversity in the face of climate change and subsequent shifts in distributions have been questioned. We evaluated the degree to which protected areas influenced colonization and extinction patterns of 97 avian species over 20 years in the northeastern United States. We fitted single-visit dynamic occupancy models to data from Breeding Bird Atlases to quantify the magnitude of the effect of drivers of local colonization and extinction (e.g., climate, land cover, and amount of protected area) in heterogeneous landscapes that varied in the amount of area under protection. Colonization and extinction probabilities improved as the amount of protected area increased, but these effects were conditional on landscape context and species characteristics. In this forest-dominated region, benefits of additional land protection were greatest when both forest cover in a grid square and amount of protected area in neighboring grid squares were low. Effects did not vary with species’ migratory habit or conservation status. Increasing the amounts of land protection benefitted the range margins species but not the core range species. The greatest improvements in colonization and extinction rates accrued for forest birds relative to open-habitat or generalist species. Overall, protected areas stemmed extinction more than they promoted colonization. Our results indicate that land protection remains a viable conservation strategy despite changing habitat and climate, as protected areas both reduce the risk of local extinction and facilitate movement into new areas. Our findings suggest conservation in the face of climate change favors creation of new protected areas over enlarging existing ones as the optimal strategy to reduce extinction and provide stepping stones for the greatest number of species.  相似文献   

12.
Population viability analysis (PVA) is useful in management of imperiled species. Applications range from research design, threat assessment, and development of management frameworks. Given the importance of PVAs, it is essential that they be rigorous and adhere to widely accepted guidelines; however, the quality of published PVAs is rarely assessed. We evaluated the quality of 160 PVAs of 144 species of birds and mammals published in peer-reviewed journals from 1990 to 2017. We hypothesized that PVA quality would be lower with generic programs than with custom-built programs; be higher for those developed for imperiled species; change over time; and be higher for those published in journals with high impact factors (IFs). Each included study was evaluated based on answers to an evaluation framework containing 32 questions reflecting whether and to what extent the PVA study adhered to published PVA guidelines or contained important PVA components. All measures of PVA quality were generally lower for studies based on generic programs. Conservation status of the species did not affect any measure of PVA quality, but PVAs published in high IF journals were of higher quality. Quality generally declined over time, suggesting the quantitative literacy of PVA practitioners has not increased over time or that PVAs developed by unskilled users are being published in peer-reviewed journals. Only 18.1% of studies were of high quality (score >75%), which is troubling because poor-quality PVAs could misinform conservation decisions. We call for increased scrutiny of PVAs by journal editors and reviewers. Our evaluation framework can be used for this purpose. Because poor-quality PVAs continue to be published, we recommend caution while using PVA results in conservation decision making without thoroughly assessing the PVA quality.  相似文献   

13.
The rapidly changing climate is posing growing threats for all species, but particularly for those already considered threatened. We reviewed 100 recovery plans for Australian terrestrial threatened species (50 fauna and 50 flora plans) written from 1997 to 2017. We recorded the number of plans that acknowledged climate change as a threat and of these how many proposed specific actions to ameliorate the threat. We classified these actions along a continuum from passive or incremental to active or interventionist. Overall, just under 60% of the sampled recovery plans listed climate change as a current or potential threat to the threatened taxa, and the likelihood of this acknowledgment increased over time. A far smaller proportion of the plans, however, identified specific actions associated with ameliorating climate risk (22%) and even fewer (9%) recommended any interventionist action in response to a climate-change-associated threat. Our results point to a disconnect between the knowledge generated on climate-change-related risk and potential adaptation strategies and the extent to which this knowledge has been incorporated into an important instrument of conservation action.  相似文献   

14.
Recovery of grassland birds in agricultural landscapes is a global imperative. Agricultural landscapes are complex, and the value of resource patches may vary substantially among species. The spatial extent at which landscape features affect populations (i.e., scale of effect) may also differ among species. There is a need for regional-scale conservation planning that considers landscape-scale and species-specific responses of grassland birds to environmental change. We developed a spatially explicit approach to optimizing grassland conservation in the context of species-specific landscapes and prioritization of species recovery and applied it to a conservation program in Kentucky (USA). We used a hierarchical distance-sampling model with an embedded scale of effect predictor to estimate the relationship between landscape structure and abundance of eastern meadowlarks (Sturnella magna), field sparrows (Spizella pusilla), and northern bobwhites (Colinus virginianus). We used a novel spatially explicit optimization procedure rooted in multi-attribute utility theory to design alternative conservation strategies (e.g., prioritize only northern bobwhite recovery or assign equal weight to each species’ recovery). Eastern meadowlarks and field sparrows were more likely to respond to landscape-scale resource patch adjacencies than landscape-scale patch densities. Northern bobwhite responded to both landscape-scale resource patch adjacencies and densities and responded strongly to increased grassland density. Effects of landscape features on local abundance decreased as distance increased and had negligible influence at 0.8 km for eastern meadowlarks (0.7–1.2 km 95% Bayesian credibility intervals [BCI]), 2.5 km for field sparrows (1.5–5.8 km 95% BCI), and 8.4 km for bobwhite (6.4–26 km 95% BCI). Northern bobwhites were predicted to benefit greatly from future grassland conservation regardless of conservation priorities, but eastern meadowlark and field sparrow were not. Our results suggest similar species can respond differently to broad-scale conservation practices because of species-specific, distance-dependent relationships with landscape structure. Our framework is quantitative, conceptually simple, customizable, and predictive and can be used to optimize conservation in heterogeneous ecosystems while considering landscape-scale processes and explicit prioritization of species recovery.  相似文献   

15.
Spatial synchrony, defined as the correlated fluctuations in abundance of spatially separated populations, can be caused by regional fluctuations in natural and anthropogenic environmental population drivers. Investigations into the geography of synchrony can provide useful insight to inform conservation planning efforts by revealing regions of common population drivers and metapopulation extinction vulnerability. We examined the geography of spatial synchrony and decadal changes in these patterns for grassland birds in the United States and Canada, which are experiencing widespread and persistent population declines. We used Bayesian hierarchical models and over 50 years of abundance data from the North American Breeding Bird Survey to generate population indices within a 2° latitude by 2° longitude grid. We computed and mapped mean local spatial synchrony for each cell (mean detrended correlation of the index among neighboring cells), along with associated uncertainty, for 19 species in 2, 26-year periods, 1968–1993 and 1994–2019. Grassland birds were predicted to increase in spatial synchrony where agricultural intensification, climate change, or interactions between the 2 increased. We found no evidence of an overall increase in synchrony among grassland bird species. However, based on the geography of these changes, there was considerable spatial heterogeneity within species. Averaging across species, we identified clusters of increasing spatial synchrony in the Prairie Pothole and Shortgrass Prairie regions and a region of decreasing spatial synchrony in the eastern United States. Our approach has the potential to inform continental-scale conservation planning by adding an additional layer of relevant information to species status assessments and spatial prioritization of policy and management actions. Our work adds to a growing literature suggesting that global change may result in shifting patterns of spatial synchrony in population dynamics across taxa with broad implications for biodiversity conservation.  相似文献   

16.
Understanding how inbreeding affects endangered species in conservation breeding programs is essential for their recovery. The Hawaiian Crow (‘Alalā) (Corvus hawaiiensis) is one of the world's most endangered birds. It went extinct in the wild in 2002, and, until recent release efforts starting in 2016, nearly all of the population remained under human care for conservation breeding. Using pedigree inbreeding coefficients (F), we evaluated the effects of inbreeding on Hawaiian Crow offspring survival and reproductive success. We used regression tree analysis to identify the level of inbreeding (i.e., inbreeding threshold) that explains a substantial decrease in ‘Alalā offspring survival to recruitment. Similar to a previous study of inbreeding in ‘Alalā, we found that inbreeding had a negative impact on offspring survival but that parental (vs. artificial) egg incubation improved offspring survival to recruitment. Furthermore, we found that inbreeding did not substantially affect offspring reproductive success, based on the assumption that offspring that survive to adulthood breed with distantly related mates. Our novel application of regression tree analysis showed that offspring with inbreeding levels exceeding F = 0.098 were 69% less likely to survive to recruitment than more outbred offspring, providing a specific threshold value for ongoing population management. Our results emphasize the importance of assessing inbreeding depression across all life history stages, confirm the importance of prioritizing parental over artificial egg incubation in avian conservation breeding programs, and demonstrate the utility of regression tree analysis as a tool for identifying inbreeding thresholds, if present, in any pedigree-managed population.  相似文献   

17.
Abstract: Climate change will likely have profound effects on cold‐water species of freshwater fishes. As temperatures rise, cold‐water fish distributions may shift and contract in response. Predicting the effects of projected stream warming in stream networks is complicated by the generally poor correlation between water temperature and air temperature. Spatial dependencies in stream networks are complex because the geography of stream processes is governed by dimensions of flow direction and network structure. Therefore, forecasting climate‐driven range shifts of stream biota has lagged behind similar terrestrial modeling efforts. We predicted climate‐induced changes in summer thermal habitat for 3 cold‐water fish species—juvenile Chinook salmon, rainbow trout, and bull trout (Oncorhynchus tshawytscha, O. mykiss, and Salvelinus confluentus, respectively)—in the John Day River basin, northwestern United States. We used a spatially explicit statistical model designed to predict water temperature in stream networks on the basis of flow and spatial connectivity. The spatial distribution of stream temperature extremes during summers from 1993 through 2009 was largely governed by solar radiation and interannual extremes of air temperature. For a moderate climate change scenario, estimated declines by 2100 in the volume of habitat for Chinook salmon, rainbow trout, and bull trout were 69–95%, 51–87%, and 86–100%, respectively. Although some restoration strategies may be able to offset these projected effects, such forecasts point to how and where restoration and management efforts might focus.  相似文献   

18.
Many organisms live in networks of local populations connected by dispersing individuals, called spatially structured populations (SSPs), where the long-term persistence of the entire network is determined by the balance between 2 processes acting at the scale of local populations: extinction and colonization. When multiple threats act on an SSP, a comparison of the different factors determining local extinctions and colonizations is essential to plan sound conservation actions. We assessed the drivers of long-term population dynamics of multiple amphibian species at the regional scale. We used dynamic occupancy models within a Bayesian framework to identify the factors determining persistence and colonization of local populations. Because connectivity among patches is fundamental to SSPs dynamics, we considered 2 measures of connectivity acting on each focal patch: incidence of the focal species and incidence of invasive crayfish. We used meta-analysis to summarize the effect of different drivers at the community level. Persistence and colonization of local populations were jointly determined by factors acting at different scales. Persistence probability was positively related to the area and the permanence of wetlands, whereas it was negatively related to occurrence of fish. Colonization probability was highest in semipermanent wetlands and in sites with a high incidence of the focal species in nearby sites, whereas it showed a negative relationship with the incidence of invasive crayfish in the landscape. By analyzing long-term data on amphibian population dynamics, we found a strong effect of some classic features commonly used in SSP studies, such as patch area and focal species incidence. The presence of an invasive non-native species at the landscape scale emerged as one of the strongest drivers of colonization dynamics, suggesting that studies on SSPs should consider different connectivity measures more frequently, such as the incidence of predators, especially when dealing with biological invasions.  相似文献   

19.
Landscape-scale conservation that considers metapopulation dynamics will be essential for preventing declines of species facing multiple threats to their survival. Toward this end, we developed a novel approach that combines occurrence records, spatial–environmental data, and genetic information to model habitat, connectivity, and patterns of genetic structure and link spatial attributes to underlying ecological mechanisms. Using the threatened northern quoll (Dasyurus hallucatus) as a case study, we applied this approach to address the need for conservation decision-making tools that promote resilient metapopulations of this threatened species in the Pilbara, Western Australia, a multiuse landscape that is a hotspot for biodiversity and mining. Habitat and connectivity were predicted by different landscape characteristics. Whereas habitat suitability was overwhelmingly driven by terrain ruggedness, dispersal was facilitated by proximity to watercourses. Although there is limited evidence for major physical barriers in the Pilbara, areas with high silt and clay content (i.e., alluvial and hardpan plains) showed high resistance to dispersal. Climate subtlety shaped distributions and patterns of genetic turnover, suggesting the potential for local adaptation. By understanding these spatial–environmental associations and linking them to life-history and metapopulation dynamics, we highlight opportunities to provide targeted species management. To support this, we have created habitat, connectivity, and genetic uniqueness maps for conservation decision-making in the region. These tools have the potential to provide a more holistic approach to conservation in multiuse landscapes globally.  相似文献   

20.
Roughly 40 years after its introduction, the metapopulation concept is central to population ecology. The notion that local populations and their dynamics may be coupled by dispersal is without any doubt of great importance for our understanding of population-level processes. A metapopulation describes a set of subpopulations linked by (rare) dispersal events in a dynamic equilibrium of extinctions and recolonizations. In the large body of literature that has accumulated, the term "metapopulation" is often used in a very broad sense; most of the time it simply implies spatial heterogeneity. A number of reviews have recently addressed this problem and have pointed out that, despite the large and still growing popularity of the metapopulation concept, there are only very few empirical examples that conform with the strict classical metapopulation (CM) definition. In order to understand this discrepancy between theory and observation, we use an individual-based modeling approach that allows us to pinpoint the environmental conditions and the life-history attributes required for the emergence of a CM structure. We find that CM dynamics are restricted to a specific parameter range at the border between spatially structured but completely occupied and globally extinct populations. Considering general life-history attributes, our simulations suggest that CMs are more likely to occur in arthropod species than in (large) vertebrates. Since the specific type of spatial population structure determines conservation concepts, our findings have important implications for conservation biology. Our model suggests that most spatially structured populations are panmictic, patchy, or of mainland-island type, which makes efforts spent on increasing connectivity (e.g., corridors) questionable. If one does observe a true CM structure, this means that the focal metapopulation is on the brink of extinction and that drastic conservation measures are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号