首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Like many coastal ports around the world, Rhode Island’s Port of Providence in USA is at risk for climate-related natural hazards, such as catastrophic storm surges and significant sea level rise (0.5–2.0 m), over the next century. To combat such events, communities may eventually adopt so-called “transformational adaptation” strategies, like the construction of major new infrastructure, the reorganization of vulnerable systems, or changes in their locations. Such strategies can take decades or more to plan, design, find consensus around, fund, and ultimately implement. Before any meaningful decisions can be made, however, a shared understanding of risks, consequences, and options must be generated and allowed to percolate through the decision-making systems. This paper presents results from a pre-planning exercise that utilized “boundary objects” to engage the Port of Providence's stakeholders in an early dialogue about the transformational approaches to hazard–risk mitigation. The research team piloted the following three boundary objects as a means to initiate meaningful dialogue about long-term storm resilience challenges amongst key stakeholders of this exposed seaport system: (1) a storm scenario with local-scale visualizations, (2) three long-term transformational resilience concepts, and (3) a decision support tool called Wecision. The team tested these boundary objects in a workshop setting with 30 port business owners and policy makers, and found them to be an effective catalyst to generate a robust dialogue around a very challenging topic.  相似文献   

2.
Beaches are both sensitive and critical components of the coastal systems, as they are particularly vulnerable to environmental change (e.g., the sea level rise) and form valuable coastal ecosystems and economic resources. The objective of the present study has been to record the spatial characteristics and other attributes (e.g., topography, sediments and accessibility) of the 71 beaches of the E. Crete (Eastern Mediterranean) that are either already developed or have a reasonable development potential and assess their erosion risk under sea level rise. Beach retreats are predicted by ensembles of six cross-shore (1D) analytical and numerical morphodynamic models, set up/forced on the basis of collected/collated information and three sea level rise scenarios (0.26, 0.82 and 1.86 m); these retreats are then compared with the recorded maximum (dry) beach widths. Projections by the unified ensemble suggest that, in the case of a 0.26 m rise, 80 % of the examined beaches are to retreat by more than 20 and 16 % by more than 50 % of their maximum dry width. In the case of a 0.82 m rise, 72 % of the tested beaches are predicted to retreat by more than 50 % of their dry width and 21 % by a distance at least equal to their observed maximum dry widths. A sea level rise of 1.86 m represents a ‘doom’ scenario, as 75 % of the beaches are predicted to retreat by more than their maximum width. These results may be conservative, as other significant beach erosion factors (e.g., decreasing beach sediment supply) have not been considered.  相似文献   

3.
Physical and ecological responses of the coastal areas in the vicinity of Mumbai, India, due to relative sea level rise are examined by different inundation scenarios. Evaluation of potential habitat loss under sea level rise was made by incorporating the land use/land cover (LULC) adopted from the digital elevation model with the satellite imagery. LULC categories overlaid on 1.0, 2.0, 3.0 and 4.0 m coastal elevation showed that the coastal areas of Mumbai were mostly covered by vegetation followed by barren land, agricultural land, urban areas and water bodies. For the relative sea level rise scenarios of 1.0, 2.0, 3.0 and 4.0 m, the tidal inundation areas were estimated to be 257.85, 385.58, 487.56 and 570.63 km2, respectively, using GIS techniques. The losses of urban areas were also estimated at 25.32, 41.64, 54.61 and 78.86 km2 for the 1.0, 2.0, 3.0 and 4.0 m relative sea level rise, respectively, which is most alarming information for the most populated city on the eastern coast of India. The results conclude that relative sea level rise scenario will lead profound impacts on LULC categories as well as on coastal features and landforms in the adjoining part of Mumbai. The sea level rise would also reduce the drainage gradients that promote flooding condition to rainstorms and subsequently increase saltwater intrusion into coastal regions. Alterations in the coastal features and landforms correlated with inundation characteristics that make the coastal region more vulnerable in the coming decades due to huge development activities and population pressures in Mumbai.  相似文献   

4.
Fiji is expected to come under increasing pressure and risk from various threats resulting from climate change and sea-level rise (SLR). Fiji consists of 332 islands and thus has a predominant and large coastline. Viti Levu is the largest and most important of the islands, harboring Fiji’s capital city and most of the major towns concentrated around its coast. The objectives of this study were to evaluate the extent of possible sea-level rise using GIS, and to identify high-risk locations. Potential sea level rise was shown graphically as an output to determine where inundation or flooding would take place. This analysis allowed important areas facing risk to be highlighted for future action. Flooding/inundation can be classified into two kinds: ‘permanent inundation’, which is the result of sea-level rise with tide; and ‘temporary flooding’, also including occasional storm surge events. The inundated area was displayed under different projections and quantified. The results produced output maps showing the distribution of inundation/flooding around the island of Viti Levu as well as the extent of flooding. Six scenarios for sea-level rise were used (0.09, 0.18, 0.48, 0.50, 0.59, 0.88 m). Six scenarios for storm surge were used with return intervals of 1, 2, 5, 10, 25, 50 years. High risk and priority locations are identified as Fiji’s capital Suva, the major tourist center and arrival port of Nadi, and Fiji’s second city Lautoka. Future action, adaptation and response strategies in these identified locations must occur to reduce risk from climate change.  相似文献   

5.
This contribution presents an assessment of the potential vulnerabilities to climate variability and change (CV & C) of the critical transportation infrastructure of Caribbean Small Island Developing States (SIDS). It focuses on potential operational disruptions and coastal inundation forced by CV & C on four coastal international airports and four seaports in Jamaica and Saint Lucia which are critical facilitators of international connectivity and socioeconomic development. Impact assessments have been carried out under climatic conditions forced by a 1.5 °C specific warming level (SWL) above pre-industrial levels, as well as for different emission scenarios and time periods in the twenty-first century. Disruptions and increasing costs due to, e.g., more frequent exceedance of high temperature thresholds that could impede transport operations are predicted, even under the 1.5 °C SWL, advocated by the Alliance of Small Island States (AOSIS) and reflected as an aspirational goal in the Paris Climate Agreement. Dynamic modeling of the coastal inundation under different return periods of projected extreme sea levels (ESLs) indicates that the examined airports and seaports will face increasing coastal inundation during the century. Inundation is projected for the airport runways of some of the examined international airports and most of the seaports, even from the 100-year extreme sea level under 1.5 °C SWL. In the absence of effective technical adaptation measures, both operational disruptions and coastal inundation are projected to increasingly affect all examined assets over the course of the century.  相似文献   

6.
Sea-level rise (SLR) poses a significant threat to many coastal areas and will likely have important impacts on socio-economic development in those regions. Located on the eastern coast in China, the megacity of Shanghai is particularly vulnerable to SLR and associated storm surge risks. Using the municipality of Shanghai as a case study, the possible impacts of flooding risks caused by SLR and associated storm surges on socio-economic development in the region were analysed by a Source–Pathway–Receptor–Consequence (SPRC) conceptual model. The projections of flooding risk in the study area were simulated by MIKE21 (a two-dimensional hydrodynamic model) for the three time periods of 2030, 2050 and 2100. An index system for vulnerability assessment was devised, in which flooding depth, density of population, GDP per capita, GDP per unit land, loss rate under flooding and fiscal revenue were selected as the key indicators. A quantitative spatial assessment method based on a GIS platform was established by quantifying each indicator, calculating and then grading the vulnerability index. The results showed that in the 2030 projection, 99.3 % of the areas show no vulnerability to SLR and associated storm surges under the present infrastructure. By 2050, the areas with low, moderate and high vulnerabilities change significantly to 5.3, 8.0 and 23.9 %, respectively, while by 2100, the equivalent figures are 12.9, 6.3 and 30.7 %. The application of the SPRC model, the methodology and the results from this study could assist with the objective and quantitative assessment of the socio-economic vulnerability of other similar coastal regions undergoing the impacts of SLR and associated storm surges. Based on the results of this study, mitigation and adaptation measures should be considered, which include the controlling the rate of land subsidence, the reinforcement of coastal defence systems and the introduction of adaptation in long-term urban planning.  相似文献   

7.
The quantitative analysis of hurricane impacts on coastal development in the Caribbean is surprisingly infrequent and many tools to assess physical vulnerability to sea level rise (SLR) are insufficient to evaluate risk in coastal areas exposed to wave attack during extreme events. This paper proposes a practical methodology to quantify coastal hazards and evaluate SLR impact scenarios in coastal areas, providing quantitative input for coastal vulnerability analysis. We illustrate the implementation of the proposed methodology with results from a site-specific analysis. We quantify how storm wave impacts penetrate farther inland and reach higher elevations for increasing SLR conditions. We also show that the increase in elevation of storm wave impacts is more than the nominal increase in mean sea level, and that elevation increase may be on the order of up to twice the nominal SLR. By developing design parameters for multiple scenarios, as opposed to the determination of a single SLR value for design established by consensus, this approach generates information that we argue encourages resilient design and embedding future adaptation in coastal design. We discuss how government planners and regulators, as well as real estate developers, lenders, and investors, can improve coastal planning and resilient design of coastal projects by using this approach.  相似文献   

8.
Vietnam is prone to tropical storms. Climate change effects contribute to sea level rise, floods, progression of the low water line and coastal erosion. This paper inventories the perception of local people, assesses and values main aspects of the livelihood damage caused by the tropical storms of the period 2008–2013 in three coastal communes of the Ky Anh District of the Ha Tinh Province in Central Vietnam. The communes were selected because the location of their coastal line is perpendicular to the storm itself, which made them prone to damage. The effects of increasingly extreme weather conditions on three communities in an area most affected by storms and floods on the local residents and their responses to these changing environmental conditions are analyzed and assessed. The results of questionnaires completed by randomly selected local inhabitants of these communes show that storms and related hazards such as flood, sea level rise and heavy rain are perceived as the most impacting climate change intensified phenomena on agriculture and aquaculture, livestock, household property and income. Opinions and measured data provided by the commune and district authorities allow estimating the total direct cost of the tropical storm at 1.56 million $US (The used conversion rate VND/$US is 21,730 when the research was conducted in 2014) during the period 2008–2013. The long-term costs of adaptation and social impact measures will be significantly higher. Details of the monetary figures allow identifying the physical and natural capital of the area as being most affected by the storm. Trend and cost analysis show that the total financial support for hazard prevention and management during 2014–2019 is estimated at 1.19 up to 1.32 million $US. Local stakeholders indicate that climate change adaptation should not be limited to technical measures such as strengthening dikes, but also should target planting protection forests and mangroves and land use planning. Financial support for the relocation policy, stakeholder involvement and integrating climate change adaptation in both the socioeconomic development master plan and local land use planning are also of importance.  相似文献   

9.
Whilst future air temperature thresholds have become the centrepiece of international climate negotiations, even the most ambitious target of 1.5 °C will result in significant sea-level rise and associated impacts on human populations globally. Of additional concern in Arctic regions is declining sea ice and warming permafrost which can increasingly expose coastal areas to erosion particularly through exposure to wave action due to storm activity. Regional variability over the past two decades provides insight into the coastal and human responses to anticipated future rates of sea-level rise under 1.5 °C scenarios. Exceeding 1.5 °C will generate sea-level rise scenarios beyond that currently experienced and substantially increase the proportion of the global population impacted. Despite these dire challenges, there has been limited analysis of how, where and why communities will relocate inland in response. Here, we present case studies of local responses to coastal erosion driven by sea-level rise and warming in remote indigenous communities of the Solomon Islands and Alaska, USA, respectively. In both the Solomon Islands and the USA, there is no national government agency that has the organisational and technical capacity and resources to facilitate a community-wide relocation. In the Solomon Islands, communities have been able to draw on flexible land tenure regimes to rapidly adapt to coastal erosion through relocations. These relocations have led to ad hoc fragmentation of communities into smaller hamlets. Government-supported relocation initiatives in both countries have been less successful in the short term due to limitations of land tenure, lacking relocation governance framework, financial support and complex planning processes. These experiences from the Solomon Islands and USA demonstrate the urgent need to create a relocation governance framework that protects people’s human rights.  相似文献   

10.
长江口拦门沙河槽季节性冲淤的主控因子探讨   总被引:7,自引:1,他引:6  
根据长江口南槽3a中的23次地形实测资料,揭示拦门沙航道的季节性冲淤规律及其主要影响因子,并利用所获得的经验关系对入海水沙特征年份及洪水、风暴迭加情况下河床的冲淤幅度进行了预报,结果表明:拦门沙航槽的季节性冲淤变化主要受洪水和风暴控制,在不受风暴干扰的前提下,河槽纵向上各点的水深同大通站径流量之间存在负相关关系,相关性以径流同落后1-2月的地形之间的关系为最好;随着向海距离增大,这种“滞后”时间有延长趋势,正常年份径流引起的洪枯季最大冲淤幅度约为0.6-0.7m量级,特枯水(沙)年和特丰水(沙)年引起的洪枯季最大冲淤幅度估计分别为0.4-0.5m和0.9-1.0m量级,十年一遇的风暴引起约0.4m的淤积。苦特丰水(沙)年洪水和百年一遇的强台风碰头,拦门沙河床的洪枯季冲淤幅度可能达1.5m左右量级。  相似文献   

11.
阐释了长江经济带港口代际识别的意义和UNCTAD框架下港口代际识别的标准。运用模糊模式识别的方法对长江经济带主要港口进行代际识别测度,并对初步识别结果做进一步分析和修正。研究表明:①长江经济带港口代际等级总体上较低,大多数处于UNCTAD框架下的第一代港和第二代港水平;②不同代际港口在空间上呈现出明显的东西分异特征,港口代际等级和港口分布密度由东向西均表现出显著的下降趋势;③从局部空间看,不同等级的港口在地理分布上呈现出一定的"省域化"特征,即在省域范围内形成以一两个高等级港为中心、其他低等级港为支线港、喂给港的港口群形态。根据研究结论,提出长江经济带建设下的港口战略转向:充分认识港口在长江综合运输体系中的作用;有序推进长江经济带港口代际更替;以港口群的形式推进港口建设和适时推进长江沿岸自贸区建设。  相似文献   

12.
Climatic drivers of potential hazards in Mediterranean coasts   总被引:1,自引:1,他引:0  
This paper studies climatic drivers (air and water temperature, precipitation rates, river discharge, sea level and storm patterns) in four Mediterranean regions: the Catalan-Valencia Coast (Spain), the Oran (Algeria) and Gabès (Tunisia) Gulfs and the western Nile Delta (Egypt). The paper also considers the potential hazards that these drivers can induce. It first analyses climatic trends in the drivers, taking into account the available time series of recorded and simulated meteo-oceanographic data from different sources. Next, it presents the general framework to assess biogeophysical hazards (flooding, erosion, droughts and water quality), followed by a simple and yet robust evaluation of those hazards for the four studied coastal sites. Assuming climate change projections under different scenarios and considering the observed trends in drivers, the resulting erosion rates due to sea-level rise and wave storm effects have been estimated. The Nile and Ebro Deltas, together with the Oran Gulf, are more vulnerable than the Gulfs of Valencia and Gabès. Regarding water quality in terms of (a) precipitation and dissolved oxygen in the water column and (b) sea surface temperature, the results show that the most vulnerable zones for the projected conditions (a) are the Gulfs of Oran, Valencia and Gabès, while the Nile Delta is the region where the decrease in water quality will be less pronounced. For the projected conditions (b), the most vulnerable zone is the Ebro Delta, while the impact in the other three cases will be smaller and of comparable magnitude. Finally, the overall future impact of these hazards (associated to climatic change) in the four sites is discussed in comparative terms, deriving some conclusions.  相似文献   

13.
海平面上升对长江三角洲地区的影响评价研究   总被引:16,自引:1,他引:15  
气候变暖导致的全球性海平面加速上升严重威胁着沿海国家和地区的持续发展。作为世界五大三角洲之一的长江三角洲及其邻近地区,其地势低平,人口稠密,经济发达,因而所受海平观上升的威胁更加严重。根据IPCC拟定的方案,对于未来海平面另速上升所造成的沿海地区脆弱性影响评价,取海平面上升30、65和100cm三种情况进行研究,本地区内岸段是我国海岸侵蚀最为严重的岸段。长江口的潮水上溯使盐水入侵、造成水质恶化,海  相似文献   

14.
从港口自身发展及港口城市发展的角度出发,重新定义了港口可持续发展能力的外延和内涵,在遵循建立可持续发展指标体系原则的基础上,形成了衡量港口可持续发展能力的评价体系。一方面该体系中指标信息的可操作性和实用性较强,数据客观真实;另一方面体系中的各类指标能够描述出评价对象的真实状况,且具有横向比较多个评价对象能力的作用。在该评价体系的基础上选取了长江三角洲港口群内的13个港口,采用聚类分析的方法,评价分析了各港口的可持续发展能力。研究结果表明,在该区域内,上海港和宁波-舟山港为第一类,凭借各自的区位条件和经济发展优势,可持续发展能力相对最高;苏州港、连云港港是第二类港口,具有不同的发展优势,可持续发展能力相对较强;其余9个港口中有的虽然在港口建设上具有明显优势,但地区发展相对落后对港口的发展也起到了阻滞作用,总体而言可持续发展能力相对较弱。  相似文献   

15.
Additional freshwater sources are required in many parts of the world, including the coastal areas of the Red River Delta (RRD), where the groundwater (GW) is generally brackish. Determining a feasible method for desalinating brackish aquifers would help provide additional freshwater sources. However, substantial desalination of brackish aquifers cannot be achieved under the natural conditions of GW flow and precipitation recharge. Although rainfall recharge to the shallow Holocene aquifer has occurred for hundreds of years, the aquifer still remains brackish since the natural hydraulic conditions do not allow a complete mixing between the fresh recharged water and aquifer salinized water or the discharging of the aquifer salinized water. The planned salt intrusion prevention gates in the Red River, Tra Ly River and Hoa River in the RRD coastal area, combined with increased GW abstraction and associated aquifer recharge with fresh river water, could result in the gradual desalination of the shallow Holocene aquifer. These effects would help improve the area’s resilience to freshwater shortages and sea level rises and would allow for the creation of a long-term sustainable water resource development plan to manage the salinization of water resources caused by sea level rises. Finite element (FE) modeling of GW flow, solute transport via GW flow and dynamic programming (DP) have been used to study the potential desalination of brackish aquifers, the magnitude of GW abstraction quantities and the spatial and temporal aspects of desalination. FE modeling of GW flow coupled with DP was utilized to identify the magnitude of sustainable abstraction quantities and the GW flow field, which is required in salt transport models. Multiple sizes of elements and time steps were used to adapt to the unsteady state of GW flow and hydraulic head variables between the elements in the FE meshes in order to ensure reasonable accuracy of numerical modeling. The GW flow and salt transport modeling and DP allowed determining quasi-steady-state GW abstraction rates and aquifer salinity levels for conditions that did and did not include the shallow Holocene unconfined aquifer recharge from rainfall. The aquifer modeled domain which is supposed to serve the pumping well field is 1.5 km2. The results showed that the Holocene aquifer may provide a stable abstraction rate of 100 m3/day starting in the 6th year (for the worst-case scenario with zero aquifer recharge from rainfall) to 130 m3/day starting in the 3rd year (for the scenario with aquifer recharge equal to 3% of the rainfall levels). During the first years of GW abstraction, the desalination of the brackish upper Holocene aquifer will mainly occur in the area close to the river, and at the 18th year of abstraction, almost the entire area between the river and line of pumping wells would be desalinized. From the 10th year of abstraction, the abstracted water has a total dissolved solids content lower than 0.5 g/l for the worst-case scenario with zero aquifer recharge from rainfall and lower than 0.42 g/l for the scenario with aquifer recharge equal to 3% of the rainfall. The modeling results indicate the simulated process by which abstraction of groundwater adjacent to the Tra Ly River could desalinize the brackish aquifer via freshwater recharge from the river.  相似文献   

16.
Small tropical islands are widely recognized as having high exposure and vulnerability to climate change and other natural hazards. Ocean warming and acidification, changing storm patterns and intensity, and accelerated sea-level rise pose challenges that compound the intrinsic vulnerability of small, remote, island communities. Sustainable development requires robust guidance on the risks associated with natural hazards and climate change, including the potential for island coasts and reefs to keep pace with rising sea levels. Here we review these issues with special attention to their implications for climate-change vulnerability, adaptation, and disaster risk reduction in various island settings. We present new projections for 2010–2100 local sea-level rise (SLR) at 18 island sites, incorporating crustal motion and gravitational fingerprinting, for a range of Intergovernmental Panel on Climate Change global projections and a semi-empirical model. Projected 90-year SLR for the upper limit A1FI scenario with enhanced glacier drawdown ranges from 0.56 to 1.01 m for islands with a measured range of vertical motion from ?0.29 to +0.10 m. We classify tropical small islands into four broad groups comprising continental fragments, volcanic islands, near-atolls and atolls, and high carbonate islands including raised atolls. Because exposure to coastal forcing and hazards varies with island form, this provides a framework for consideration of vulnerability and adaptation strategies. Nevertheless, appropriate measures to adjust for climate change and to mitigate disaster risk depend on a place-based understanding of island landscapes and of processes operating in the coastal biophysical system of individual islands.  相似文献   

17.
Small island states around the world are among the areas most vulnerable to climate change and sea level rise. In this paper, we present results from an innovative methodology for a quantitative assessment of multiple hazards on coastal risks, driven by different hydro-meteorological events, and including the effects of climate change. Moreover, we take an additional step by including in the methodology the option to assess and compare the effectiveness of possible disaster risk reduction measures. The methodology is applied to a real case study at the island of Ebeye (the Republic of the Marshall Islands). An example is provided in which a rock revetment is implemented as a risk reduction measure for the island. Results show that yearly expected damages may increase, by the end of the century, by a factor of three to four, depending on the sea level rise scenario considered, while the number of yearly affected people may double. Putting a cap on the temperature increase (e.g. 1.5 vs. 2 °C) according to the Paris Agreement may reduce damages and number of affected people by about 20 and 15%, respectively. However, impacts for same warming levels can vary substantially among different emission scenarios. Disaster risk reduction measures can be useful for mitigating risks in current and future situations but should be incorporated within long-term adaptive planning for these islands.  相似文献   

18.
长江中下游干流港群空间结构的演化特征(1985~1997年)   总被引:5,自引:1,他引:4  
以长江中下游干流沿岸为研究区域,探讨了1985年~1997年本区域港群的空间结构演化特征。统计分析表明,集中是和东或下注重港群空间结构演化的整体趋势,但同时伴随着较大的波动。整个港各和中下游各省地方港群赫佛因德指数的高低及其变化趋势说明中下游港群的集中状态处在低水平,而且这种低产集中和地方港群比较明显的分散趋势同时并存。此外,各地各不同水平的赫佛因德指数也表明了它们在集中程度上的明显差异。通过进一  相似文献   

19.
The present research focuses on estimating forest area change with respect to the ongoing forest land conversion. The study tests the hypothesis that forest land is being converted to the selected land use categories with high growth tendency and controlling deforestation rate to its half of the present level would significantly improve the land cover under forest. The rate of forest land conversion to other land use categories is analyzed and then compared with the total area expanded under three land use classes. We used Systems dynamic modeling approach to estimate forest area by simulating forest land conversion in Pakistan, projecting to 2030. The results show that rangeland, built-up area and cultivated land have increased over time; growth rate of built-up area (9%) is highest followed by rangeland area (1.7%) and cultivated area (0.3%), respectively; rangeland is the dominant category in terms of area expanded (0.74 m. ha). Sensitivity analysis showed that reducing deforestation rate to half of the past level of 1% could not significantly improve forest area; therefore, it is suggested that controlling deforestation alone is not an effective strategy unless drastic measures, e.g., demarcation of forest boundaries, land use control policy and afforestation campaign would be started in the country.  相似文献   

20.
Small island communities are inherently coastal communities, sharing many of the attributes and challenges faced by cities, towns and villages situated on the shores of larger islands and continents. In the context of rapidly changing climates, all coastal communities are challenged by their exposure to changing sea levels, to increasingly frequent and severe storms, and to the cumulative effects of higher storm surges. Across the globe, small island developing states, and small islands in larger states, are part of a distinctive set of stakeholders threatened, not only by climate change but also by shifting social, economic, and cultural conditions. C-Change is a collaborative International Community–University Research Alliance (ICURA) project whose goal is to assist participating coastal communities in Canada and the Caribbean region to share experiences and tools that aid adaptation to changes in their physical environment, including sea-level rise and the increasing frequency of extreme weather events associated with climate change. C-Change researchers have been working with eight partner communities to identify threats, vulnerabilities, and risks, to improve understanding of the ramifications of climate change to local conditions and local assets, and to increase capacity for planning for adaptation to their changing world. This paper reports on the knowledge gained and shared and the challenges to date in this ongoing collaboration between science and society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号