首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The elemental compositions of the water-soluble and acid-digestible fractions of 24-hr integrated fine particulate matter (PM2.5) samples collected in Steubenville, OH, from 2000 to 2002 were determined using dynamic reaction cell inductively coupled plasma-mass spectrometry. The water-soluble elemental compositions of PM2.5 samples collected at four satellite monitoring sites in the surrounding region were also determined. Fe was the most abundant but least water soluble of the elements determined at the Steubenville site, having a mean ambient concentration of 272 µg/m3 and a median fractional solubility of 6%. Fe solubility and its correlations with SO4 2? and temperature varied significantly by season, consistent with the hypothesis that secondary sulfates may help to mobilize soluble Fe under suitable summertime photochemical conditions. Significantly higher ambient concentrations were observed at Steubenville than at each of the four satellite sites for 10 of the 18 elements (Al, As, Ca, Cd, Fe, Mg, Mn, Na, Pb, and Zn) determined in the water-soluble PM2.5 fraction. Concentrations of Fe, Mn, and Zn at Steubenville were substantially higher than concentrations reported recently for larger U.S. cities. Receptor modeling identified seven sources affecting the Steubenville site. An (NH4)2SO4-dominated source, likely representing secondary PM2.5 from coal-fired plants to the west and southwest of Steubenville, accounted for 42% of the PM2.5 mass, and two sources likely dominated by emissions from motor vehicles and from iron and steel facilities in the immediate Steubenville vicinity accounted for 20% and 10%, respectively. Other sources included an NH4NO3 source (15%), a crustal source (6%), a mixed nonferrous metals and industrial source (3%), and a primary coal combustion source (3%). Results suggest the importance of very different regional and local source mechanisms in contributing to PM2.5 mass at Steubenville and reinforce the need for further research to elucidate whether metals such as Fe, Mn, and Zn play a role in the PM2.5 health effects observed previously there.  相似文献   

2.
Ambient particulates of PM2.5 were sampled at three sites in Kaohsiung, Taiwan, during February and March 1999. In addition, resuspended PM2.5 collected from traffic tunnels, paved roads, fly ash of a municipal solid waste (MSW) incinerator, and seawater was obtained. All the samples were analyzed for twenty constituents, including water-soluble ions, organic carbon (OC), elemental carbon (EC), and metallic elements. In conjunction with local source profiles and the source profiles in the model library SPECIATE EPA, the receptor model based on chemical mass balance (CMB) was then applied to determine the source contributions to ambient PM2.5. The mean concentration of ambient PM2.5 was 42.69-53.68 micrograms/m3 for the sampling period. The abundant species in ambient PM2.5 in the mass fraction for three sites were OC (12.7-14.2%), SO4(2-) (12.8-15.1%), NO3- (8.1-10.3%), NH4+ (6.7-7.5%), and EC (5.3-8.5%). Results of CMB modeling show that major pollution sources for ambient PM2.5 are traffic exhaust (18-54%), secondary aerosols (30-41% from SO4(2-) and NO3-), and outdoor burning of agriculture wastes (13-17%).  相似文献   

3.
Concentrations and distributions of three major water-soluble ion species (sulfate, nitrate, and ammonium) contained in ambient particles were measured at three sampling sites in the Kao-ping ambient air quality basin, Taiwan. Ambient particulate matter (PM) samples were collected in a Micro-orifice Uniform Deposit Impactor from February to July 2003 and were analyzed for water-soluble ion species with an ion chromatograph. The PM1/ PM2.5 and PM1/PM10 concentration ratios at the emission source site were 0.73 and 0.53 and were higher than those (0.68 and 0.48) at the background site because there are more combustion sources (i.e., industrial boilers and traffic) around the emission source site. Mass-size distributions of PM NO3- were found in both the fine and coarse modes. SO4(2-)and NH4+ were found in the fine particle mode (PM2.5), with significant fractions of submicron particles (PM1). The source site had higher PM1/PM10(79, 42, and 90%) and PM1/PM2.5 concentration ratios (90, 58, and 93%) for the three major inorganic secondary aerosol components (SO4(2-), NO3-, and NH4+) than the receptor site (65, 27, and 65% for PM1/PM10, 69, 51, and 70% for PM1/PM2.5. Results obtained in this study indicate that the PM1 (submicron aerosol particles) fraction plays an important role in the ambient atmosphere at both emission source and receptor sites. Further studies regarding the origin and formation of ambient secondary aerosols are planned.  相似文献   

4.
We determined 24-hr average ambient concentrations of PM2.5 and its ionic and carbonaceous components in Steubenville, OH, between May 2000 and May 2002. We also determined daily average gaseous co-pollutant concentrations, meteorological conditions, and pollen and mold spore counts. Data were analyzed graphically and by linear regression and time series models. Multiple-day episodes of elevated fine particulate matter (PM2.5) concentrations often occurred during periods of locally high temperature (especially during summer), high pressure, or low wind speed (especially during winter) and generally ended with the passage of a frontal system. After removing autocorrelation, we observed statistically significant positive associations between concentrations of PM2.5 and concentrations of CO, NOx, and SO2. Associations with NOx and CO exhibited significant seasonal dependencies, with the strongest correlations during fall and winter. NOx, CO, SO2, O3, temperature, relative humidity, and wind speed were all significant predictors of PM2.5 concentration in a time-series model with external regressors, which successfully accounted for 79% of the variance in log-transformed daily PM2.5 concentrations. Coefficient estimates for NOx and temperature varied significantly by season. The results provide insight that may be useful in the development of future PM2.5 reduction strategies for Steubenville. Additionally, they demonstrate the need for PM epidemiology studies in Steubenville (and elsewhere) to carefully consider the potential confounding effects of gaseous co-pollutants, such as CO and NOx, and their seasonally dependent associations with PM2.5.  相似文献   

5.
Chen SJ  Hsieh LT  Tsai CC  Fang GC 《Chemosphere》2003,53(1):29-41
The concentrations of atmospheric PM10 on days with episodes of pollution were examined at four different sampling sites (CC, DL, LY, and HK) in southern Taiwan. The related to particulates water-soluble ionic species (Na+, K+, Mg2+, Ca2+, NH4+, Cl-, NO3-, SO4(2-)), carbonaceous species (EC and OC) and metallic species (Zn, Ni, Pb, Fe, Mn, Al, Si, V) were also analyzed. On the episode days of this study, the PM10 mass concentration ranged from 155 to 210 microgm(-3), from 150 to 208 microgm(-3), from 182 to 249 microgm(-3), and from 166 to 228 microgm(-3) at CC, DL, LY, and HK, respectively. The results indicate that the dominant water-soluble species were SO4(2-), NO3-, NH4+, and Cl- at the four sampling sites on these days. Moreover, the high sulfate and nitrate conversion values (SOR and NOR) presented herein suggest that secondary formations from SO2 to SO4(2-) and from NO2 to NO3- are present in significant quantities in the atmosphere of southern Taiwan on episode days. In particular, high SOR and NOR verified that both SO4(2-) and NO3- dominated the increase of atmospheric PM10 concentration in southern Taiwan on episode days.  相似文献   

6.
Average concentrations of particulate matter with an aerodynamic diameter less than or equal to 2.5 microm (PM2.5) in Steubenville, OH, have decreased by more than 10 microg/m3 since the landmark Harvard Six Cities Study associated the city's elevated PM2.5 concentrations with adverse health effects in the 1980s. Given the promulgation of a new National Ambient Air Quality Standard (NAAQS) for PM2.5 in 1997, a current assessment of PM2.5 in the Steubenville region is warranted. The Steubenville Comprehensive Air Monitoring Program (SCAMP) was conducted from 2000 through 2002 to provide such an assessment. The program included both an outdoor ambient air monitoring component and an indoor and personal air sampling component. This paper, which is the first in a series of four that will present results from the outdoor portion of SCAMP, provides an overview of the outdoor ambient air monitoring program and addresses statistical issues, most notably autocorrelation, that have been overlooked by many PM2.5 data analyses. The average PM2.5 concentration measured in Steubenville during SCAMP (18.4 microg/m3) was 3.4 microg/m3 above the annual PM2.5 NAAQS. On average, sulfate and organic material accounted for approximately 31% and 25%, respectively, of the total PM2.5 mass. Local sources contributed an estimated 4.6 microg/m3 to Steubenville's mean PM2.5 concentration. PM2.5 and each of its major ionic components were significantly correlated in space across all pairs of monitoring sites in the region, suggesting the influence of meteorology and long-range transport on regional PM2.5 concentrations. Statistically significant autocorrelation was observed among time series of PM2.5 and component data collected at daily and 1-in-4-day frequencies during SCAMP. Results of spatial analyses that accounted for autocorrelation were generally consistent with findings from previous studies that did not consider autocorrelation; however, these analyses also indicated that failure to account for autocorrelation can lead to incorrect conclusions about statistical significance.  相似文献   

7.
One-hour average ambient concentrations of particulate matter (PM) with an aerodynamic diameter < 2.5 microm (PM2.5) were determined in Steubenville, OH, between June 2000 and May 2002 with a tapered element oscillating microbalance (TEOM). Hourly average gaseous copollutant [carbon monoxide (CO), sulfur dioxide (SO2), nitrogen oxide (NOx), and ozone (O3)] concentrations and meteorological conditions also were measured. Although 75% of the 14,682 hourly PM2.5 concentrations measured during this period were < or = 17 microg/m3, concentrations > 65 microg/m3 were observed 76 times. On average, PM2.5 concentrations at Steubenville exhibited a diurnal pattern of higher early morning concentrations and lower afternoon concentrations, similar to the diurnal profiles of CO and NO(x). This pattern was highly variable; however, PM2.5 concentrations > 65 microg/m3 were never observed during the mid-afternoon between 1:00 p.m. and 5:00 p.m. EST. Twenty-two episodes centered on one or more of these elevated concentrations were identified. Five episodes occurred during the months June through August; the maximum PM2.5 concentration during these episodes was 76.6 microg/m3. Episodes occurring during climatologically cooler months often featured higher peak concentrations (five had maximum concentrations between 95.0 and 139.6 microg/m3), and many exhibited strong covariation between PM2.5 and CO, NO(x), or SO2. Case studies suggested that nocturnal surface-based temperature inversions were influential in driving high nighttime concentrations of these species during several cool season episodes, which typically had dramatically lower afternoon concentrations. These findings provide insights that may be useful in the development of PM2.5 reduction strategies for Steubenville, and suggest that studies assessing possible health effects of PM2.5 should carefully consider exposure issues related to the intraday timing of PM2.5 episodes, as well as the potential for toxicological interactions among PM2.5, and primary gaseous pollutants.  相似文献   

8.
2010年10月至2011年9月采集百色市右江区大气PM10样品,分析PM10及其水溶性无机离子的化学特征与来源。结果表明:(1)百色市右江区大气PM10为13.89~319.44μg/m3,年均117.48μg/m3,年均值超过《环境空气质量标准》(GB 3095-2012)二级标准(100μg/m3)。百色市右江区大气可吸入颗粒物的污染主要出现在春冬季节。(2)水溶性无机离子浓度年均值依次为SO24->NO3->Cl->NH4+>K+>Na+>Mg2+>F-,SO24-、NO3-和Cl-浓度最高,分别占水溶性无机离子的57.7%、14.9%和14.5%。(3)百色市右江区大气PM10呈较强的酸性,高浓度的SO42-可能是导致百色市右江区大气PM10呈较强酸性的主要原因。(4)PM10的季节变化受气温和风速的影响极显著;气象因素对SO42-、NO3-、F-的影响不显著。(5)主因子分析表明,PM10中水溶性无机离子可能来自3个方面,Cl-和NO3-主要来自于当地低烟卤煤燃烧排放的烟气;Mg2+、K+和Na+主要来自于自然源;F-、SO24-和NH4+主要来自于混合源。  相似文献   

9.
The Monterrey Metropolitan Area (MMA) has shown a high concentration of PM2.5 in its atmosphere since 2003. The contribution of possible sources of primary PM2.5 and its precursors is not known. In this paper we present the results of analyzing the chemical composition of sixty 24-hr samples of PM2.5 to determine possible sources of PM2.5 in the MMA. The samples were collected at the northeast and southeast of the MMA between November 22 and December 12, 2007, using low-volume devices. Teflon and quartz filters were used to collect the samples. The concentrations of 16 airborne trace elements were determined using x-ray fluorescence (XRF). Anions and cations were determined using ion chromatography. Organic carbon (OC) and elemental carbon (EC) were determined by thermal optical analysis. The results show that Ca had the maximum mean concentration of all elements studied, followed by S. Enrichment factors above 50 were calculated for S, Cl, Cu, Zn, Br and Pb. This indicates that these elements may come from anthropogenic sources. Overall, the major average components of PM2.5 were OC (41.7%), SO4(2-) (22.9%), EC (7.4%), crustal material (11.4%), and NO3- (12.6%), which altogether accounted for 96% of the mass. Statistically, we did not find any difference in SO4(2-) concentrations between the two sites. The fraction of secondary organic carbon was between 24% and 34%. The results of the factor analysis performed over 10 metals and OC and EC show that there are three main sources of PM2.5: crustal material and vehicle exhaust; industrial activity; and fuel oil burning. The results show that SO4(2-), OC, and crustal material are important components of PM2.5 in MMA. Further work is necessary to evaluate the proportion of secondary inorganic and organic aerosol in order to have a better understanding of the sources and precursors of aerosols in the MMA.  相似文献   

10.
This paper presents measurements of daily sampling of fine particulate matter (PM2.5) and its major chemical components at three urban and one rural locations in North Carolina during 2002. At both urban and rural sites, the major insoluble component of PM2.5 is organic matter, and the major soluble components are sulfate (SO4(2-)), ammonium (NH4(+)), and nitrate (NO3(-)). NH4(+) is neutralized mainly by SO4(2-) rather than by NO3(-), except in winter when SO4(2-) concentration is relatively low, whereas NO3(-) concentration is high. The equivalent ratio of NH4(+) to the sum of SO4(2-) and NO3(-) is < 1, suggesting that SO4(2-) and NO3(-) are not completely neutralized by NH4(+). At both rural and urban sites, SO4(2-) concentration displays a maximum in summer and a minimum in winter, whereas NO3(-) displays an opposite seasonal trend. Mass ratio of NO3(-) to SO4(2-) is consistently < 1 at all sites, suggesting that stationary source emissions may play an important role in PM2.5 formation in those areas. Organic carbon and elemental carbon are well correlated at three urban sites although they are poorly correlated at the agriculture site. Other than the daily samples, hourly samples were measured at one urban site. PM2.5 mass concentrations display a peak in early morning, and a second peak in late afternoon. Back trajectory analysis shows that air masses with lower PM2.5 mass content mainly originate from the marine environment or from a continental environment but with a strong subsidence from the upper troposphere. Air masses with high PM2.5 mass concentrations are largely from continental sources. Our study of fine particulate matter and its chemical composition in North Carolina provides crucial information that may be used to determine the efficacy of the new National Ambient Air Quality Standard (NAAQS) for PM fine. Moreover, the gas-to-particle conversion processes provide improved prediction of long-range transport of pollutants and air quality.  相似文献   

11.
We report the chemical composition of PM10-associated water-soluble species in Mexico City during the second semester of 2000. PM10 samples were collected at four ambient air quality monitoring sites in Mexico City. We determined soluble ions (chloride, nitrate, sulfate, ammonium, sodium, potassium), ionizable transition metals (Zn, Fe, Ti, Pb, Mn, V, Ni, Cr, Cu) and soluble protein. The higher PM(10) levels were observed in Xalostoc (45-174 microg m(-3)) and the lowest in Pedregal (19-54 microg m(-3)). The highest SO2 average concentrations were observed in Tlalnepantla, NO2 in Merced and O3 and NO(x) in Pedregal. The concentration range of soluble sulfate was 6.7-7.9 and 19-25.5 microg m(-3) for ammonium, and 14.8-29.19 for soluble V and 3.2-7.7 ng m(-3) for Ni, suggesting a higher contribution of combustion sources. PM-associated soluble protein levels varied between 0.038 and 0.169 mg m(-3), representing a readily inhalable constituent that could contribute to adverse outcomes. The higher levels for most parameters studied were observed during the cold dry season, particularly in December. A richer content of soluble metals was observed when they were expressed by mass/mass units rather than by air volume units. Significant correlations between Ni-V, Ni-SO4(-2), V-SO4(-2), V-SO2, Ni-SO2 suggest the same type of emission source. The variable soluble metal and ion concentrations were strongly influenced by the seasonal meteoclimatic conditions and the differential contribution of emission sources. Our data support the idea that PM10 mass concentration by itself does not provide a clear understanding of a local PM air pollution problem.  相似文献   

12.
Particulate matter (PM) less than 2.5 microm in size (PM2.5) source apportionment by chemical mass balance receptor modeling was performed to enhance regional characterization of source impacts in the southeastern United States. Secondary particles, such as NH4HSO4, (NH4)2SO4, NH4NO3, and secondary organic carbon (OC) (SOC), formed by atmospheric photochemical reactions, contribute the majority (>50%) of ambient PM2.5 with strong seasonality. Source apportionment results indicate that motor vehicle and biomass burning are the two main primary sources in the southeast, showing relatively more motor vehicle source impacts rather than biomass burning source impacts in populated urban areas and vice versa in less urbanized areas. Spatial distributions of primary source impacts show that each primary source has distinctively different spatial source impacts. Results also find impacts from shipping activities along the coast. Spatiotemporal correlations indicate that secondary particles are more regionally distributed, as are biomass burning and dust, whereas impacts of other primary sources are more local.  相似文献   

13.
Measurements in urban Atlanta of transient aerosol events in which PM2.5 mass concentrations rapidly rise and fall over a period of 3-6 hr are reported. The data are based on new measurement techniques demonstrated at the U.S. Environmental Protection Agency (EPA) Atlanta Supersite Experiment in August 1999. These independent instruments for aerosol chemical speciation of NO3-, SO4(2-), NH4+, and organic and elemental carbon (OC and EC), reconstructed the observed hourly dry PM2.5 mass to within 20% or better. Data from the experiment indicated that transient PM2.5 events were ubiquitous in Atlanta and were typically characterized by a sudden increase of EC (soot) and OC in the early morning or SO4(2-) in the late afternoon. The frequent temporal decoupling of these events provides insights into their origins, suggesting mobile sources in metro Atlanta as the main contributor to early morning PM2.5 and more regionally located point SO2 sources for afternoon PM2.5 events. The transient events may also have health implications. New data suggest that short-term PM2.5 exposures may lead to adverse health effects. Standard integrated filter-based techniques used in PM2.5 compliance monitoring networks and in most past PM2.5 epidemiologic studies collect samples over 24-hr periods and thus are unable to capture these transient events. Moreover, health-effects studies that focus on daily PM2.5 mass alone cannot evaluate the health implications of the unique and variable chemical properties of these episodes.  相似文献   

14.
西安南郊采暖期大气颗粒物PM2.5的污染特征分析   总被引:1,自引:1,他引:0  
为研究西安市南郊地区采暖期大气颗粒物PM2.5的污染浓度及水溶性成分,使用颗粒物采样器于2009年1月6日~2009年2月15日进行PM2.5采样.将24 h分为8个阶段,每天3 h定时采样.结果表明,西安市南郊地区采暖期PM2.5明显污染,24 h中PM2.5污染状况最严重的时段为21:00~23:59;PM2.5中NH+4、NO-3和SO2-4是其最主要的水溶性组分,在PM2.5中的平均质量混合比分别为10.225%、13.698%和15.650%,三者在PM2.5中质量混合比最高的时段分别为06:00~08:59、03:00~05:59和18:00~20:59.  相似文献   

15.
Integrated ambient particulate matter < or =2.5 microm in aerodynamic diameter (PM2.5) samples were collected at a centrally located urban monitoring site in Washington, DC, on Wednesdays and Saturdays using Interagency Monitoring of Protected Visual Environments samplers. Particulate carbon was analyzed using the thermal optical reflectance method that divides carbon into four organic carbon fractions, pyrolyzed organic carbon, and three elemental carbon fractions. A total of 35 variables measured in 718 samples collected between August 1988 and December 1997 were analyzed. The data were analyzed using Positive Matrix Factorization and 10 sources were identified: sulfate (SO4(2-))-rich secondary aerosol I (43%), gasoline vehicle (21%), SO4(2-)-rich secondary aerosol II (11%), nitrate-rich secondary aerosol (9%), SO4(2-)-rich secondary aerosol III (6%), incinerator (4%), aged sea salt (2%), airborne soil (2%), diesel emissions (2%), and oil combustion (2%). In contrast to a previous study that included only total organic carbon and elemental carbon fractions, motor vehicles were separated into fractions identified as gasoline vehicle and diesel emissions containing carbon fractions whose abundances were different between the two sources. This study indicates that the temperature-resolved carbon fraction data can be utilized to enhance source apportionment, especially with respect to the separation of diesel emissions from gasoline vehicle sources. Conditional probability functions using surface wind data and deduced source contributions aid in the identifications of local sources.  相似文献   

16.
Ambient measurements were made using two sets of annular denuder system during the four seasons (April 2001 to February 2002) and were then compared with the results during the period of 1996-1997 to estimate the trends and seasonal variations in concentrations of gaseous and fine particulate matter (PM2.5) principal species. Annual averages of gaseous HNO3 and NH3 increased by 11% and 6%, respectively, compared with those of the previous study, whereas HONO and SO2 decreased by 11% and 136%, respectively. The PM2.5 concentration decreased by -17%, 35% for SO4(2-), and 29% for NH4+, whereas NO3- increased by 21%. Organic carbon (OC) and elemental carbon (EC) were 12.8 and 5.98 microg/m(-3), accounting for -26 and 12% of PM2.5 concentration, respectively. The species studied accounted for 84% of PM2.5 concentration, ranging from 76% in winter to 97% in summer. Potential source contribution function (PSCF) analysis was used to identify possible source areas affecting air pollution levels at a receptor site in Seoul. High possible source areas in concentrations of PM2.5, NO3-, SO4(2-), NH4+, and K+ were coastal cities of Liaoning province (possibly emissions from oil-fired boilers on ocean liners and fishing vessels and industrial emissions), inland areas of Heibei/Shandong provinces (the highest density areas of agricultural production and population) in China, and typical port cities (Mokpo, Yeosu, and Busan) of South Korea. In the PSCF map for OC, high possible source areas were also coastal cities of Liaoning province and inland areas of Heibei/Shandong provinces in China. In contrast, high possible source areas of EC were highlighted in the south of the Yellow Sea, indicating possible emissions from oil-fired boilers on large ships between South Korea and Southeast Asia. In summary, the PSCF results may suggest that air pollution levels in Seoul are affected considerably by long-range transport from external areas, such as the coastal zone in China and other cities in South Korea, as well as Seoul itself.  相似文献   

17.
Personal exposure to fine particulate matter (PM2.5) is due to both indoor and outdoor sources. Contributions of sources to personal exposure can be quite different from those observed at ambient sampling locations. The primary goal of this study was to investigate the effectiveness of using trace organic speciation data to help identify sources influencing PM2.5 exposure concentrations. Sixty-four 24-h PM2.5 samples were obtained on seven different subjects in and around Boulder, CO. The exposure samples were analyzed for PM2.5 mass, elemental and organic carbon, organic tracer compounds, water-soluble metals, ammonia, and nitrate. This study is the first to measure a broad distribution of organic tracer compounds in PM2.5 personal samples. PM2.5 mass exposure concentrations averaged 8.4 μg m?3. Organic carbon was the dominant constituent of the PM2.5 mass. Forty-four organic species and 19 water-soluble metals were quantifiable in more than half of the samples. Fifty-four organic species and 16 water-soluble metals had measurement signal-to-noise ratios larger than two after blank subtraction.The dataset was analyzed by Principal Component Analysis (PCA) to determine the factors that account for the greatest variance. Eight significant factors were identified; each factor was matched to its likely source based primarily on the marker species that loaded the factor. The results were consistent with the expectation that multiple marker species for the same source loaded the same factor. Meat cooking was an important source of variability. The factor that represents meat cooking was highly correlated with organic carbon concentrations (r = 0.84). The correlation between ambient PM2.5 and PM2.5 exposure was relatively weak (r = 0.15). Time participants spent performing various activities was generally not well correlated with PCA factor scores, likely because activity duration does not measure emissions intensity. The PCA results demonstrate that organic tracers can aid in identifying factors that influence personal exposures to PM2.5.  相似文献   

18.
Source identification of atlanta aerosol by positive matrix factorization   总被引:3,自引:0,他引:3  
Data characterizing daily integrated particulate matter (PM) samples collected at the Jefferson Street monitoring site in Atlanta, GA, were analyzed through the application of a bilinear positive matrix factorization (PMF) model. A total of 662 samples and 26 variables were used for fine particle (particles < or = 2.5 microm in aerodynamic diameter) samples (PM2.5), and 685 samples and 15 variables were used for coarse particle (particles between 2.5 and 10 microm in aerodynamic diameter) samples (PM10-2.5). Measured PM mass concentrations and compositional data were used as independent variables. To obtain the quantitative contributions for each source, the factors were normalized using PMF-apportioned mass concentrations. For fine particle data, eight sources were identified: SO4(2-) -rich secondary aerosol (56%), motor vehicle (22%), wood smoke (11%), NO(3-) -rich secondary aerosol (7%), mixed source of cement kiln and organic carbon (OC) (2%), airborne soil (1%), metal recycling facility (0.5%), and mixed source of bus station and metal processing (0.3%). The SO4(2-) -rich and NO(3-) -rich secondary aerosols were associated with NH(4+). The SO4(2-) -rich secondary aerosols also included OC. For the coarse particle data, five sources contributed to the observed mass: airborne soil (60%), NO(3-)-rich secondary aerosol (16%), SO4(2-) -rich secondary aerosol (12%), cement kiln (11%), and metal recycling facility (1%). Conditional probability functions were computed using surface wind data and identified mass contributions from each source. The results of this analysis agreed well with the locations of known local point sources.  相似文献   

19.
The PM(2.5) concentration and its elemental composition were measured in the Cincinnati metropolitan area, which is characterized by intense highway traffic. The spatial and temporal variations were investigated for various chemical elements that contributed to the PM(2.5) fraction during a 1-year-long measurement campaign (December 2001-November 2002). The ambient aerosol monitoring was performed in 11 locations around the city during nine measurement cycles. During each cycle, four Harvard-type impactors were operating in parallel in specific locations to explore various factors affecting the PM(2.5) elemental concentrations. The sampling was performed during business days, thus assuring traffic uniformity. The 24-h PM(2.5) samples were collected on Teflon and quartz filters. Teflon filters were analyzed by X-ray fluorescence (XRF) analysis while quartz filters were analyzed by thermal-optical transmittance (TOT) analysis. In addition to PM(2.5) measurements, particle size-selective sampling was performed in two cycles using micro-orifice uniform deposit impactor; the collected fractionated deposits were analyzed by XRF. It was found that PM(2.5) concentration ranged from 6.70 to 48.3 mug m(-3) and had low spatial variation (median coefficient of variation, CV=11.3%). The elemental concentrations demonstrated high spatial variation, with the median CV ranged from 38.2% for Fe to 68.7% for Ni. For traffic-related trace metals, the highest concentration was detected in the city center site, which was close to a major highway. The particle size selective measurement revealed that mass concentration of the trace metals, such as Zn, Pb, Ni, as well as that of sulfur reach their peak values in the particle size range of 0.32-1.0 mum. Meteorological parameters and traffic intensity were not found to have a significant influence on the PM(2.5) elemental concentrations.  相似文献   

20.
The Aerosol Research and Inhalation Epidemiology Study (ARIES) was designed to provide high-quality measurements of PM2.5, its components, and co-varying pollutants for an air pollution epidemiology study in Atlanta, GA. Air pollution epidemiology studies have typically relied on available data on particle mass often collected using filter-based methods. Filter-based PM2.5 sampling is susceptible to both positive and negative errors in the measurement of aerosol mass and particle-phase component concentrations in the undisturbed atmosphere. These biases are introduced by collection of gas-phase aerosol components on the filter media or by volatilization of particle phase components from collected particles. As part of the ARIES, we collected daily 24-hr PM2.5 mass and speciation samples and continuous PM2.5 data at a mixed residential-light industrial site in Atlanta. These data facilitate analysis of the effects of a wide variety of factors on sampler performance. We assess the relative importance of PM2.5 components and consider associations and potential mechanistic linkages of PM2.5 mass concentrations with several PM2.5 components. For the 12 months of validated data collected to date (August 1, 1998-July 31, 1999), the monthly average Federal Reference Method (FRM) PM2.5 mass always exceeded the proposed annual average standard (12-month average = 20.3 +/- 9.5 micrograms/m3). The particulate SO4(2-) fraction (as (NH4)2SO4) was largest in the summer and exceeded 50% of the FRM mass. The contribution of (NH4)2SO4 to FRM PM2.5 mass dropped to less than 30% in winter. Particulate NO3- collected on a denuded nylon filter averaged 1.1 +/- 0.9 micrograms/m3. Particle-phase organic compounds (as organic carbon x 1.4) measured on a denuded quartz filter sampler averaged 6.4 +/- 3.1 micrograms/m3 (32% of FRM PM2.5 mass) with less seasonal variability than SO4(2-).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号