首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xu F  Liang X  Lin B  Su F  Schramm KW  Kettrup A 《Chemosphere》2002,48(5):553-562
The capacity factors of a series of hydrophobic organic compounds (HOCs) were measured in soil leaching column chromatography (SLCC) on a soil column, and in reversed-phase liquid chromatography on a C18 column with different volumetric fractions (phi) of methanol in methanol-water mixtures. A general equation of linear solvation energy relationships, log(XYZ) XYZ0 + mV(I)/100 + spi + bbetam + aalpham, was applied to analyze capacity factors (k'), soil organic partition coefficients (Koc) and octanol-water partition coefficients (P). The analyses exhibited high accuracy. The chief solute factors that control logKoc, log P, and logk' (on soil and on C18) are the solute size (V(I)/100) and hydrogen-bond basicity (betam). Less important solute factors are the dipolarity/polarizability (pi*) and hydrogen-bond acidity (alpham). Log k' on soil and log Koc have similar signs in four fitting coefficients (m, s, b and a) and similar ratios (m:s:b:a), while log k' on C18 and logP have similar signs in coefficients (m, s, b and a) and similar ratios (m:s:b:a). Consequently, logk' values on C18 have good correlations with logP (r > 0.97), while logk' values on soil have good correlations with logKoc (r > 0.98). Two Koc estimation methods were developed, one through solute solvatochromic parameters, and the other through correlations with k' on soil. For HOCs, a linear relationship between logarithmic capacity factor and methanol composition in methanol-water mixtures could also be derived in SLCC.  相似文献   

2.
Xu F  Liang X  Lin B  Su F  Schramm KW  Kettrup A 《Chemosphere》2002,48(1):149-156
The influence of methanol in methanol-water mixed eluents on the capacity factor (k'), an important parameter which could depict leaching potential of hydrophobic organic chemicals (HOCs) in soil leaching column chromatography (SLCC), was investigated. Two reference soils, GSE 17201 obtained from Bayer Landwirtschaftszentrum, Monheim, Germany and SP 14696 from LUFA, Spencer, Germany, were used as packing materials in soil columns, and isocratic elution with methanol-water mixtures at different volume fractions of methanol (phi) were tested. Short-term exposure of the column (packed with the GSE 17201 soil) to the eluents increased solute retention by a certain (23% log-unit) degree evaluated through a correlation with the retention on the same soil column but unpreconditioned by methanol-containing eluents. Long-term exposure of soil columns to the eluents did not influence the solute retention. A log-linear equation, log k' = log k'(w) - S(phi), could well and generally describe the retention of HOCs in SLCC. For the compounds of homologous series, logk'(w) had good linear relationship with S, indicating the hydrophobic partition mechanism existing in the retention process.  相似文献   

3.
A Finizio  A D Guardo 《Chemosphere》2001,45(6-7):1063-1070
Temperature dependence data for physical-chemical properties is increasingly required for modelling the fate of chemicals in the environment. Solubility and octanol-water partition coefficient (Kow) are among the most important parameters. A simple and fast method is presented to determine solubility and Kow of organic chemicals at different temperatures (5 degrees C, 15 degrees C, 25 degrees C, 35 degrees C) utilising a variable temperature RP-HPLC column. Correlations between capacity factors (k') and solubility and Kow were determined for some halogenated and methylated benzenes and showed that this approach could be used to predict acceptable results. New values for solubility and Kow as function of temperature for several compounds are presented.  相似文献   

4.
The influence of dissolved humic substances on the transport of (4-chloro-2-methylphenoxy) acetic acid (MCPA) in a sandy soil with a low organic carbon content was studied in a column experiment. Soil columns were eluted with aqueous solutions containing different fractions of humic substances. More than 70% of the applied compound was found in the leachate in all sandy soil experiments, but distinct differences were obtained depending on the composition of the eluent. The addition of both humic and fulvic acids to the eluent affected the leaching behaviour of MCPA. While the presence of humic acids increased and accelerated the movement of MCPA in the investigated sandy soil, fulvic acids caused the opposite effect: increased retention was observed relative to the control. We concluded that a possible carrier transport or retention strongly depends on the composition of the dissolved organic matter. Thus, changes in the composition of dissolved organic matter may affect MCPA movement into deeper soil layers.  相似文献   

5.
Yang ZY  Zhao YY  Tao FM  Ran Y  Mai BX  Zeng EY 《Chemosphere》2007,69(10):1518-1524
Bioconcentration factor (BCF) is often assumed to be linearly associated with the octanol-water partition coefficient K(ow) for hydrophobic organic chemicals (HOCs). However, a large amount of data has suggested that the correlation between the logBCF and logK(ow) is curvilinear for HOCs. Similar curvilinear relationship has also been noticed for sorption of HOCs into poly(dimethyl)siloxane (PDMS), a polymer with cross-linked interior structures. So far no satisfactory explanation has been given to account for the deviation. In this study, we acquired additional experimental data to show that the curvilinear relationship between the log-based PDMS-coated fiber-water partition coefficient (logK(f)) and logK(ow) for polychlorinated biphenyls (PCBs) was indeed a reflection of the sorption process occurring in PDMS film other than experimental defects. The physical origin of the nonlinearity was pinpointed based on the theory of phase partitioning for HOCs. The linear relationship is observed if the solute molecule is considerably smaller than the size of a monomer unit of PDMS in that the Gibbs free energy required for cavity formation in PDMS is comparable to that in octanol. Higher free energy of cavity formation is needed to create sufficient free volume if the PCB molecular size is comparable to or larger than the monomer unit of PDMS. On the other hand, the free energy of cavity formation in octanol remains almost constant when this occurs, resulting in the observed curvilinear relationship. The proposed model adequately explains the observed data, as well as sheds lights into the physical origin of the steric interactions of large molecular size solute with the PDMS polymer network.  相似文献   

6.
The aim of this study was to explore how atmospherically derived soil pollution is affected by environmental processes at two typical boreal catchment landscape type settings: wetlands and forested areas. Measurements of hydrophobic organic compounds (HOCs) in forest soil and peat from an oligotrophic mire at various depths were performed at a remote boreal catchment in northern Sweden. HOCs in peat were evenly distributed throughout the body of the mire while levels of HOCs in the forest soil increased with increased amount of organic matter. Evaluation of HOC composition by principal component analysis (PCA) showed distinct differences between surface soils and deeper soil and peat samples. This was attributed to vertical transport, degradation and/or shifting sources over time. The calculated net vertical transport differed between surface layers (0.3%) and deeper soils (8.0%), suggesting that vertical transport conditions and processes differ in the deeper layers compared to the surface layers.  相似文献   

7.
The effect of annual variation of daily average soil temperature, at different depths, in calculating pesticides ranking indexes retardation factor and attenuation factor is presented. The retardation factor and attenuation factor are two site-specific pesticide numbers, frequently used as screening indicator indexes for pesticide groundwater contamination potential. Generally, in the calculation of these two factors are not included the soil temperature effect on the parameters involved in its calculation. It is well known that the soil temperature affects the pesticide degradation rate, water-air partition coefficient and water-soil partition coefficient. These three parameters are components of the retardation factor and attenuation factor and contribute to determine the pesticide behavior in the environment. The Arrhenius equation, van't Hoff equation and Clausius-Clapeyron equation are used in this work for estimating the soil temperature effect on the pesticide degradation rate, water-air partition coefficient and soil-water partition coefficient, respectively. These dependence relationships, between results of calculating attenuation and retardation factors and the soil temperature at different depths, can aid to understand the potential pesticide groundwater contamination on different weather conditions. Numerical results will be presented with pesticides atrazine and lindane in a soil profile with 20 degrees C constant temperature, minimum and maximum surface temperatures varying and spreading in the soil profile between -5 and 30 degrees C and between 15 and 45 degrees C.  相似文献   

8.
Chang CM  Wang MK  Chang TW  Lin C  Chen YR 《Chemosphere》2001,43(8):1133-1139
The predictive accuracy of using the one-dimensional advection–dispersion equation to evaluate the fate and transport of solute in a soil column is usually dependent on the proper determination of chemical retardation factors. Typically, the distribution coefficient (Kd) obtained by fitting the linear sorption isotherm has been extensively used to consider general geochemical reactions on solute transport in a low-concentration range. However, the linear distribution coefficient cannot be adequately utilized to describe the solute fate at a higher concentration level. This study employed the nonlinear equilibrium-controlled sorption parameters to determine the retardation factor used in column leaching experiments. Copper and cadmium transportation in a lateritic silty-clay soil column was examined. Through the explicit finite-difference calculations with a third-order total-variation-diminishing (TVD) numerical solution scheme, all results of the theoretical copper and cadmium breakthrough curves (BTCs) simulated by using the Freundlich nonlinear retardation factors revealed good agreement with the experimental observations.  相似文献   

9.
Evidence of one-dimensional scale-dependent fractional advection-dispersion   总被引:5,自引:0,他引:5  
A semi-analytical inverse method and the corresponding program FADEMain for parameter estimation of the fractional advection-dispersion equation (FADE) were developed in this paper. We have analyzed Huang et al.'s [Huang, K., Toride, N., van Genuchten, M.Th., 1995. Experimental investigation of solute transport in large homogeneous and heterogeneous saturated soil columns. Trans. Porous Media 18, 283-302.] laboratory experimental data of conservative solute transport in 12.5-m long homogeneous and heterogeneous soil columns to test the non-Fickian dispersion theory of FADE. The dispersion coefficient was calculated by fitting the analytical solution of FADE to the measured data at different transport scales. We found that the dispersion coefficient increased exponentially with transport scale for the homogeneous column, whereas it increased with transport scale in a power law function for the heterogeneous column. The scale effect of the dispersion coefficient in the heterogeneous soil was much more significant comparing to that in the homogeneous soil. The increasing rate of dispersion coefficient versus transport distance was smaller for FADE than that for the advection-dispersion equation (ADE). Finite difference numerical approximations of the scale-dependent FADE were established to interpret the experimental results. The numerical solutions were found to be adequate for predicting scale-dependent transport in the homogeneous column, while the prediction for the heterogeneous column was less satisfactory.  相似文献   

10.
The retention and mobility of hydrophobic organic contaminants (HOCs) in soil is mainly determined by hydrophobic partitioning to dissolved and particulate organic matter (DOM and POM, respectively). The aqueous phase, DOM, and POM fractions were extracted and separated from soils at three sites contaminated with technical chlorophenol formulations. Concentrations of chlorophenols (CP), polychlorinated phenoxyphenols (PCPP), polychlorinated diphenyl ethers (PCDE) and polychlorinated dibenzo-p-dioxins and furans (PCDD/F) were determined. The partitioning to POM, in relation to DOM, increased in all three soils with increasing hydrophobicity in the order CP < PCPP ~ PCDE ~ PCDF < PCDD. Differences in partitioning to DOM (logK(DOC)) and POM (logK(POC)) could not be explained by differences in gross organic C chemistry. Black carbon did not contribute significantly to the sorption of PCDDs, whereas >70% wood fibre in one soil resulted in a decrease of logK(POC) of 0.5 units for CPs and PCDDs. We conclude that logK(OC) for both DOM and POM need to be explicitly determined when the retention and mobility of HOCs is described and modelled in soils.  相似文献   

11.
The influence of long-term farming practices on the soil's behaviour to adsorb hydrophobic organic compounds (HOCs) over long times was investigated. Adsorption of five naphthalene derivatives (naphthalene, 1-naphthol, 1-naphthylamine, 1-hydroxy-2-naphthoic acid, 1,4-naphthoquinone) was examined on soils with varying amounts and origins of soil organic matter obtained after amendment with different organic materials over more than 40 years. Soil organic matter, pore sizes and aggregate stability were significantly altered influencing the adsorption behaviour of the soils. Samples of soil amended with peat having an organic carbon content of 3.4% sorbed naphthalene derivatives stronger than the soil treated with sewage sludge (2.6% C(org)). All other treatments, calcium nitrate, plots without nitrogen fertilizers, grassland, animal manure, green manure and the fallowed soil sorbed less and no significant difference was found between them although the organic carbon content ranged from 1.0% to 2.6%. Thus, a decrease of the carbon content of a soil does not necessarily imply a reduction of sorption capacities for hydrophobic compounds such as naphthalene derivatives. Furthermore, the importance of protonation of HOCs for the adsorption on soil surfaces was shown. Different polarities of electronic structures of HOCs distinctly influence their adsorption behaviour.  相似文献   

12.
Laboratory studies were carried out to investigate solute leaching at different times from application in relation to temperature and initial soil moisture. Aggregates of a heavy clay soil were treated with a non-interactive solute (bromide) and the herbicides chlorotoluron, isoproturon and triasulfuron. The soil was incubated at 90% field capacity and either 5 or 15 degrees C. The influence of application to initially dry and initially wet aggregates on the behaviour of isoproturon was also investigated. At intervals, samples were either leached in small columns, centrifuged to characterise the fraction of chemical available in pore water under natural moisture conditions or extracted with organic solvents to assess total residues in soil. Bromide concentrations in leachate and in pore water extracted by centrifugation were constant with time. In contrast, availability for leaching and concentration in pore water of the herbicides decreased with increasing time from application in soil incubated at 15 degrees C. The effect of residence time was much smaller at 5 than at 15 degrees C. At the higher temperature, pesticide concentrations in leachate and pore water declined faster than would be expected from degradation alone, probably due to slow diffusion of the pesticides into soil aggregates where they are less available for leaching and/or slow sorption-desorption. The faster decline in availability for leaching at 15 than at 5 degrees C was attributed to faster degradation of the readily available fraction. There was no significant influence of initial soil moisture on either the leaching behaviour of isoproturon or its availability in soil water.  相似文献   

13.
Transport of silver nanoparticles (AgNPs) in soil   总被引:1,自引:0,他引:1  
Sagee O  Dror I  Berkowitz B 《Chemosphere》2012,88(5):670-675
The effect of soil properties on the transport of silver nanoparticles (AgNPs) was studied in a set of laboratory column experiments, using different combinations of size fractions of a Mediterranean sandy clay soil. The AgNPs with average size of ∼30 nm yielded a stable suspension in water with zeta potential of −39 mV. Early breakthrough of AgNPs in soil was observed in column transport experiments. AgNPs were found to have high mobility in soil with outlet relative concentrations ranging from 30% to 70%, depending on experimental conditions. AgNP mobility through the column decreased when the fraction of smaller soil aggregates was larger. The early breakthrough pattern was not observed for AgNPs in pure quartz columns nor for bromide tracer in soil columns, suggesting that early breakthrough is related to the nature of AgNP transport in natural soils. Micro-CT and image analysis used to investigate structural features of the soil, suggest that soil aggregate size strongly affects AgNP transport in natural soil. The retention of AgNPs in the soil column was reduced when humic acid was added to the leaching solution, while a lower flow rate (Darcy velocity of 0.17 cm/min versus 0.66 cm/min) resulted in higher retention of AgNPs in the soil. When soil residual chloride was exchanged by nitrate prior to column experiments, significantly improved mobility of AgNPs was observed in the soil column. These findings point to the importance of AgNP-soil chemical interactions as a retention mechanism, and demonstrate the need to employ natural soils rather than glass beads or quartz in representative experimental investigations.  相似文献   

14.
Ni Y  Liang X  Chen J  Zhang Q  Ma L  Wu W  Kettrup A 《Chemosphere》2004,56(11):1137-1142
The effect of methanol of low concentration on adsorption and leaching of atrazine and tebuconazole was studied in this paper. The adsorption coefficients and the retardation factors (Rm) of pesticides on EUROSOIL 3# log-linearly decreased as volumetric fraction of methanol (fc) was increased in the binary solvent mixtures of methanol and water. These data are consistent with solvophobic theory formerly outlined for describing the adsorption and transport of hydrophobic organic chemicals from mixed solvents. Nevertheless, the adsorption of these pesticides in soil–water system slightly increased when the soil was pre-washed with methanol in comparison with that pre-washed with water (pure water system). Furthermore, their adsorption coefficients were still higher in binary solvent systems with methanol of very low concentrations, i.e. fc<0.03 for atrazine and fc<0.01 for tebuconazole, than those in pure water system. The adsorption coefficients (logKw) of atrazine and tebuconazole predicted by solvophobic theory were 0.5792 and 1.6525, respectively, and their experimental logKw were 0.3701 and 1.6275 in pure water system. Obviously, the predicted logKw of the two pesticides was higher than the experimental log Kw in pure water system. The predicted Kw and the retardation factor (Rw) in pure water system by solvophobic theory are thus possibly inaccurate.  相似文献   

15.
Solute transport in soils is affected by soil layering and soil-specific morphological properties. We studied solute transport in two sandy Spodosols: a dry Spodosol developed under oxidizing conditions of relatively deep groundwater and a wet Spodosol under periodically reducing conditions above a shallow groundwater table. The wet Spodosol is characterized by a diffuse and heterogeneous humus-B-horizon (i.e., Spodic horizon), whereas the dry Spodosol has a sharp Spodic horizon. Drainage fluxes were moderately variable with a coefficient of variation (CV) of 25% in the wet Spodosol and 17% in the dry Spodosol. Solute transport in 1-m-long and 0.8-m-diameter soil columns was investigated using spatial averages of solute concentrations measured by a network of 36 Time Domain Reflectometry (TDR) probes. In the dry Spodosol, solute transport evolves from stochastic-convective to convective-dispersive at a depth of 0.25 m, coinciding with the depth of the Spodic horizon. Chloride breakthrough at the bottom of the soil columns was adequately well predicted by a convection-dispersion model. In the wet Spodosol, solute transport was heterogeneous over the entire depth of the column. Chloride breakthrough at 1 m depth was predicted best using a stochastic-convective transport model. The TDR sampling volume of 36 probes was too small to capture the heterogeneous flow and concomitant transport in the wet Spodosol.  相似文献   

16.
The purpose of this study was to investigate the effect of temperature on the release of polycyclic aromatic hydrocarbons (PAHs) from aged contaminated soil. The release of fluorene, phenanthrene, anthracene, fluoranthene and pyrene at 7, 15, 18 and 23 degrees C was studied using a column leaching method with a hydraulic retention time of 0.5 h. As the temperature declined from 23 to 7 degrees C the concentrations decreased by a factor of 11-12 for all the studied compounds except for anthracene, which only decreased by a factor 7. Rate constants at maximum release rate at the four studied temperatures were assessed. From temperature dependence studies, apparent activation energies of desorption, E*(des), were calculated. E*(des)-values appeared to be in the range of 105-137 kJ mol(-1) for the studied PAHs and increased with the LeBas molar volume of the compounds. The increase of E*(des) with increased molecular size indicates stronger sorption with increased hydrophobicity of the compounds.  相似文献   

17.
Rate limited processes including kinetic adsorption-desorption can greatly impact the fate and behavior of toxic arsenic compounds in heterogeneous soils. In this study, miscible displacement column experiments were carried out to investigate the extent of reactivity during transport of arsenite in soils. Arsenite breakthrough curves (BTCs) of Olivier and Windsor soils exhibited strong retardation with diffusive effluent fronts followed by slow release or tailing during leaching. Such behavior is indicative of the dominance of kinetic retention reactions for arsenite transport in the soil columns. Sharp decrease or increase in arsenite concentration in response to flow interruptions (stop-flow) further verified that non-equilibrium conditions are dominant. After some 40-60 pore volumes of continued leaching, 30-70% of the applied arsenite was retained by the soil in the columns. Furthermore, continued arsenite slow release for months was evident by the high levels of residual arsenite concentrations observed during leaching. In contrast, arsenite transport in a reference sand material exhibited no retention where complete mass recovery in the effluent solution was attained. A second-order model (SOM) which accounts for equilibrium, reversible, and irreversible retention mechanisms was utilized to describe arsenite transport results from the soil columns. Based on inverse and predictive modeling results, the SOM model successfully depicted arsenite BTCs from several soil columns. Based on inverse and predictive modeling results, a second-order model which accounts for kinetic reversible and irreversible reactions is recommended for describing arsenite transport in soils.  相似文献   

18.
New data on the aqueous solubility of n-octane, 1-chlorooctane and 1-bromooctane are reported between 1 degree C and 45 degrees C. Henry's law constants, K(H), and air/water partition coefficients, K(AW), were calculated by associating the measured solubility values to vapor pressures taken from literature. The mole fraction aqueous solubility varies between (1.13-1.60)x10(-7) for n-octane with a minimum at approximately 23 degrees C, (3.99-5.07)x10(-7) for 1-chlorooctane increasing monotonically with temperature and (1.60-3.44)x10(-7) for 1-bromooctane with a minimum near 18 degrees C. The calculated air-water partition coefficients increase with temperature and are two orders of magnitude lower for the halogenated derivatives compared to octane. The precision of the results, taken as the average absolute deviations of the aqueous solubility, the Henry's law constants, or the air/water partition coefficients, from appropriate smoothing equations as a function of temperature is of 3% for n-octane and of 2% and 4% for 1-chlorooctane and 1-bromooctane, respectively. A new apparatus based on the dynamic saturation column method was used for the solubility measurements. Test measurements with n-octane indicated the capability of measuring solubilities between 10(-6) and 10(-10) in mole fraction, with an estimated accuracy better than +/-10%. A thorough thermodynamic analysis of converting measured data to air/water partition coefficients is presented.  相似文献   

19.
In this study a column leaching method for investigation of hydrophobic organic contaminants (HOCs) leaching from soil was developed. The method set-up is based on a recycled flow of sterile water through a soil column with a sedimentation chamber mounted on top of the column, in connection with on-line filtration. The combination of a sedimentation chamber and an on-line filtration enables the measurement of leaching concentrations from contaminated materials consisting of very fine particle fractions. In addition, by using on-line solid phase extraction, minute amounts of leaching HOCs may be captured and quantified with high accuracy and reproducibility. The method was applied successfully on a contaminated aged soil sample and the leaching behavior of seven PAHs, with three to six aromatic rings, was monitored for more than 1600 h under saturated conditions. The tested PAHs were fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)pyrene and benzo(ghi)perylene. The method proved to be reliable and capable of providing data on leachable amounts of the PAHs under field-like conditions and over a longer period of time. The results indicated low availability of the studied contaminants since only a minor fraction (0.3%) of the initial amount of PAHs in the soil was removed during the experiment (liquid/solid-ratio of 700 l/kg). Thus PAHs in aged contaminated soil are not to be expected to be released to any great extent only by leaching with water.  相似文献   

20.
This paper introduces a new reversible-flow design for a continuously stirred reactor used to study sorption mass transfer in soil and solvent systems. The stirred reactor has potential advantages over conventional packed column or batch reactors because it isolates intraparticle sorption rate limitations from advective-dispersive transport, yet allows changes to flux through the reactor for analysis of sorption kinetics under dynamic conditions. Previously, stirred reactors have often failed due to clogging of sediment on the effluent frit. The reverse-flow backwashing design allows longer life and higher confidence in maintaining mixed conditions than previous designs. Mass transfer 'rate coefficients estimated from stirred and column experiments are compared; both techniques produced results consistent with a published correlation. The data also show that fitted sorption mass transfer coefficients can be strongly dependent on the choice of equilibrium partition coefficient (i.e. batch or first-moment derived values), and that the conventional two-site sorption kinetics model fails to accurately predict sorption mass transfer in the presence of changing solvent velocity through the reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号