首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 903 毫秒
1.
从南京炼油厂原油污染的土壤中筛选得到2株高效降解原油的菌株,OBD-LM2和OBD-HQM,经初步鉴定菌株OBD-LM2为木霉属,菌株OBD-HQM为曲霉属。原油液体培养基中添加N、P营养盐、温度为25~35℃、盐度<3%时7d菌株OBD-LM2原油降解率为40%~68%,菌株OBD-HQM为35%~55%。采用GC、GC/MS对两株霉菌的原油降解前后组分进行测定,结果表明:菌株OBD-LM2的原油组分降解范围为C11~C28并有许多种类的短链烃(C10)产生,菌株OBD-HQM的原油降解范围仅为C11~C20。  相似文献   

2.
研究了鼠李糖脂对NY3菌表面特性及其降解烃类物质的影响作用.结果表明,与未加鼠李糖脂相比,原油含量为1000 mg·L-1,鼠李糖脂100 mg·L-1时,生长24和48 h,NY3菌细胞净生长量分别提高8.60和6.68倍,且产酸明显,原油中正二十六烷至正三十三烷降解效率可提高约60%.分别以LB培养基和十六烷为唯一碳源的无机盐培养基生长的NY3菌体(OD400nm=1.68±0.08),与100 mg·L-1的鼠李糖脂作用1.5h,菌体表面疏水性分别增加32%、6%;且以LB培养基生长的NY3菌细胞,在鼠李糖脂和十六烷存在下作用90 min,菌细胞所积聚的正十六烷量比未加鼠李糖脂时增加了1.10 nmol·mg-1干菌,说明鼠李糖脂能加快疏水性有机物的传质速度.红外光谱分析结果表明,与未加鼠李糖脂相比,鼠李糖脂使菌体细胞中疏水性脂肪链的相对含量明显增加.因此,鼠李糖脂能增加菌体的表面疏水性,加快烃类的传质速率,从而促进NY3菌对烃的降解.  相似文献   

3.
降解石油微生物菌种的筛选及降解特性   总被引:49,自引:2,他引:47       下载免费PDF全文
从辽河油田的渣油中富集分离出24株细菌,经初步降解试验,筛选出对原油降解率高于30%的菌株10株;并进一步研究了其中8株菌对渣油不同组分的降解能力.结果表明,原油中不同组分可被降解的程度不同,其中,芳香烃的降解率可达80%;沥青质的最高降解率为53%;饱和烃的最高降解率为37%;非烃的最高降解率为30%;GC-MS分析表明,饱和烃中的环己烷、长链烷基苯和二环烷系列均能被明显降解,芳香烃中的烷基萘系列经降解后几乎消失,三环的菲和甲基菲以及五环的苯并芘降解不明显;其次,不同菌对各组分的的降解能力也显著不同.菌株初步鉴定结果表明,降解力强,尤其对非烃和沥青质降解效果较好的ptr15和ptr20分别为芽孢杆菌和微杆菌,其对沥青质的降解效果高于目前已有的报道.  相似文献   

4.
假单胞菌N7的萘降解特性及其降解途径研究   总被引:1,自引:1,他引:0  
应用HPLC和UV分析技术,以萘为代表性多环芳烃污染物,研究了假单胞菌N7对水中萘的降解特性.结果表明,营养盐、微量元素的添加可使萘的降解率提高23.65%;溶解氧高于4.3 mg/L时萘降解率达95.66%并趋于稳定;随萘浓度增加降解率逐渐下降;在中性和弱碱性环境下,降解效果较好,萘降解率均在82.88%以上.在30℃、转速为165 r/min的摇床中处理pH7.5、萘浓度为100 mg/L的水样72 h,其最大降解率为95.66%.通过检测菌株N7处理含不同底物水样时其吸光度、pH和底物的变化情况,证实菌株N7亦能降解甲苯、二甲苯、苯酚、2,4-二硝基苯酚、苯甲酸、1-萘酚和水杨酸,并以其为唯一的碳源和能源生长繁殖,表明该菌株能适应环境中芳烃类物质种类的变化,具有很好的降解多样性.经UV-Vis和GC-MS分析各降解阶段的中间产物,初步确定了该菌对萘的降解途径:一条是邻苯二甲酸途径;另一条是水杨酸途径,萘先被氧化为1,2-二羟基萘,再开环生成水杨酸、邻苯二酚和2-羟基粘康酸半醛,最终进入三羧酸循环(TCA).  相似文献   

5.
石油降解菌株的分离及其降解特性研究   总被引:9,自引:0,他引:9  
谢丹平  尹华  彭辉 《上海环境科学》2003,22(12):951-954
从广州石化厂污水中分离到一株能降解石油的细菌,并对该菌的降解特性进行了研究。结果表明,该菌在原油培养基中培养3d能降解61.17%的原油,培养13d原油的降解率达88.71%;在pH7.0左右生长最好,除油率达到88.66%;接种量、菌龄对菌的除油率有较大影响;氮磷营养盐的影响非常显著,而水体盐度对除油率影响不大,在加入补充氮磷盐的淡水和海水中除油率均在70%以上。该菌能以石蜡为碳源生长,而不能利用芳烃。  相似文献   

6.
三种细菌降解直链烷烃的效果及降解动力学研究   总被引:1,自引:0,他引:1  
从石油污染土壤中筛选出克雷白氏菌属(Klebsiellasp.,A5)、假单胞菌属(Pseudomonas sp.,A6)和无色杆菌属(Achromobacter sp.,A10)3种石油烃降解菌,研究了其对石油烃中不同碳原子数的3种直链烷烃(正十四烷、正十五烷和正十六烷)的降解效果。结果表明:克雷白氏菌属对3种烷烃的降解能力相对较差;假单胞菌属对3种烷烃的降解效果较好,5d的降解率均达到80%以上,且对正十六烷的降解率高达95.9%;无色杆菌属对正十五烷和正十六烷也有较高的降解率,对正十五烷的降解率达80%以上,对正十六烷的降解率达90%以上。选取降解效果最好的假单胞菌属对正十六烷进行降解动力学研究,结果表明:当正十六烷初始含量为100mg/L、200mg/L、400mg/L和800mg/L时,其降解动力学与一级动力学方程拟合效果良好,其降解半衰期为1.79~3.22d;同时,降解过程中菌体浓度的变化显示,环境中的正十六烷含量越低,菌体的对数生长期越短,当正十六烷含量为100mg/L和200mg/L时,A6菌的对数生长期仅持续1d左右就进入稳定期,而当正十六烷含量达到400mg/L以上时,A6菌的对数生长期持续2d后,生长菌群总数处于平坦阶段。  相似文献   

7.
高效稠油降解菌DL1-G的筛选及降解特性   总被引:2,自引:0,他引:2       下载免费PDF全文
从大连保税库区稠油污染土壤中分离出1株稠油降解菌DL1-G,经形态观察、生化鉴定、16S rRNA序列及系统发育分析,鉴定该菌株为弯曲芽孢杆菌(Bacillus flexus).菌株DL1-G在第9d对稠油的降解率为39.89%,饱和烃和芳香烃的总含量降低了68.30%;GC-MS分析显示,饱和烃中nC11~nC38、nC6~nC30-烷基环已烷及姥鲛烷(27.179min)、植烷(30.657min)降解完全、未检出,C14~C16二环倍半萜烷及8α(H)-补身烷、8β(H)-补身烷、8β(H)-升补身烷降解率达99%以上,13β(H),14α(H)-C19~C29三环萜烷共降解了36.32%,11种甾烷类化合物共降解了12.04%;芳烃中萘系物、菲系物、芴系物、二苯并噻吩系物、联苯系物、甲基芘系物等都有不同程度降解,其中萘系物、芴系物、二苯并噻吩系物的降解率均达90%以上;菌株DL1-G对多环芳烃(PAHs)中的蒽、菲、芴、芘、萘的降解率分别达98.55%、97.16%、82.98%、64.85%、63.61%,表明该菌株在稠油污染治理方面具有良好的应用潜力.  相似文献   

8.
张海玲  杨琴  赵敏 《环境工程》2013,(Z1):649-651
本实验通过初步有序组合方法将筛选得到的原油降解菌株A5、A6、YA5、YA6,十六烷降解菌株B3、YB3,萘降解菌株C3、YC3,石蜡降解菌株及产表面活性剂菌株D4共9株优良菌株进行组合后分别做液态原油降解实验,排除拮抗效应,优化互生效应,结果发现A5、YB3、YC3、D4配伍组合为最佳组合方案,此时的原油降解率达到58.6%,然后再通过正交法确定这四种菌株的配比,结果发现当A5:YB3:YC3:D4为0.5:1:0.1:0.5时对原油的降解效率最高为61.3%。  相似文献   

9.
耐盐石油烃降解菌的筛选鉴定及其特性研究   总被引:6,自引:1,他引:5  
吴涛  谢文军  依艳丽  李小彬  王君  胡相明 《环境科学》2012,33(11):3949-3955
为得到高效耐盐石油烃降解菌,从黄河三角洲石油污染盐渍化土壤中分离出39株细菌,经液体培养初筛和土壤培养复筛实验,得到1株高效耐盐石油烃降解菌BM38.通过形态特征、生理生化特征和16S rDNA序列分析,确定该菌为恶臭假单胞菌(Pseudomonas putida).通过液体培养实验,研究了BM38的耐盐和产生物表面活性剂特性以及对不同烃的利用能力.结果表明,在含0.5%~6.0%NaCl液体培养基中BM38生长良好,属中度耐盐菌.在高盐环境下BM38具有较强的分解石油烃能力,其中在含1.0%NaCl液体培养基中,降解7 d后,原油降解率达到73.5%;在含盐量0.22%和0.61%土壤中添加BM38,降解40 d后,土壤总石油烃降解率达到40%以上.BM38能产生一种生物乳化剂,盐浓度对这种乳化剂的乳化能力影响较大,当NaCl浓度增加到1.0%,乳化值(EI24)开始迅速降低,但在NaCl浓度为2.0%时,EI24仍达到61.0%.BM38能够利用环己烷、甲苯、异辛烷、菲和正十六烷为唯一碳源生长,其中对正构烷烃和芳烃具有较强的利用能力.  相似文献   

10.
鼠李糖脂及其产生菌对原油生物降解影响研究   总被引:3,自引:0,他引:3  
考察了外加鼠李糖脂生物表面活性剂和接种鼠李糖脂产生菌O-2-2对混合烃类降解菌降解原油的影响。结果表明,在降解体系中添加鼠李糖脂使原油20天的降解率由35.7%提高到57.6%。加入鼠李糖脂可同时提高烷烃和芳烃的降解率。在降解体系中接入菌株O-2-2能够快速利用石油烃中的烷烃类化合物并合成鼠李糖脂类生物表面活性剂,从而有效提高总石油烃的降解率。体系中菌株O-2-2的接入虽然使饱和烃的降解率大大提高,却降低了芳烃的降解率;这说明菌株O-2-2和其它烃类降解菌之间可能存在竞争生长关系。  相似文献   

11.
稠油废水生物处理主要影响因素分析   总被引:6,自引:2,他引:4  
有机聚合物和石油烃类物质是稠油废水中的主要污染物.应用辽河油田锦采污水处理厂稠油废水中筛选分离出的菌株B0501,分析其在稠油废水生物处理过程中对废水CODCr的去除作用,研究了不同温度,pH,水力停留时间以及添加氮、磷营养盐等条件下微生物对废水CODCr去除的影响.结果表明:稠油废水中投加的外源微生物B0501提高了废水中CODCr的去除率;接种后,废水在30 ℃,pH为7.5,水力停留时间为216 h,添加氮、磷营养盐(ρ(氮)/ρ(磷)为5.63)的条件下,废水CODCr去除率大幅度提高,其ρ(CODCr)满足国家污水综合排放一级标准(GB 8798-1996).经形态观察和生理生化反应鉴定,菌株B0501为液化金杆菌(Aureobaterium liquefaciens).   相似文献   

12.
萘降解菌N19-3的分离、鉴定和萘双加氧酶基因的检测   总被引:5,自引:1,他引:4  
从石油污染土壤中分离到一株高效降解萘的N19-3菌株. 经形态观察、生理生化实验和16S rDNA序列分析等鉴定其为丛毛单胞菌属(Comamonas sp.). 该菌株能在30 ℃,30h内将1 000mg/L的萘完全降解. 降解萘的适宜温度为20~30 ℃, 适宜pH为7.0~9.0. 0.1mmol/L的Ca2+和Fe3+对N19-3菌株降解萘有较强的促进作用, 0.1 mmol/L的Mn2+和Zn2+对N19-3菌株的生长和萘的降解也有一定的促进作用, 而0.1 mmol/L的 Cu2+则完全抑制了N19-3菌株的生长和萘的降解. 通过PCR方法在N19-3菌株中扩增出分别与C. testosteroni H菌株的萘双加氧酶铁硫蛋白大亚基基因(pahAc)与双加氧酶铁硫蛋白小亚基基因(pahAd)高度同源的核苷酸片断.   相似文献   

13.
海洋微生物降解石油的研究   总被引:47,自引:2,他引:47  
从青岛近岩海水中分离、筛选到73株细菌和10株真菌,并对其降解石油的能力进行了研究,结果表明,多数菌具有明显的降解石油的能力,部分菌株对短链烷烃正已烷和芳香烃萘具有不同程度的降解能力,其中,有3个菌株对石油的生物降解率分别高达58.35%、62.75%、71.06%。  相似文献   

14.
一株苯并[a]芘高效降解真菌的筛选与降解特性   总被引:2,自引:0,他引:2  
从长期受多环芳烃(PAHs)污染的土壤中分离出一株能够降解苯并[a]芘(B[a]P)的真菌,经鉴定为绿色木霉(Trichoderma viride)(命名为BF-1),并对其以B[a]P为唯一碳源进行反复驯化,考察了B[a]P浓度、不同重金属和培养基对其降解能力的影响.结果表明,菌株BF-1在B[a]P浓度为5mg.L-1,32℃振荡培养约6d的条件下,降解速度最快,B[a]P的降解率达68.28%.BF-1在B[a]P浓度分别为10与25mg.L-1,32℃振荡培养6d的条件下,B[a]P的降解率分别为73.29%与87.36%.Cu2+(50mg.L-1)基本不影响BF-1对B[a]P的降解率;Cd2+(100mg.L-1)、Pb2+(300mg.L-1)对BF-1降解B[a]P有一定影响,但仍表现出较高的耐受能力;而Zn2+(200mg.L-1)对BF-1有明显的抑制作用.选用含5mg.L-1B[a]P的土豆葡萄糖液体培养基,6d后B[a]P的降解率为71.31%.对比前述实验结果表明,培养基对B[a]P降解率的影响并不明显.因此,BF-1的应用价值较高.  相似文献   

15.
共基质对优势菌降解原油的作用研究   总被引:1,自引:0,他引:1  
以长期被石油污染的土壤为菌源,用原油作为唯一碳源进行驯化后,反复筛选、分离得到降解原油的优势6株(SY1~SY6),研究了初级共代谢基质和无机离子对优良菌降解原油的影响;并对所筛选出的6株菌进行混合菌的实验。结果发现,初级共代谢基质葡萄糖和乙醇加入可促进各菌株对原油的降解程度;混合菌的降解效果没有单一菌的除油效果好。  相似文献   

16.
一株假单胞菌对高粘原油的乳化降解作用   总被引:1,自引:0,他引:1  
从油田原油污染土壤中筛选出一株以原油为最佳碳源产表面活性剂的假单包菌SY-3。该菌在以原油烃为唯一碳源的无机盐培养基中,除降粘外还能产生甲酸和乙酸。通过单因素试验,确定了降低原油粘度最适条件:初始原油浓度12g/L,氮源为4g/L的混合氮源[硝酸钠和硝酸铵(1:1)],培养温度37℃,接种量5%,初始pH值7.0,培养时间5d。GC谱图分析经SY-3菌降解前后原油组分的变化,可知原油的重质组分含量明显降低,轻质组分含量明显增加,降粘率达56%。表明该菌株对原油有良好的乳化降解能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号