首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
含砷废渣的固化处理   总被引:4,自引:1,他引:3  
为了处理有色金属冶炼厂产生的含砷废渣(简称砷渣),以水泥、粉煤灰、矿渣、黄砂等作为固化材料对砷渣进行了固化研究。确定了砷渣固化的最佳工艺条件:w(砷渣):50%、w(水泥)=15%、w(粉煤灰):20%、w(矿渣)=10%、w(黄砂)=5%;砷渣、粉煤灰预先混合球磨10min,加水搅拌后陈化4h,烘干后与水泥、矿渣一起球磨20min,再与水(水与混合物料的质量比为0.175)、添加剂(质量分数为0.05%的添加剂B)及黄砂一起在搅拌机中搅拌6min,然后加压成型,成型后的固化体先放入24℃水泥砼试体养护箱养护14d,然后取出在室温下自然养护14d,养护时间共28d。扫描电子显微镜分析结果显示,砷渣固化体的胶凝状态良好。测试结果表明,砷渣固化体7d抗压强度为8.13MPa,28d抗压强度为14.20 MPa;As的浸出浓度为0.07mg/L,Hg的浸出浓度为0.008mg/L。砷渣固化体的性能达到了国家建材行业标准(JC239-2001《粉煤灰砖》)和危险废物鉴别标准(GB5085.3~1996《危险废物答别标准——浸出毒性答别》)的要求。  相似文献   

2.
This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes.Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling.  相似文献   

3.
Waste disposal systems conventionally exhibit many problems, such as difficulties in finding final disposal sites for incinerator residues and the issue of how to recycle waste materials. Some new technologies have been developed to solve such problems, including ash melting and gasification melting. Furthermore, to improve the power generation efficiency of waste treatment facilities so that their energy is used more efficiently, combined stoker/gas turbine power generation (super waste power generation) technology has been developed. Through examination of two cases in this study, environmental impacts and costs were determined using lifecycle assessment (LCA) and lifecycle cost (LCC) methods in a model city. In case 1, a stoker furnace was compared to a combined stoker/gas turbine system. In case 2, a stoker furnace plus ash melting system was compared to a gasification melting system. The results demonstrate that the stoker furnace has a lower environmental impact than the combined stoker/gas turbine system in case 1, and that the stoker plus ash melting system costs less than the gasification melting system in case 2, but both systems had strong impacts on the environment.  相似文献   

4.
Wastewater remediation using coal ash   总被引:2,自引:0,他引:2  
 Small-scale domestic septic tanks discharge excess nutrients such as phosphorus and nitrogen, as well as pathogens, which can degrade local water supplies. Unfortunately, traditional chemical and physical treatments are not practicable for single-home dwellings. This work reports on a potentially attractive solution to protect local water supplies by using a low-cost industrial waste, coal ash, for contaminant removal. Coal ash is produced as a consequence of electric power generation. The majority of the ash is disposed of in landfills and surface impoundments, or stored on- or off-site, producing large hills or leveling valleys. Only a small portion of the ash is ever utilized, mainly by cement industries and road construction. For example, in Canada less than 25% is used. Therefore, if useful applications can be found, an opportunity exists to make better use of this waste material. Bench-scale laboratory experiments and full-scale field tests show that coal ash has the capacity to remove phosphorus from domestic waste water. The experimental and field data demonstrate that phosphate levels and calcium levels can be correlated, although not in a simple manner. In addition, the ash in packed beds removed total suspended solid (TSS), biological oxygen demand (BOD), ammonia nitrogen (NH3—N), total Kjeldahl nitrogen (TKN), and E. coli. The removal of E. coli was close 100% in the cases studied. Received: May 20, 2002 / Accepted: October 5, 2002  相似文献   

5.
Thermal treatment of municipal solid waste (MSW) has become a common practice in waste volume reduction and resource recovery. For the utilization of molten slag for construction materials and metal recovery, it is important to understand the behavior of heavy metals in the melting process. In this study, the correlation between the contents of elements in feed materials and MSW molten slag and their distributions in the ash melting process, including metal residues, are investigated. The hazardous metal contents in the molten slag were significantly related to the contents of metals in the feed materials. Therefore, the separation of products containing these metals in waste materials could be an effective means of producing environmentally safe molten slag with a low hazardous metals content. The distribution ratios of elements in the ash melting process were also determined. The elements Zn and Pb were found to have a distribution ratio of over 60% in fly ash from the melting furnace and the contents of these metals were also high; therefore, Zn and Pb could be potential target metals for recycling from fly ash from the melting furnace. Meanwhile, Cu, Ni, Mo, Sn, and Sb were found to have distribution ratios of over 60% in the metal residue. Therefore, metal residue could be a good resource for these metals, as the contents of Cu, Ni, Mo, Sn, and Sb in metal residue are higher than those in other output materials.  相似文献   

6.
China has ranked first in the coal fly ash emission in the world. The multipurpose use of the fly ash from power plant waste is always an important topic for the Chinese environmental protection, which has drawn the concern of the government, scientific research departments, manufacturing enterprises and industry experts. This paper introduces an experimental research on how to recycle fly ash effectively, a kind of new technology of making bricks by which fly ash content could be amounted to 50–80 %. The article introduces raw materials of fly ash brick, production process and key control points. It introduces how to change the technical parameters of the existing brick-making mechanical device, optimize the parameters combination and improve the device performance. High-content fly ash bricks are manufactured, which selects wet fly ash from power plants, adding aggregate with reasonable ratio and additives with reasonable dosage, and do the experimental research on manufactured products for properties, production technology and selection about technology parameters of production equipment. All indexes of strength grade, freezing-thawing resisting, and other standards of the studied bricks reached the national standards for building materials industry.  相似文献   

7.
The objective of the study is to analyze the technical suitability of using secondary materials from three waste flows (construction and demolition waste (CDW), Waelz slag and municipal solid waste incineration (MSWI) bottom ash), under the regulations and standards governing the use of materials for road construction. A detailed technical characterization of the materials was carried out according to Spanish General Technical Specifications for Road Construction (PG3). The results show that Waelz slag can be adequate for using in granular structural layers, while CDW fits better as granular material in roadbeds. Likewise, fresh MSWI bottom ash can be used as roadbed material as long as it does not contain a high concentration of soluble salts. This paper also discusses the adequacy of using certain traditional test methods for natural soils when characterizing secondary materials for use as aggregates in road construction.  相似文献   

8.
Coal-based power generates large quantities of coal ash in South Korea. However, coal ash recycling is still inactive and most wasted coal ash is buried in landfills. Recently, beneficial uses of coal ash such as in mine reclamation sites has been increasingly considered; however, as a result of legal limitations due to environmental concerns, the utilization of coal ash at mine reclamation sites has procrastinated. Consequently, to resolve this issue, the relevant environmental impact of coal ash must be considered. Therefore, a leaching assessment framework to assess the environmental impact of coal ash utilization at South Korean mine reclamation sites is presented. The framework was used to identify leaching mechanisms and support an assessment of the environmental impact of coal ash usage at mine reclamation sites in South Korea. This framework could provide guidance with regard to designing more realistic leaching procedures appropriate for all mine conditions and could support the development of regulations and protocols for future environment-friendly coal ash usage.  相似文献   

9.
日本生活垃圾的焚烧率高达80%,对焚烧灰渣的处理也比较先进,其资源化利用方式主要有在熔融设施进行熔融处理后制成熔融灰渣、作为水泥原料及路基材料等。介绍了日本生活垃圾焚烧灰渣的产生及资源化利用情况,以期对我国处理焚烧灰渣有所借鉴。  相似文献   

10.
Melting and stone production using MSW incinerated ash   总被引:17,自引:0,他引:17  
Most of the municipal solid waste (MSW) in Japan is incinerated and the generated ash is landfilled. However, environmental pollution problems have increased and Japan has decreased final disposal sites for landfills. With the application of a melting system, the volume of incinerated ash can be reduced and the effective use of melted slag is being developed for use in civil engineering works. However, the low strength of melted slag as a vitreous structure has limited its effective use. As a solution for this deficiency, a technology to crystallize melted slag into higher strength produced stones was developed. With the joint cooperation of Chiba Prefecture and Kamagaya City, a demonstration plant for melting and stone production with a capacity of 4.8 tons of incinerator ash per day was constructed. The demonstration test was conducted from May 1998 to June 1999 with satisfactory results stated below. Long-term stable operation and performance of the plant have been confirmed and effective applications of produced stones have been demonstrated on a commercial scale. The results are as follows. 1. A stable, continuous operation and good quality produced stones have been confirmed by treating more than 750 tons of MSW incinerated ash. 2. More than 99.9% of dioxins contained in the incinerated ash were decomposed, and the concentration of dioxins in produced stones were less than the detection limit set by Japanese environmental standards. 3. Leaching values of hazardous heavy metals of produced stones sufficiently met the environmental standard on soil pollution of the Environment Agency with superior leaching behavior for the vitreous slag, thus confirming their safe applications. 4. The effective application of produced stones for aggregate was tested based on Japanese Industrial Standards and every figure of test results met the Japanese standard values. The use of produced stones as raw materials for permeable pavement blocks has been confirmed in commercial construction for a park in Chiba Prefecture. Asphalt use was also demonstrated by paving a commercial roadway in Kamagaya City.  相似文献   

11.
“Waste molten slag” is a glass-like material produced by the vitrification of solid waste or solid waste incineration residue. When using slags of this kind in a natural environment, their impact is anticipated to be at the same level as competitive or substituted materials. In this study, we made comparative evaluations between waste molten slags and competitive materials, using 20 samples in total. It was proved that release fluxes of metals from molten slags of municipal solid waste were almost at the same level as competitive or substituted materials. However, a larger impact will be caused from some types of slag that contain harmful metals in high concentrations, such as the slag from shredded automobile residues. The results of release flux showed that nearly 80% of the slope of the flux did not fit with the diffusion range. However, the linearity of every flux was extremely high, regardless of the slope.  相似文献   

12.
Combined coal-biomass ash has an enormous impact on environmental quality near electric power plants. This paper describes an alternative to disposal in which the ash is used to produce cementitious materials. Ash was obtained from combustion of coal and biomass containing four mass ratios of anthracite, bitumen, rice husks, and eucalyptus bark. The cement-forming properties were systematically characterized including compressive strength development, durability, and expansion in water. The ash samples were ground to increase the specific surface area, and then used to partially replace ASTM Type I Portland cement in mixtures containing 15, 30, or 45 % ash by mass. The water-binder material's (Portland cement with or without combined coal-biomass ash) ratios (w/c) were held constant at 45, 55, or 65 % by mass. Types A, B, and D ash behaved similarly, while the properties of type C ash were slightly different. Increasing the ash fraction in Portland cement mixtures increased the water requirement and resulted in lower compressive strength. Thorough mechanical grinding reduced the porosity and significantly enhanced the material properties.  相似文献   

13.
Landfills receiving a mix of waste, including organics, have developed dramatically over the last 3-4 decades; from open dumps to engineered facilities with extensive controls on leachate and gas. The conventional municipal landfill will in most climates produce a highly contaminated leachate and a significant amount of landfill gas. Leachate controls may include bottom liners and leachate collection systems as well as leachate treatment prior to discharge to surface water. Gas controls may include oxidizing top covers, gas collection systems with flares or gas utilization systems for production of electricity and heat.The importance of leachate and gas control measures in reducing the overall environmental impact from a conventional landfill was assessed by life-cycle-assessment (LCA). The direct cost for the measures were also estimated providing a basis for assessing which measures are the most cost-effective in reducing the impact from a conventional landfill. This was done by modeling landfills ranging from a simple open dump to highly engineered conventional landfills with energy recovery in form of heat or electricity. The modeling was done in the waste LCA model EASEWASTE. The results showed drastic improvements for most impact categories. Global warming went from an impact of 0.1 person equivalent (PE) for the dump to −0.05 PE for the best design. Similar improvements were found for photochemical ozone formation (0.02 PE to 0.002 PE) and stratospheric ozone formation (0.04 PE to 0.001 PE).For the toxic and spoiled groundwater impact categories the trend is not as clear. The reason for this was that the load to the environment shifted as more technologies were used. For the dump landfill the main impacts were impacts for spoiled groundwater due to lack of leachate collection, 2.3 PE down to 0.4 PE when leachate is collected. However, at the same time, leachate collection causes a slight increase in eco-toxicity and human toxicity via water (0.007E to 0.013PE and 0.002 to 0.003 PE respectively). The reason for this is that even if the leachate is treated, slight amounts of contaminants are released through emissions of treated wastewater to surface waters.The largest environmental improvement with regard to the direct cost of the landfill was the capping and leachate treatment system. The capping, though very cheap to establish, gave a huge benefit in lowered impacts, the leachate collection system though expensive gave large benefits as well. The other gas measures were found to give further improvements, for a minor increase in cost.  相似文献   

14.
This study presents a novel thermal plasma melting technique for neutralizing and recycling municipal solid waste incinerator (MSWI) ash residues. MSWI ash residues were converted into water-quenched vitrified slag using plasma vitrification, which is environmentally benign. Slag is adopted as a raw material in producing porous materials for architectural and decorative applications, eliminating the problem of its disposal. Porous materials are produced using water-quenched vitrified slag with Portland cement and foaming agent. The true density, bulk density, porosity and water absorption ratio of the foamed specimens are studied here by varying the size of the slag particles, the water-to-solid ratio, and the ratio of the weights of the core materials, including the water-quenched vitrified slag and cement. The thermal conductivity and flexural strength of porous panels are also determined. The experimental results show the bulk density and the porosity of the porous materials are 0.9–1.2 g cm?3 and 50–60%, respectively, and the pore structure has a closed form. The thermal conductivity of the porous material is 0.1946 W m?1 K?1. Therefore, the slag composite materials are lightweight and thermal insulators having considerable potential for building applications.  相似文献   

15.
At the former uranium mining site of Ronneburg, large scale underground and open pit mining for nearly 40 years resulted in a production of about 113,000 tonnes of uranium and about 200 million cubic metres of mine waste. In their present state, these materials cause risks to human health and strong environmental impacts and therefore demand remedial action. The remediation options available are relocation of mine spoil into the open pit and on site remediation by landscaping/contouring, placement of a cover and revegetation. A suitable vegetated cover system combined with a surface water drainage system provides long-term stability against erosion and reduces acid generation thereby meeting the main remediation objectives which are long-term reduction of radiological exposure and contaminant emissions and recultivation. The design of the cover system includes the evaluation of geotechnical, radiological, hydrological, geochemical and ecological criteria and models. The optimized overall model for the cover system has to comply with general conditions as, e.g. economic efficiency, public acceptance and sustainability. Most critical elements for the long-term performance of the cover system designed for the Beerwalde dump are the barrier system and its long-term integrity and a largely self-sustainable vegetation.  相似文献   

16.
纯碱生产废水的综合治理   总被引:4,自引:0,他引:4  
杨守荣 《化工环保》2000,20(1):19-21
介绍了纯碱生产过程中产生的蒸氨废清液和生产下水的综合治理情况。将废清液晒盐回收NaCl,然后从母液中回收CaCl2。在雨季等情况下对废清液的治理措施是,将其两次兑海水,使其各项指标达到国家排放标准。  相似文献   

17.
Most ashes contain a significant amount of heavy metals and when released from disposed or used ash materials, they can form a major environmental concern for underground waters. The use of water extracts to assess the easily mobilisable content of heavy metals may not provide an appropriate measure. This study describes the patterns of heavy metal release from ash materials in context with results from the German standard extraction method DIN-S4 (DIN 38 414 S4). Samples of four different ashes (municipal solid waste incineration ash, wood ash, brown coal ash and hard coal ash) were subjected to a number of serial batch tests with liquid renewal, some of which involved the addition of acid to neutralize carbonates and oxides. Release of heavy metals showed different patterns depending on the element, the type of material, the method of extraction and the type of the extractant used. Only a small fraction of the total heavy metal contents occurred as water soluble salts; of special significance was the amount of Cr released from the wood ash. The reaction time (1, 24 or 72 h between each extraction step with water) had only a small effect on the release of heavy metals. However, the release of most of the heavy metals was governed by the dissolution processes following proton inputs, indicating that pH-dependent tests such as CEN TC 292 or others are required to estimate long-term effects of heavy metal releases from ashes. Based on the chemical characteristics of ash materials in terms of their form and solubility of heavy metals, recommendations were made on the disposal or use of the four ash materials.  相似文献   

18.
A method of reprocessing coal sludge and ash into granulate for the building industry in a combined wasteless aggregate-steam-generator/melting-converter was developed and tested. The method involves melting sludge and ash from coal-fired steam-generators of power plants in a melting-converter installed under the steam-generator, with direct sludge drain from the steam generator combustion chamber. The direct drain of sludge into converter allows burnup of coal with high ash levels in the steam-generator without an additional source of ignition (natural gas, heating oil, etc.). Specific to the melting process is the use of a gas-air mixture with direct combustion inside a melt. This feature provides melt bubbling and helps to achieve maximum heat transfer from combustion products to the melt, to improve mixing, to increase rate of chemical reactions and to improve the conditions for burning the carbon residue from the sludge and ash. The "gross" thermal efficiency of the combined aggregate is about 93% and the converter capacity is about 18 t of melt in 100 min. The experimental data for different aspects of the proposed method are presented. The effective ash/charging materials feeding system is also discussed. The reprocessed coal ash and sludge in the form of granules can be used as fillers for concrete and as additives in the production of cement, bricks and other building materials.  相似文献   

19.
Fly ash is a solid waste generated in huge quantities from coal fired thermal power stations during the combustion of coal. In India, less than half of this is used as a raw material for concrete manufacturing and construction; the remaining is directly dumped on land side as land fill or simply piled up. Only a small fraction of it is used in development of high valued product. Due to environmental regulations, new ways of utilizing fly ash are being explored in order to safeguard the environment and provide useful ways for its utilization and disposal. With its richness in various metal oxides, it has tremendous potential to be utilized as a filler material in polymer composites. These days glass reinforced polyester composites find widespread application in erosive environment due to several advantages like high wear resistance, strength-to-weight ratio, and low cost. The cost of the composites can be further brought down using cheaper filler materials. To this end, this work uses fly ash in composite making and thereby suggests a new way of better utility of this industrial waste. It includes the processing, characterization and study of the erosion behavior of a class of such fly ash filled polyester-glass fiber composites. The engineering application of composites demands that it should have high wear resistance, low density and high tensile strength. In order to assess the behavior of composites satisfying multiple performance measures, a grey-based Taguchi approach has been adopted. After thorough analysis of factors, optimal factor settings have been suggested to improve multiple responses viz., erosive wear rate, density, flexural strength and tensile strength. This technique eliminates the need for repeated experiments; thus saves time and material. The systematic experimentation leads to determination of significant process parameters and material variables that predominantly influence the multiple responses.  相似文献   

20.
Co-gasification of solid waste and coal is a very attractive and efficient way of generating power, but also an alternative way, apart from conventional technologies such as incineration and landfill, of treating waste materials. The technology of co-gasification can result in very clean power plants using a wide range of solid fuels but there are considerable economic and environmental challenges. The aim of this study is to present the available existing co-gasification techniques and projects for coal and solid wastes and to investigate the techno-economic feasibility, concerning the installation and operation of a 30MW(e) co-gasification power plant based on integrated gasification combined cycle (IGCC) technology, using lignite and refuse derived fuel (RDF), in the region of Western Macedonia prefecture (WMP), Greece. The gasification block was based on the British Gas-Lurgi (BGL) gasifier, while the gas clean-up block was based on cold gas purification. The competitive advantages of co-gasification systems can be defined both by the fuel feedstock and production flexibility but also by their environmentally sound operation. It also offers the benefit of commercial application of the process by-products, gasification slag and elemental sulphur. Co-gasification of coal and waste can be performed through parallel or direct gasification. Direct gasification constitutes a viable choice for installations with capacities of more than 350MW(e). Parallel gasification, without extensive treatment of produced gas, is recommended for gasifiers of small to medium size installed in regions where coal-fired power plants operate. The preliminary cost estimation indicated that the establishment of an IGCC RDF/lignite plant in the region of WMP is not profitable, due to high specific capital investment and in spite of the lower fuel supply cost. The technology of co-gasification is not mature enough and therefore high capital requirements are needed in order to set up a direct co-gasification plant. The cost of electricity estimated was not competitive, compared to the prices dominating the Greek electricity market and thus further economic evaluation is required. The project would be acceptable if modular construction of the unit was first adopted near operating power plants, based on parallel co-gasification, and gradually incorporating the remaining process steps (gas purification, power generation) with the aim of eventually establishing a true direct co-gasification plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号