首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
This study evaluates erosivity, surface runoff generation, and soil erosion rates for Mamuaba catchment, sub-catchment of Gramame River basin (Brazil) by using the ArcView Soil and Water Assessment Tool (AvSWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. Daily rainfall data between 1969 and 1989 from six rain gauges were used, and the monthly rainfall erosivity of each station was computed for all the studied years. In order to evaluate the calibration and validation of the model, monthly runoff data between January 1978 and April 1982 from one runoff gauge were used as well. The estimated soil loss rates were also realistic when compared to what can be observed in the field and to results from previous studies around of catchment. The long-term average soil loss was estimated at 9.4 t ha?1 year?1; most of the area of the catchment (60 %) was predicted to suffer from a low- to moderate-erosion risk (<6 t ha?1 year?1) and, in 20 % of the catchment, the soil erosion was estimated to exceed >?12 t ha?1 year?1. Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the catchment was divided into four priority categories (low, moderate, high and very high) for conservation intervention. The study demonstrates that the AvSWAT model provides a useful tool for soil erosion assessment from catchments and facilitates the planning for a sustainable land management in northeastern Brazil.  相似文献   

2.
Soil erosion is an open topic, not only because soil fertility is lost, but also because nutrients are spilled into water bodies, thereby causing pollution. Research carried out in this field has amply described this process, but the interaction between these factors is complex and experimental research is needed to understand the production of loads of nutrients for different land uses. This paper describes a long-term monitoring case study using high-resolution rainfall data and runoff samples, carried out in the Lake Vico basin (Central Italy) to determine the phosphorus (P) export during erosive rainfall events. State of the art GIS-based basin characterization and advanced rainfall-runoff models are employed in order to describe the relationship between nutrient export and rainfall or runoff time distribution. Results show that the phosphorus export is strongly related to such time distributions, and less to the cumulative amount of rainfall or runoff.  相似文献   

3.
Non-point source (NPS) pollution is the result of various land use practices such as agriculture, sites of construction and waste disposal, urban development and so on. The control of NPS pollution is possible by regular monitoring and assessment on watershed basis to educate people for implementing well-known structural and non-structural measures. Recent trend is to use GIS based modelling tool for assessment of rainfall-runoff and non-point loading. The approach requires generation and analysis of basin wide data on various features of land and estimates of Event Mean Concentrations (EMCs) of pollutants in the runoff. In the present paper, basin wide data in different districts of Tapi basin has been analysed for land use distribution; fertilizer application; low, medium and high-density habitation; and annual rainfall. Coefficients of runoff have been estimated considering pervious and impervious area for different land use types, and compared with the reported values for Indian conditions. The estimated mean annual runoff flow indicated that two districts Jalgaon and Dhule contribute maximum runoff to the Tapi River. Estimates of EMCs for BOD and nutrients (N and P) in the runoff from various districts are useful in GIS-based modelling study for NPS pollution assessment.  相似文献   

4.
A geographic information system (GIS) supporting a flood hydrograph prediction software package is described. The hydrograph prediction method is based on the convolution of excess rainfall with a synthetic unit hydrograph, derived by the Soil Conservation Service runoff curve number and a regional dimensionless unit hydrograph method, respectively. The GIS uses a raster method to store the following data: land use and land cover, soil type, rainfall intensity-frequency-duration statistics, runoff curve numbers (CN), regional dimensionless unit hydrograph, and regional lag-time relationship. The GIS has also the capability of computing a number of watershed and hydrologic parameters required for predictions, such as a watershed average rainfall and CN value, area, centroid, stream length etc. Most of the data for such computations are input from a digitizer. Substantial time and cost savings are possible once the data base has been created. Application of the system is illustrated by an example predicting flood frequency curves for selected watersheds in Alberta's Rocky Mountain foothills, Canada.  相似文献   

5.
A field monitoring network was set up within the Stamford canal watershed in 1989 to study both the quantitative and qualitative aspects of storm runoff from this urbanised catchment. The data acquisition equipment comprised a continuous recording rain gauge, a water level recorder and an automatic water sampler capable of sampling storm runoff at preset intervals during rainfall events. Water samples were collected after each storm and laboratory tests were carried out on the physical and chemical properties of the storm water. Preliminary findings on the temporal variations of stormwater quality during single storms and the effects of antecedent dry weather period on the quality are presented. The average ranges of some of the significant quality parameters found in the storm runoff were also established. The quality of storm runoff from the catchment under study was found to be of an acceptable level and could potentially be developed as a water catchment area.  相似文献   

6.
Urban and agricultural areas affect the hydraulic patterns as well as the water quality of receiving drainage systems, especially of catchments smaller than 50 km(2). Urban runoff is prone to contamination due to pollutants like pesticides or pharmaceuticals. Agricultural areas are possible sources of nutrient and herbicide contamination for receiving water bodies. The pollution is derived from leaching by subsurface flow, as well as wash-off and erosion caused by surface runoff. In the Luxembourgish Mess River catchment, the pharmaceutical and pesticide concentrations are comparable with those detected by other authors in different river systems worldwide. Some investigated pesticide concentrations infringe current regulations. The maximum allowable concentration for diuron of 1.8 μg l(?-?1) is exceeded fourfold by measured 7.41 μg l(?-?1) in a flood event. The load of dissolved pesticides reaching the stream gauge is primarily determined by the amount applied to the surfaces within the catchment area. Storm water runoff from urban areas causes short-lived but high-pollutant concentrations and moderate loads, whereas moderate concentrations and high loads are representative for agricultural inputs to the drainage system. Dissolved herbicides, sulfonamides, tetracyclines, analgesics and hormones can be used as indicators to investigate runoff generation processes, including inputs from anthropogenic sources. The measurements prove that the influence of kinematic wave effects on the relationship between hydrograph and chemographs should not be neglected in smaller basins. The time lag shows that it is not possible to connect analysed substances of defined samples to the corresponding section of the hydrograph.  相似文献   

7.
平原感潮河网地区非点源污染严重,同时由于本身具有的交叉污染等特性,造成了整个平原河网存在严重的环境污染和环境安全问题。文章在南通平原河网地区选择圩区作为典型区,以野外观测和室内分析相结合的方法开展野外原位试验,研究平原河网典型圩区各形态污染物随降雨径流的迁移特征,建立了稻季农田营养盐的迁移通量与径流通量、施肥量及降雨距施肥时间间隔三者之间的定量化关系。  相似文献   

8.
Groundwater from 33 monitoring of peripheral wells of Karachi, Pakistan were evaluated in terms of pre- and post-monsoon seasons to find out the impact of storm water infiltration, as storm water infiltration by retention basin receives urban runoff water from the nearby areas. This may increase the risk of groundwater contamination for heavy metals, where the soil is sandy and water table is shallow. Concentration of dissolved oxygen is significantly low in groundwater beneath detention basin during pre-monsoon season, which effected the concentration of zinc and iron. The models of trace metals shown in basin groundwater reflect the land use served by the basins, while it differed from background concentration as storm water releases high concentration of certain trace metals such as copper and cadmium. Recharge by storm water infiltration decreases the concentration and detection frequency of iron, lead, and zinc in background groundwater; however, the study does not point a considerable risk for groundwater contamination due to storm water infiltration.  相似文献   

9.
Hydrologic response is an integrated indicator of watershed condition, and significant changes in land cover may affect the overall health and function of a watershed. This paper describes a procedure for evaluating the effects of land cover change and rainfall spatial variability on watershed response. Two hydrologic models were applied on a small semi-arid watershed; one model is event-based with a one-minute time step (KINEROS), and the second is a continuous model with a daily time step (SWAT). The inputs to the models were derived from Geographic Information System (GIS) theme layers of USGS digital elevation models, the State Soil Geographic Database (STATSGO) and the Landsat-based North American Landscape Characterization classification (NALC) in conjunction with available literature and look up tables. Rainfall data from a network of 10 raingauges and historical stream flow data were used to calibrate runoff depth using the continuous hydrologic model from 1966 to 1974. No calibration was carried out for the event-based model, in which six storms from the same period were used in the calculation of runoff depth and peak runoff. The assumption on which much of this study is based is that land cover change and rainfall spatial variability affect the rainfall-runoff relationships on the watershed. To validate this assumption, simulations were carried out wherein the entire watershed was transformed from the 1972 NALC land cover, which consisted of a mixture of desertscrub and grassland, to a single uniform land cover type such as riparian, forest, oak woodland, mesquite woodland, desertscrub, grassland, urban, agriculture, and barren. This study demonstrates the feasibility of using widely available data sets for parameterizing hydrologic simulation models. The simulation results show that both models were able to characterize the runoff response of the watershed due to changes of land cover.  相似文献   

10.
An assessment of suspended sediment transport was carried out in a number of semiarid catchments during flood events in order to quantify the degradation rates. In order to quantify these, a systematic sampling procedure of the episodic flood events was proposed for representative catchments. The procedure allows for an integration over the whole run-off episode using both the rising and falling limbs of the run-off hydrograph to compute the sediment quantities for each individual flood event. Higher sediment concentrations occurred in the rising limb than those at the recession for any stage of flow. The maximum suspended sediment concentration was observed at the peak of the flood hydrograph. An integration of the sediment concentration over its duration gave the total sediment yield from the flood event. For the ephemeral channels, only a small number of flood events were observed over a three-year experimental period each with a duration of the order of 3–6 h. It is notable that high sediment loads were associated with high flow volumes which were effectively the result of the catchment characteristics and incident rainfall causing the flood events in the respective catchments. A large percentage of the annual sediment yield from a catchment is transported by the ephemeral streams during a small number of flood events. The correct determination of the total sediment yield from any of the flood events depends entirely on the accuracy of the measurements. The understanding of run-off and sediment loss for the representative catchments aims at assisting planning, management and control of water and land resources for sustainable development in the semi-arid parts of the tropics. The sediment rates reveal the degradation of catchments which have repercussions on the crop and pasture production and this has a bearing on the soil and water conservation programmes in the delicate ecological balance of the semi-arid areas. Further, these rates will determine the lifespan of the reservoirs planned for the dry river valleys (ephemeral streams) and existing ones which serve livestock and domestic needs. These occasionally will require costly rehabilitation and scooping to increase effective storage unless conservation measures are taken, and these measures are bound to vary from place to place as per the representative catchments output.  相似文献   

11.
The overloaded nonpoint source (NPS) nutrients in upper streams always result in the nutrient enrichment at lakes and estuaries downstream. As NPS pollution has become a serious environmental concern in watershed management, the information about nutrient output distribution across a watershed has been critical in the designing of regional development policies. But existing watershed evaluation models often encounter difficulties in application because of their complicated structures and strict requirements for the input data. In this paper, a spatially explicit and process-based model, Integrated Grid’s Exporting and Delivery model, was introduced to estimate annual in-stream nutrient levels. Each grid cell in this model was regarded as having potentials of both exporting new nutrients and trapping nutrients passing by. The combined nutrient dynamics of a grid is mainly determined by the grid’s features in land use/land cover, soil drainage, and geomorphology. This simple-concept model was tested at some basins in north Georgia in the USA. Stations in one basin were used to calibrate the model. Then an external validation was employed by applying the calibrated model to stations in the other neighbor basins. Model evaluation statistics implied the model’s validity and good performance in estimating the annual NPS nutrients’ fluxes at the watershed scale. This study also provides a promising prospect that in-stream annual nutrient loads can be accurately estimated from a few public available datasets.  相似文献   

12.
Modeling of non-point source pollution in a Mediterranean drainage basin   总被引:2,自引:0,他引:2  
SWAT ver. 2000 was used to predict hydrographs, and sediment, nitrate and total phosphorus loadings from a 1349 km2 mountainous/agricultural watershed in Northern Greece. The model was calibrated and verified using continuous meteorological data from eight stations within the drainage area, and runoff, sediment and nutrient concentrations measured at nine stations located within the main tributaries of the watershed, for the time period from May 1st, 1998 to January 31st, 2000. Model validation methodology and resulting input parameters appropriate for Mediterranean drainage basins are presented. Predicted by the model hydrographs, sedimentographs and pollutographs are plotted against observed values and show good agreement. Model performance is evaluated using the root mean square error computation and scattergrams of predicted versus observed data. The validated model is also used to test the effectiveness of three alternative cropping scenarios in reducing nutrient loadings from the agricultural part of the watershed. The study showed that this model, if properly validated, can be used effectively in testing management scenarios in Mediterranean drainage basins.  相似文献   

13.
Hydrological models are widely used to investigate practical issues of water resources. Parametric uncertainty is considered as one of the most important sources of uncertainty in environmental researches. Generally, it is assumed that the parameters are independent mutually, but correlation within the parameter space is an important factor having the potential to cause uncertainty. The objective and innovation of this study was to address the effects of parameters correlation on a continuous hydrological model uncertainty. HEC-HMS with soil moisture accounting (SMA) infiltration method was used to model daily flows and simulate certainty bounds for Karoon III basin, southwest of IRAN, in two scenarios, independent and correlated parameters using 2-copula. The parameters were represented by probability distributions, and the effect on prediction error were evaluated using Latin hypercube sampling (LHS) on Monte Carlo simulation (MCS). Saturated hydraulic conductivity (K), Clark storage-coefficient (R), and time of concentration (tc) were chosen for investigation, based on observed sensitivity analysis of simulated peak over threshold (POT). One hundred runs were randomly generated from 100 parameter sets captured from LHS of parameters distributions in each sub-basin. Using generated parameter sets, 100 continuous hydrographs were simulated and values of certainty bounds calculated. Results showed that when 2-copula correlated R and tc, with 0.656 Kendall’s Tau and 0.818 Spearman’s Rho coefficients, were propagated, decreasing of outputs’ sharpness was more than when considering K and R (K-R), with 0.166 and 0.262; therefore, incorporation of correlations in the MCS is important, especially when the correlation coefficients exceed 0.65. The model was evaluated at the outlet of the basin using daily stream flow data. Model reliability was better for above-normal flows than normal and below-normal. Reliability increases of simulated flow when considering correlated R-tc was more than K-R because of the correlation values. Incorporation of copula for K-tc not only did not improve the model reliability but also decreased it. Results showed improvement of model reliability, by decreasing predicted error of hydrologic modeling, when dealing with correlated parameters in the system.  相似文献   

14.
Mountainous areas in the northern Pakistan are blessed by numerous rivers that have great potential in water resources and hydropower production. Many of these rivers are unexploited for their water resource potential. If the potential of these rivers are explored, hydropower production and water supplies in these areas may be improved. The Indus is the main river originating from mountainous area of the Himalayas of Baltistan, Pakistan in which most of the smaller streams drain. In this paper, the hydrology of the mountainous areas in northern Pakistan is studied to estimate flow pattern, long-term trend in river flows, characteristics of the watersheds, and variability in flow and water resource due to impact of climate change. Eight watersheds including Gilgit, Hunza, Shigar, Shyok, Astore, Jhelum, Swat, and Chitral, Pakistan have been studied from 1960 to 2005 to monitor hydrological changes in relation to variability in precipitation, temperature and mean monthly flows, trend of snow melt runoff, analysis of daily hydrographs, water yield and runoff relationship, and flow duration curves. Precipitation from ten meteorological stations in mountainous area of northern Pakistan showed variability in the winter and summer rains and did not indicate a uniform distribution of rains. Review of mean monthly temperature of ten stations suggested that the Upper Indus Basin can be categorized into three hydrological regimes, i.e., high-altitude catchments with large glacierized parts, middle-altitude catchments south of Karakoram, and foothill catchments. Analysis of daily runoff data (1960-2005) of eight watersheds indicated nearly a uniform pattern with much of the runoff in summer (June-August). Impact of climate change on long-term recorded annual runoff of eight watersheds showed fair water flows at the Hunza and Jhelum Rivers while rest of the rivers indicated increased trends in runoff volumes. The study of the water yield availability indicated a minimum trend in Shyok River at Yogo and a maximum trend in Swat River at Kalam. Long-term recorded data used to estimate flow duration curves have shown a uniform trend and are important for hydropower generation for Pakistan which is seriously facing power crisis in last 5 years.  相似文献   

15.
Although satellite radar altimetry was developed and optimized for open oceans, it has been used to monitor variations in the level of inland water-bodies such as lakes and rivers. Here, for the first time, we have further used the altimetry-derived variation of water level for estimating the fluctuation of water storage as an addition to the present in situ water storage estimation systems to be used in remote areas and in emergency situation such as in the events flooding monitoring and for studying the effect of climate change. Lake Dongting, the second largest lake in China, influenced frequently by flooding, was, therefore, chosen to demonstrate the potential of the technique. By using the concept of an “assumed reference point”, we converted Topex/Poseidon satellite altimetry data on water level variations in Lake Dongting to “water level” data. The “water level” time-series data and in situ water storage were used to establish a rating curve. From the rating curve, we converted data on “water level” derived from seven years (1993–1999) of Topex/Poseidon data to actual water storage in Lake Dongting. The result reveals that the seasonal and annual fluctuations of water storage occurred during the 1990s with a more frequent flooding at the late 1990s' especially the flooding in whole catchment level in 1998 and 1999. The study supports the usefulness of satellite altimetry for dense and continuous monitoring of the temporal variations in water dynamic in moderate to large lakes.  相似文献   

16.
This paper presents a method for appropriate coupling of deterministic and statistical models. In the decision-support system for the Elbe river, a conceptual rainfall-runoff model is used to obtain the discharge statistics and corresponding average number of flood days, which is a key input variable for a rule-based model for floodplain vegetation. The required quality of the discharge time series cannot be determined by a sensitivity analysis because a deterministic model is linked to a statistical model. To solve the problem, artificial discharge time series are generated that mimic the hypothetical output of rainfall-runoff models of different accuracy. The results indicate that a feasible calibration of the rainfall-runoff model is sufficient to obtain consistency with the vegetation model in view of its sensitivity to changes in the number of flood days in the floodplains.  相似文献   

17.
Groundwater flow at Kharga Oasis, located in the western desert of Egypt, was previously analyzed using numerical models; however, the lack of basic data often limits the implementation of these models, as well as introducing a problem for model calibration and validation. The Grey Model (GM) was used to overcome these difficulties of data limitation and uncertainty of hydrogeological conditions. However, no clear theories exist for selecting the number of input model trends and the most suitable values of input parameters. Therefore, in the current study, a modification of the GM is newly proposed and called the Modified Grey Model (MGM) in an attempt to determine a process for selecting the best input models' trends with the appropriate values of input parameters to achieve acceptable fitting to observations. The sensitivity analysis results showed that the MGM produced more stable results than the GM using a wide range of values for input parameters. Moreover, the MGM reduced the calculation time required for fitting the measured piezometric level trends by 99.8 %. Three development scenarios of groundwater withdrawal were proposed that involved either expanding the present extraction rate or redistributing the groundwater withdrawal over the recent working production wells (RWPWs). The results concluded that the groundwater table in the northern part of the oasis could be temporally recovered to an economical piezometric level; however, the table in the southern part is severely decreased. Therefore, new production wells are recommended to be constructed in the southern part far enough from the RWPWs.  相似文献   

18.
The Micro Prespa basin is a trilateral catchment area of significant importance with a unique ecosystem closely related to the homonymous lake. In this frame, a fully operational monitoring project was carried out including continuous real-time measurements in Micro Prespa Lake with the use of a multi-sensor probe, as well as periodical sampling and analyses of all available water systems for an extended set of 85 parameters. Four main interacting water systems were identified, including alluvial and karstic aquifers, Micro Prespa Lake and adjacent drainage network. The results outlined that general environmental conditions are satisfying in respect to the relative legislation and the hydrogeochemical signatures. However, trends of environmental pressures were ascertained as a result of natural (geogenic) factors, embracing seasonal peaks for Ni, Pb, and NH4 mainly in groundwater systems. Based on chlorophyll a records, Micro Prespa is classified as oligotrophic to slightly mesotrophic, subjected to seasonal variations. Heavy metal concentrations are low, except Ni which appears to have elevated values during the dry hydrological period. Finally, the hydrogeochemistry of drainage network is primarily influenced by surface runoff of the surrounding mountainous areas, hence elevated phosphorus values of the Aghios Germanos stream are possibly linked with the leaching of the granitic formations on the east.  相似文献   

19.
Road runoff is a linear diffuse source of pollution, with very specific characteristics. This study intends to improve the understanding of road runoff impacts in water bodies in Portugal. The chosen case study is S. Domingos reservoir catchment. The study analyzed land uses, the presence of pollution sources, and gathered temporal water quality data and performed site measurements and sample collection. The water quality data for the reservoir was provided by the national water quality monitoring system from the Portuguese Water Institute. The parameters selected were TSS, COD, NO3 ?, Cl?, and Cu. The results obtained revealed that the presence of IP6 highway at S. Domingos catchment affects the water quality; however, the impacts are not significant due to the high dilution effect of the reservoir volume. Agriculture, the main land use of the catchment, is responsible for introducing pollutants such as TSS, Cl?, COD, N, and P in the local water streams and at the reservoir. TSS, COD, and Cu are pollutants generated by the road. The success of the study was very much dependent on the availability of 12 years of historic water quality data for S. Domingos reservoir, and the use of the moving average method. Taking into consideration the high variability of hydrological variables in Mediterranean climates, the concentration of pollutants in the water bodies must always be assessed in a significant time period.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号