首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We took advantage of regional differences in environmental forcing and consumer abundance to examine the relative importance of nutrient availability (bottom-up), grazing pressure (top-down), and storm waves (disturbance) in determining the standing biomass and net primary production (NPP) of the giant kelp Macrocystis pyrifera in central and southern California. Using a nine-year data set collected from 17 sites we show that, despite high densities of sea urchin grazers and prolonged periods of low nutrient availability in southern California, NPP by giant kelp was twice that of central California where nutrient concentrations were consistently high and sea urchins were nearly absent due to predation by sea otters. Waves associated with winter storms were consistently higher in central California, and the loss of kelp biomass to winter wave disturbance was on average twice that of southern California. These observations suggest that the more intense wave disturbance in central California limited NPP by giant kelp under otherwise favorable conditions. Regional patterns of interannual variation in NPP were similar to those of wave disturbance in that year-to-year variation in disturbance and NPP were both greater in southern California. Our findings provide strong evidence that regional differences in wave disturbance overwhelmed those of nutrient supply and grazing intensity to determine NPP by giant kelp. The important role of disturbance in controlling NPP revealed by our study is likely not unique to giant kelp forests, as vegetation dynamics in many systems are dominated by post-disturbance succession with climax communities being relatively uncommon. The effects of disturbance frequency may be easier to detect in giant kelp because it is fast growing and relatively short lived, with cycles of disturbance and recovery occurring on time scales of years. Much longer data sets (decades to centuries) will likely be needed to properly evaluate the role of disturbance relative to other processes in determining patterns of NPP in other systems.  相似文献   

2.
Marine macroalgae are believed to be among the most productive autotrophs in the world. However, relatively little information exists about spatial and temporal variation in net primary production (NPP) by these organisms. The data presented here are being collected to investigate patterns and causes of variation in NPP by the giant kelp, Macrocystis pyrifera, which is believed to be one of the fastest growing autotrophs on earth. The standing crop and loss rates of M. pyrifera have been measured monthly in permanent plots at three sites in the Santa Barbara Channel, USA. Collection of these data began in June 2002 and is ongoing. Seasonal estimates of NPP and growth rate are made by combining the field data with a model of kelp dynamics. The purpose of this Data Paper is to make available a time series of M. pyrifera NPP, growth, and standing crop that is appropriate for examining seasonal and interannual patterns across multiple sites. Data on plant density in each plot and censuses of fronds on tagged plants at each site are also made available here. NPP, mass-specific growth rate, and standing crop are presented in four different metrics (wet mass, dry mass, carbon mass, and nitrogen mass) to facilitate comparisons with previous studies of M. pyrifera and with NPP measured in other ecosystems. Analyses of these data reveal seasonal cycles in growth and standing crop as well as substantial differences in M. pyrifera NPP among sites and years.  相似文献   

3.
Assemblages of macroalgae are believe to be among the most productive ecosystems in the world, yet difficulties in obtaining direct estimates of biomass and primary production have led to few macroalgal data sets from which the consequences of long-term change can be assessed. We evaluated the validity of using two easily measured population variables (frond density and plant density) to estimate the more difficult to measure variables of standing crop and net primary production (NPP) in the giant kelp Macrocystis pyrifera off southern California. Standing crop was much more strongly correlated to frond density than to plant density. Frond density data collected in summer were particularly useful for estimating annual NPP, explaining nearly 80% of the variation in the NPP from year to year. Data on frond densities also provided a relatively good estimate of seasonal NPP for the season that the data were collected. In contrast, estimates of seasonal and annual NPP derived from plant density data were less reliable. These results indicate that data on frond density collected at the proper time of year can make assessments of NPP by giant kelp more tractable. They also suggest that other easily measured variables that are strongly correlated with standing crop, such as surface canopy area, might serve as similarly useful proxies of NPP.  相似文献   

4.
CO_2倍增和气候变化对北京山区栓皮栎林NPP影响研究   总被引:3,自引:0,他引:3  
应用生物地球化学过程模型BIOME-BGC估算了1977—1992年北京妙峰山栓皮栎(Quercus variabilis)林的净第一性生产力(NPP),并分析气候对NPP年际变化的影响以及未来气候变化情景下对NPP的影响。结果表明:1977—1992年15年间栓皮栎的NPP(以C计)平均值为340.17g·m-2·a-1,NPP(以C计)变化在143.56~431.56g·m-2·a-1之间,并无明显的整体变化趋势,但表现出明显的年际变化,年际变动率达18%。在这段时间内降水量成为控制栓皮栎林NPP年际变化的主要气候因子。通过设置18种不同未来气候方案进行栓皮栎林NPP模拟表明,CO2浓度加倍会降低栓皮栎林的NPP但降低幅度较小。在CO2浓度不变的情况下,温度升高2.0℃和降水的协同增加以及单个因子的增加都有利于NPP的积累,但协同增加不如单个因子的增加对NPP的积累效应明显;在CO2和气候同时改变的情况下,CO2浓度加倍、温度升高2.0℃和降水的协同增加有利于NPP的积累且协同增加比单个因子的增加对NPP的积累效应明显,但各因子之间交互作用较弱。  相似文献   

5.
Some morphological characteristics of the giant kelp Macrocystis pyrifera in the Falkland Islands were studied from December 1985 until March 1987 in a shallow and relatively sheltered coastal zone and from December 1985 until January 1987 in a deeper offshore field exposed to swells. Seasonal fluctuations in lamina wet weight, density and form as well as pneumatocyst wet weight form and stipe density (i.e., wet weight per unit length) paralleled fluctuations in frond wet weight. Morphological differences between canopies of the giant kelp in the coastal zone and the offshore bed were probably mainly due to differences in water movement and depth between the two sites. Laminae and pneumatocysts of submersed-frond sites had different shapes than those of canopy-forming portions of fronds at the same sites, and their internodes were longer.  相似文献   

6.
White JW  Caselle JE 《Ecology》2008,89(5):1323-1333
While there is great interest in the degree to which local interactions "scale-up" to predict regional patterns of abundance, few studies in marine systems have simultaneously examined patterns of abundance at both the large scale (tens of kilometers) typical of larval movement and the small scale (meters) typical of post-settlement interactions. We addressed this gap by monitoring larval supply, adult survivorship, and giant kelp (Macrocystis pyrifera, a primary habitat-forming species) abundance for 13 populations of kelp bass (Paralabrax clathratus) spread over approximately 200 km in the Santa Barbara Channel, California, USA. At the small, within-site scale, both recruitment and adult survivorship of kelp bass were density-dependent and positively related to kelp abundance. At the larger, among-site scale, the spatial pattern of adult kelp bass abundance was predicted well by the pattern of kelp bass larval supply, but there was a consistent negative spatial relationship between kelp abundance and kelp bass larval supply despite the positive effects of kelp on kelp bass at the smaller spatial scale. This large-scale negative relationship was likely a product of a channel-wide spatial mismatch between oceanographic conditions that favor kelp survival and those that concentrate and distribute fish larvae. These results generally support the recruit-adult hypothesis: kelp bass populations are limited by recruitment at low recruit densities but by density-dependent competition for food resources and/or predator refuges at high recruit densities. At the same time, spatial variation in kelp abundance produced substantial spatiotemporal heterogeneity in kelp bass demographics, which argues for a multispecies, metacommunity approach to predicting kelp bass dynamics.  相似文献   

7.
An adult giant kelp plant (Macrocystis pyrifera), moved from an inshore kelp forest to an offshore, low-nitrogen environment near Santa Catalina Island, California (USA), maintained growth for 2 wk on internal nitrogen reserves. Frond elongation rates decreased significantly during the third week, and plant growth rate (wet wt) dropped from an initial inshore rate of 3.6 to 0.9% d-1. During this 3 wk period, nitrogen contents and free amino acid concentrations decreased, while mannitol and dry contents increased in frond tissues. After depletion of internal nitrogen reserves, the nitrogen content of lamina and stipe tissues averaged 1.1 and 0.7% dry wt, respectively. The experimental plant was exposed to higher ambient nitrogen concentrations during the last 2 wk. Rates of frond elongation and plant growth increased, but nitrogen content and amino acids in frond tissues remained low. Of the total nitrogen contained in frond tissue of the plant before transplantation, 58% was used to support growth in the absence of significant external nitrogen supply. Amino acids constituted a small proportion of these internal nitrogen reserves. Net movement of nitrogen occurred within large fronds, but not between different frond size classes. The nitrogen content of holdfast tissue remained relatively constant at 2.4% dry wt and accounted for 18 to 29% of the total nitrogen. Holdfast nitrogen was not used to support growth of nitrogen-depleted fronds. In comparison to Laminaria longicruris, which is adapted to long seasonal periods of low nitrogen availability, M. pyrifera has small nitrogen-storage capacity. However, internal reserves of M. pyrifera appear adequate to make nitrogen starvation uncommon in southern California kelp forests.  相似文献   

8.
Although research has been conducted on the effects of oil on the giant kelp Macrocystis pyrifera, no similar studies have been completed on bull kelp, Nereocystis leutkeana, the dominant kelp in Washington State, British Columbia, and Alaska. The effects of three petroleum products [diesel fuel, intermediate fuel oil (IFO), and crude oil] were tested before and after weathering on N. luetkeana. Whole plants were exposed to petroleum product for 4 or 24 h and then transferred to the field; observations on the condition of the plants were made daily for 7 d. In addition, controlled bioassays were performed to measure the effects of petroleum exposure on net photosynthetic rate (NP) and respiration rate (R), using light-and dark-bottle techniques. These experiments verified the susceptibility of N. luetkeana tissue to the damaging effects of direct exposure to several oil types. The 4 h exposures to weathered diesel and unweathered IFO, and 24 h exposures to unweathered and weathered diesel and IFO resulted in moderate to severe damage to kelp tissue (i.e., clearly delineated bleached line accompanied by tissue necrosis). Weathered diesel was more toxic than unweathered diesel. The most severe damage to bull kelp was concentrated at the meristematic zone (junction of stipe and bulb) where new tissue growth occurs. Petroleum type significantly affected stipe and blade NP, R, and NP:R ratios. Diesel treatments had a greater negative effect on NP than did the IFO treatments. Based on these experiments, the relative ranking of the damaging effects of petroleum treatment on bull kelp are weathered diesel>unweathered IFO>unweathered diesel>weathered IFO>unweathered crude>weathered crude.  相似文献   

9.
A. Martel  F. S. Chia 《Marine Biology》1991,110(2):237-247
We investigated recruitment of the herbivorous gastropodLacuna vincta (Montagu, 1803) in the canopies ofMacrocystis integrifolia andNereocystis luetkeana beds in Barkley Sound, Vancouver Island (British Colombia), from 1987 to 1989. Four factors influencing intensity and patterns of recruitment were studied: (1) seasonality of oviposition, (2) larval abundance, (3) growth of larvae in the field and (4) larval settlement. Egg masses were abundant on low intertidal algae but were scarce in kelp canopies. Although egg masses could be found almost year-round, a distinct and intense period of oviposition occurred during winter and spring. Intracapsular development lasted 2.5 to 3.5 wk before planktotrophic veligers emerged. The duration of the planktonic period, 7 to 9 wk, was determined through an in situ study of cohorts ofLacuna spp. larvae present in the plankton between January and June 1988. The general timing of the onset of the spring peak recruitment period was predicted from these cohorts. Primary periods of recruitment ofL. vincta in the canopy occurred in April–May (average density up to 383.9 juveniles m–2 blades), with a second period of lower intensity in the late summer—fall period. We observed similar trends between abundance of advanced larvae (> 500µm) in the plankton and recruitment rates in kelp canopies. Although adults were occasionally observed in the canopy, newly metamorphosed juveniles consistently dominated the habitat. The persistance of small juveniles (0.7 to 1.5 mm), rapid declines in density shortly after recruitment, and SCUBA observations of drifting individuals suggest that juveniles migrate to the under-canopy or low intertidal area after a brief period of growth on kelp blades.  相似文献   

10.
Instantaneous relative growth rates, (d-1), were measured for juveniles of the giant kelp Macrocystis pyrifera transplanted to study sites in Southern California kelp forests between 1978 and 1982. Growth rates ranged from negative values (indicating loss of tissue) to 0.03 (doubling of total frond length every 19 d). Multiple regression analysis of growth versus irradiation, temperature, nitrogen concentration and amount of fouling revealed that all these factors had significant effects, together accounting for about 50% of the total variance. Elevated irradiation and nitrogen levels had strongly stimulatory effects (tissue nitrogen may have been more critical than ambient nitrogen for growth), while high temperature and fouling had strongly inhibitory effects. Irradiation was the most important factor influencing growth in 6 of the 8 transplant experiments. During these 6 experiments, the compensating irradiation level (below which there was no growth) was between 0.4 and 0.7 E m-2 d-1, and saturating irradiation was between 2 and 3 E m-2 d-1. During two of the experiments, growth was apparently limited by extremely high temperatures or low nitrogen levels. Quantum irradiation levels in the kelp forest were generally between the compensation and saturation levels. However, irradiation levels occasionally dropped below the compensation point for several months. Irradiation was occasionally low enough to limit the distribution of juvenile kelp by inhibiting growth, especially in the deeper portions of the kelp forest and under dense canopies formed by adult plants.  相似文献   

11.
Algal succession within a subtidal forest of the giant kelp Macrocystis pyrifera was studied by following colonization and community development on concrete blocks fastened to the bottom. Sets of blocks were placed in the bed at 3-month intervals. Subsequent algal development on each set was followed for over a year. All macroscopic species attached to the substrata were noted, and the number and lenght of basal branches determined every 1 to 3 months. Colonizing plants fell into 3 categories: rapid-growing ephemerals, and rapid and slow-growing perennials. Ephemerals such as Giffordia (Ectocarpus) mitchellae, Colpomenia peregrina, and diatom films generally produced and initial bloom on the blocks but were gradually replaced by perennials (articulated corallines, Rhodymenia spp., Gigartina spp.) characteristic of the mature kelp community. These stages, rather than representing “ecological” succession, seemed to reflect differences in growth rate and success in interspecific competition for space and light. Colonization on the blocks varied with season, indicating that most species have either a spring-summer or fall-winter period of maximum reproduction. M. pyrifera sporophyte colonization was greatest in spring. During community development, algal diversity (H), number of species (s) and evenness (J) all reached a peak within 100 to 200 days regardless of the time the blocks were started. Diversity and number of species then fell as ephemeral species disappeared. These species were apparently unable to compete with perennials and, once gone, did not recolonize. Evenness remained high.  相似文献   

12.
The giant kelp Macrocystis pyrifera is one of the largest and fastest growing seaweeds and is dominant over large areas of the west coast of North America. A model of its growth has been developed which describes plant biomass and production over the course of a year as a function of environmental parameters which affect the light flux. Such parameters include water clarity, spacing between plants, bottom depth, latitude, harvesting activity, and photosynthetic response (P max and I k ). Model results for a standard set of conditions (latitude 33°N, 3 m plant spacing, water absorbance of 0.115 m-1 and 12 m depth) yield a peak daily gross production of almost 6 g C m-2 d-1, peak daily net production of almost 3 g C m-2 d-1, and a peak specific growth rate of about 0.022 d-1. Annual gross production for this case is 1 567 g C m-2 yr-1; annual net production is 537 g C m-2 yr-1. These values are comparable to those from field measurements. Size and timing of biomass and production peaks are affected by changes in the parameters describing the light field, with peaks usually occurring later in the year for more adverse circumstances. Inhigher latitudes, the seasonal variation is so extreme that the plant could not last the year at 53° N in 12 m of water, although it is able to survive the year in shallower water. Harvesting has severe effects on biomass and production. Model results suggest that light limitation is a very important constraint on kelp growth that should not be overlooked. This implies that differences in parameters describing two environments must be considered when comparing results obtained at different locales.  相似文献   

13.
Net primary production (NPP), the difference between CO2 fixed by photosynthesis and CO2 lost to autotrophic respiration, is one of the most important components of the carbon cycle. Our goal was to develop a simple regression model to estimate global NPP using climate and land cover data. Approximately 5600 global data points with observed mean annual NPP, land cover class, precipitation, and temperature were compiled. Precipitation was better correlated with NPP than temperature, and it explained much more of the variability in mean annual NPP for grass- or shrub-dominated systems (r2 = 0.68) than for tree-dominated systems (r2 = 0.39). For a given precipitation level, tree-dominated systems had significantly higher NPP (approximately 100-150 g C m(-2) yr(-1)) than non-tree-dominated systems. Consequently, previous empirical models developed to predict NPP based on precipitation and temperature (e.g., the Miami model) tended to overestimate NPP for non-tree-dominated systems. Our new model developed at the National Center for Ecological Analysis and Synthesis (the NCEAS model) predicts NPP for tree-dominated systems based on precipitation and temperature; but for non-tree-dominated systems NPP is solely a function of precipitation because including a temperature function increased model error for these systems. Lower NPP in non-tree-dominated systems is likely related to decreased water and nutrient use efficiency and higher nutrient loss rates from more frequent fire disturbances. Late 20th century aboveground and total NPP for global potential native vegetation using the NCEAS model are estimated to be approximately 28 Pg and approximately 46 Pg C/yr, respectively. The NCEAS model estimated an approximately 13% increase in global total NPP for potential vegetation from 1901 to 2000 based on changing precipitation and temperature patterns.  相似文献   

14.
Schwanz LE  Spencer RJ  Bowden RM  Janzen FJ 《Ecology》2010,91(10):3016-3026
Conditions experienced early in life can influence phenotypes in ecologically important ways, as exemplified by organisms with environmental sex determination. For organisms with temperature-dependent sex determination (TSD), variation in nest temperatures induces phenotypic variation that could impact population growth rates. In environments that vary over space and time, how does this variation influence key demographic parameters (cohort sex ratio and hatchling recruitment) in early life stages of populations exhibiting TSD? We leverage a 17-year data set on a population of painted turtles, Chrysemys picta, to investigate how spatial variation in nest vegetation cover and temporal variation in climate influence early life-history demography. We found that spatial variation in nest cover strongly influenced nest temperature and sex ratio, but was not correlated with clutch size, nest predation, total nest failure, or hatching success. Temporal variation in climate influenced percentage of total nest failure and cohort sex ratio, but not depredation rate, mean clutch size, or mean hatching success. Total hatchling recruitment in a year was influenced primarily by temporal variation in climate-independent factors, number of nests constructed, and depredation rate. Recruitment of female hatchlings was determined by stochastic variation in nest depredation and annual climate and also by the total nest production. Overall population demography depends more strongly on annual variation in climate and predation than it does on the intricacies of nest-specific biology. Finally, we demonstrate that recruitment of female hatchlings translates into recruitment of breeding females into the population, thus linking climate (and other) effects on early life stages to adult demographics.  相似文献   

15.
Davenport AC  Anderson TW 《Ecology》2007,88(6):1548-1561
It has been suggested that microcarnivorous reef fishes may play an important role in giant kelp forest communities by preventing infestations of mesograzers that could severely impact or potentially destroy recovering kelp forests after extreme disturbance events. However, these trophic linkages, specifically the direct and indirect effects of fishes on the biomass of mesograzers, grazing intensity, and the performance of giant kelp, have not been sufficiently quantified and evaluated as to their importance and in the absence of such disturbance events. We examined experimentally the effects of mesograzers on the growth and performance of giant kelp in the presence and absence of their fish predators near Santa Catalina Island, California (U.S.A.). Mesograzer biomass and grazing intensity were significantly higher when fishes were excluded from giant kelp, which in turn, lowered kelp performance. This pattern was consistent both on experimental plots of kelp as habitat isolates, and on a continuous reef. Moreover, the abundance of mesograzers was inversely related to the abundance of kelp perch among several kelp-forested reefs, suggesting that these effects can occur at larger spatial scales. Because of differences in the diet and behavior of two microcarnivorous fishes, the kelp perch and se?orita, we conducted an experiment manipulating each species and its density independently to determine their separate effects on mesograzers and kelp performance. Concurrently we examined the growth and mortality of juvenile kelp. Grazing intensity decreased, estimates of kelp performance increased, and the growth of juvenile kelp increased with increasing densities of fish but with no detectable effects between fishes. Our results demonstrate that these microcarnivorous fishes have positive indirect effects on kelp performance by reducing mesograzer biomass and grazing intensity, and the early life stages of other fishes also may be important. More specifically, these fishes have a positive effect on the density of fronds of giant kelp that can result in greater recruitment success and the abundance of kelp-associated invertebrates and fishes. Indeed, this study suggests that mesograzers have the potential to be one of the most important herbivores in kelp forest ecosystems.  相似文献   

16.
We examined the distribution and abundance of organisms on subtidal rocky reefs at nine sites around the Chatham Islands, a remote group 780 km east of southern New Zealand. We sampled five depth strata ranging from 1 to<16 m to identify spatial patterns in the abundance of algae and invertebrates and to assess their variation within and among sites. This information is used to discuss hypotheses concerning community structure at this remote locality. Several patterns were apparent. The immediate subtidal was occupied by the southern bull kelp Durvillaea spp. A suite of 11 fucalean species were dominant to a depth of 10 m with an average abundance of 28 m-2, while one species, Carpophyllum flexuosum, occurred mostly in deeper water. Only two laminarian species of algae were present at the islands. The indigenous Lessonia tholiformis was abundant at 2.5 to 15 m and was not found in deeper water, while the giant kelp Macrocystis pyrifera was abundant at two sites in 12 to 18 m. The commercially valuable abalone Haliotis iris was extremely abundant in shallow water, with an overall mean of 6 m-2 at 5 m. The sea urchin Evechinus chloroticus was common, but reached high densities only in small (<25 m2) patches. The characteristic urchin-dominated zones reported in kelp beds world-wide were not seen. There was considerable site-to-site variation in the occurrence and abundance of individual species. Some differences between sites were associated with shelter from swell (e.g. M. pyrifera was found only in sheltered sites) and physical habitat (e.g. juvenile H. iris were found only beneath boulders inshore), but much of the variation could not be explained by physical or depth-related factors alone. We hypothesize that the differences in these kelp bed assemblages compared to mainland New Zealand are partially due to the high degree of endemism at the Chatham Islands. Local variation cannot be explained by herbivory, and is most likely the result of the various life-history characteristics of the major habitat-forming species, the large brown algae.  相似文献   

17.
R. Black 《Marine Biology》1974,28(3):189-198
Near Santa Barbara, California (USA), the large laminarian kelp Egregia laevigata (Setchell) occurred from the lower intertidal zone to subtidal depths. In the intertidal zone there was a large recruitment of E. laevigata in the spring. The kelp were largely excluded from a zone in the lowest intertidal zone where the surf grass Phyllospadix sp, grew, but were abundant on all other rock surfaces. Experiments demonstrated that, while neither grazers nor sessile organisms significantly reduced recruitment, E. laevigata of the previous year-class did so. There were also interactions among E. laevigata of the same year-class, expressed as a density-dependent mortality of very small algae, and as faster growth rates and greater number of branches of kelp at low densities. These processes tended to make both numbers and biomass of E. laevigata uniform. The mortality rates of large E. laevigata were so high that, in some locations, no kelp survived for more than 8 months. E. laevigata was, therefore, essentially an annual and opportunistic species in the intertidal zone.  相似文献   

18.
The effect of bryozoan colonization on inorganic nitrogen acquisition by Agarum fimbriatum Harv. and Macrocystis integrifolia Bory., collected from the west coast of Vancouver Island, British Columbia, Canada, was examined in laboratory experiments during June and July 1992. Pieces of kelp blades that were completely covered on one side by the bryozoans Lichenopora novae-zelandiae Busk or Membranipora membranacea, L., or uncolonized (clean treatment), were used to estimate the rate at which nitrate and ammonium were removed from the surrounding seawater. In addition, the rate of ammonium excretion by bryozoans isolated from their associated kelp was measured and also estimated from the results of the uptake experiments. Values obtained were used to estimate the contribution of ammonium excreted by bryozoans to the total amount of inorganic nitrogen available to the associated kelp. Both bryozoan species reduced the ability of the associated kelp to remove nitrate and ammonium from seawater but provided a source of ammonium to the kelp through excretion. The nitrogen status of colonized and clean kelp disks was determined from the ratio of total particulate carbon to total particulate nitrogen (C:N ratio). The C:N ratios for A. fimbriatum colonized with either L. novae-zelandiae or M. membranacea were similar (C:N=12 to 14), and differences between colonized and clean treatments were not significant. For A. fimbriatum, therefore, the C:N ratio indicates that this species was not nitrogen limited at the time of the present study. In contrast, both colonized and clean disks of M. integrifolia were nitrogen limited, but colonized disks (C:N=19) were significantly less limited by nitrogen than clean disks (C:N=29). Results are discussed in relation to the different environments inhabited by both kelp species and are consistent with the hypothesis that ammonium excreted by bryozoans was an important source of inorganic nitrogen to M. integrifolia, but not to A. fimbriatum, at the time of the study.  相似文献   

19.
C. Lang  K. H. Mann 《Marine Biology》1976,36(4):321-326
In St. Margaret's Bay, Nova Scotia, Canada, there are large areas in which sea urchins (Strongylocentrotus droebachiensis) have eliminated beds of kelp (Laminaria spp.). Sites were identified where destruction of kelp beds had taken place 1, 2, 3, 3.5 and 4 years ago. With increase of time since kelp disappearance, the sea urchins showed decreased growth rate, reduced gonad size, but an increase in numbers resulting from high recruitment rates in the first two years after kelp bed destruction. These sea urchin populations, by their browsing, effectively prevent the regeneration of kelp. There is, as yet, no evidence of the sea urchin populations being starved out to allow the kelp to return.  相似文献   

20.
This study describes the density variation and phenology of Macrocystis integrifolia and M. pyrifera populations from northern and southern Chile, respectively. Samples of both species were taken in wave-exposed and wave-protected areas. In addition, spore production, germination and early growth rate of sporophytes of each population was studied at monthly intervals under three temperature and salinity regimes. Results indicate that M. integrifolia from northern Chile presents perennial plants with a mean density of three individuals per 0.25 m2 throughout the year and that it reproduces mainly during spring and winter. Although, M. pyrifera in exposed areas of southern Chile also have a perennial-type life strategy, they are able to reproduce all year round. In contrast, M. pyrifera populations in protected areas of southern Chile show a clear annual cycle, with high recruitment during late winter and fertile sporophytes in summer and autumn, although the populations become completely decimated thereafter. The effect of temperature and salinity on M. integrifolia shows that it is independent of water movement, but requires low temperatures and high salinities for the release of zoospores, germination and early sporophyte growth. This pattern differs from that of M. pyrifera in southern Chile, which has a broader tolerance range for salinity and temperature than does M. integrifolia. However, in southern Chile wave-protected populations showed higher spore release and germination at 15°C and 18°C, whereas sporophyte growth responded better at the lowest temperature tested (8°C). In general, these results are contrary to those expected, since a seasonal reproductive pattern was observed in M. integrifolia inhabiting a less seasonally variable environment. In exposed sites of southern Chile, plants showed greater tolerance and continuous reproduction throughout the year, despite the greater environmental variability. Finally, population dynamics of protected kelps in southern Chile shows an annual pattern, which is contrary to the expected perennial strategy shown by exposed populations.Communicated by P.W. Sammarco, Chauvin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号