首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 737 毫秒
1.
This paper presents a methodological approach for the study of volatile organic compounds (VOCs) in air, emitted during storage of municipal solid waste in bales. Determination of VOCs was based on sampling with adsorbent tubes followed by automated analysis using on-line work-up with a thermal desorption unit directly connected to a gas chromatograph-mass spectrometer. Using calculation algorithms and multidimensional statistical analysis of large amounts of data collected, the information was compressed and visualized. The approach was applied to initial measurements of emissions of VOCs from 24 bales composed of municipal solid waste, each bale stored in a wooden box. These bales were produced using the two types of baling equipment available, resulting in cylindrical or rectangular bales, with different densities. Hundreds of different VOCs emitted from these bales sorted out into groups with different chemical structure. Differences in VOC concentrations in air were found between wastes stored in cylindrical or rectangular bales. For instance, it was found that the concentration of VOCs (relative to the concentration of toluene), in the first experiment after storing, for cylindrical bales with six layers of LDPE was 115 +/- 10 microg m(-3), while for rectangular bales it was only 64 +/- 8 microg m(-3). The procedure used for data interpretation suggested different degradation mechanisms in different types of bales. The use of multiple data interfaces, multidimensional statistics and automated chemical analysis methods are likely to be more and more common for waste companies and waste research in the near future. This is due to the interdisciplinary nature of the subject that relies heavily on various areas of science and information technology.  相似文献   

2.
This paper first reviews the chemical, physical and biological processes, and the environmental performance of MSW compacted and plastic-wrapped into air-tight bales with low-density polyethylene (LDPE). The baling-wrapping process halts the short and half-term biological activity and consequently the emission of gases and leachates. It also facilitates the handling of the refuse, and considerably reduces the main environmental impacts of a landfill. The main technologies available for baling-wrapping MSW are also presented. Furthermore, a cost analysis comparing a conventional landfill (CL) without baling system versus two landfills using different baling-wrapping technologies (rectangular and cylindrical bales) is carried out. The results are presented comparatively under the conditions of construction, operation and maintenance and postclosure, as required by European Directive 1999/31. A landfill using rectangular plastic-wrapped bales (LRPB) represents an economically competitive option compared to a CL. The increased capacity of the waste disposal zone when using rectangular bales due to the high density of the bales compensates for the increased operating and maintenance (O&M) costs of the method. Landfills using cylindrical plastic-wrapped bales (LCPB's) do not fare so well, mainly because the density within the bales is lower, the cylindrical geometry of the bales does not allow such an efficient use of the space within the landfill, and the processing capacity of the machinery is lower. From the cost model, the resulting unit costs per tonne in a LRPB, a LCPB and a CL for 100,000 t/year of waste, an operation time of 15 years and a landfill depth (H) of 20 m, are 31.52, 43.36 and 31.83 /t, respectively.  相似文献   

3.
Environmental and safety aspects of seasonal storage of baled municipal solid waste to be used as fuel for energy production (waste fuel), was investigated and experiments were carried out on burning of bales. The flammability, combustion processes and emissions were studied by simulating, in small-scale, potential effects of a possible fire in full-scale bale storage area. Despite the high water content and the high density of the bales, after setting fire, the bales burned well, even though no risk for self-ignition exists. The following parameters of the combustion product were measured continuously: O2, CO2, CO, SO2, NO, NO2, NOx, THC, smoke gas rate and the temperature of the smoke. Soot particles in the smoke were collected and analysed for Hg, Pb, Cd, As, Ni, Cr, Mn, Cu, Co, Sb and V concentrations. The analysis of the moisture content, concentrations of Hg, Cd, HCl, HF, HBr, NH3, polyaromatic hydrocarbons (PAH), chlorinated and brominated dioxins (PCDD/F and PBrDD/F, respectively) were carried out. It was found that the PCDD/F levels (TEQs) varied according to the system used: 12.53 ng (I-TEF-88)/Nm3; 14.09 ng (I-TEF-99)/Nm3; 13.86 ng (Eadons)/Nm3. The PAH concentration was 3.04 microg/Nm3. The contents of the metals in the smoke (with the exceptions of Pb and Cd with mean values of 1.74 and 0.36 mg/m3, respectively) were below the limit values established by the Swedish Ministry of Environment for emissions from incineration plants [Swedish Ministry of Environment, (2002:1060), F?rordning 2002:1060 om avfallsf?rbr?nning. Available from http://www.notisum.se/rnp/SLS/LAG/20021060.HTM]/EU-directive [(2000/76/EC), Directive 2000/76/EC, of the European Parliament and of the Council of 4 December 2000 on the Incineration of Waste. http://www.Scotland. gov.uk/library5/environment/iecda.pdf]. The HCl concentration was 10 times higher than the limit value (mean value of 99 mg/m3).  相似文献   

4.
The debate over waste management practices has become increasingly important as human activities have begun to overload the biosphere's assimilative capacity. An effective waste management policy should be based on the principles of sustainable development, with wastes regarded as a potential resource rather than solely as something to eliminate. This approach requires an integrated waste management plan that makes full use of all available technologies. Macao is a highly populated consumer society that lacks natural resources and must therefore import almost all of its life-supporting goods and raw materials from regions outside the city. During the past 20 years, Macao has experienced an economic boom, accompanied by rapid socioeconomic development. Its discharged wastes have increased steadily during this period. This paper employs emergy analysis to investigate Macao's waste treatment in 1995, 1999, 2003 and 2004. The emergy of gaseous emissions was estimated to be 4.76 x 10(21) sej in 2004. Since 1992, Macao's municipal solid waste (MSW) has been incinerated to reduce its volume. The transformity of the fly ash and slag produced by this treatment in 2004, and the electricity generated by the incinerator, equaled 5.11 x 10(11) sej/g, 6.01 x 10(10) sej/g, and 7.61 x 10(6) sej/J, respectively. A large investment of natural resources and technology is required for the treatment of wastes; the feedback ratio of wastes, which represents the scale of the treatment of inputs, equaled 0.02 for MSW, 0.11 for sewage, and 0.06 for gaseous emissions.  相似文献   

5.
Odor pollution caused by municipal solid waste (MSW) treatment plants has become a growing public concern. Although aerobic pretreatment of MSW has advantages in accelerating landfill stabilization, the property of non-methane organic compound (NMOC) emissions from aerobically pretreated MSW (APMSW) during landfilling is unknown. To investigate NMOC emissions from anaerobic degradation of APMSW and to study the impact of organic compositions of APMSW and their decomposition stages, five simulative anaerobic bioreactors (R1-R5) were filled up with APMSW of different original organic compositions in a laboratory. For NMOC analysis, samples were collected from the gas that accumulated separately during two successive independent stages of the whole experiment. The results showed that the cumulative quantities of NMOCs from R1 to R5 were 1.11, 0.30, 0.18, 0.28, and 0.31 mg/kg DM, respectively, when volatile solid was degraded by 34.8-47.2%. As the organic content of the original waste was lower, the proportion of NMOCs generated in the early stage of anaerobic degradation became higher. Multiple linear regression analyses of the relationship between the quantities of degraded organics and generated NMOCs showed that lipid and protein have a strong effect on NMOC amount. The effect of lipid on NMOC quantity lasts longer than that of protein. This observation suggests that controlling the lipid and protein contents in MSW can reduce the odor from landfills.  相似文献   

6.
Landfill gas (LFG) emissions from municipal solid waste (MSW) landfills are an important environmental concern in Brazil due to the existence of several uncontrolled disposal sites. A program of laboratory and field tests was conducted to investigate gas generation in and emission from an Experimental Cell with a 36,659-ton capacity in Recife/PE - Brazil. This investigation involved waste characterisation, gas production and emission monitoring, and geotechnical and biological evaluations and was performed using three types of final cover layers. The results obtained in this study showed that waste decomposes 4-5 times faster in a tropical wet climate than predicted by traditional first-order models using default parameters. This fact must be included when considering the techniques and economics of projects developed in tropical climate countries. The design of the final cover layer and its geotechnical and biological behaviour proved to have an important role in minimising gas emissions to the atmosphere. Capillary and methanotrophic final cover layers presented lower CH4 flux rates than the conventional layer.  相似文献   

7.
Reduction and recycling initiatives such as producer responsibility and pay-as-you-throw are being implemented in Taiwan. This paper presents a study assessing the impact of recently implemented municipal solid waste (MSW) reduction and recycling management strategies on the characteristics of waste feedstock for incineration in Taiwan. Through the periodic sampling of two typical MSW incineration plants, proximate and ultimate analyses were conducted according to standard methods to explore the influence of MSW reduction and recycling management strategies on incineration feed waste characteristics. It was observed that the annual amount of MSW generated in 2005 decreased by about 10% compared to 2003 and that the characteristics of MSW have changed significantly due to recent management strategies. The heating value of the MSW generated in Taiwan increased yearly by about 5% after program implementation. A comparison of the monthly variations in chemical concentrations indicated that the chlorine content in MSW has changed. This change results from usage reduction of PVC plastic due to the recycling fund management (RFM) program, and the food waste as well as salt content reduction due to the total recycling for kitchen garbage program. This achievement will improve the reduction of dioxin emissions from MSW incineration. In summary, management strategies must be conducted in tandem with the global trend to achieve a zero-waste-discharge country. When implementing these strategies and planning for future MSW management systems, it is important to consider the changes that may occur in the composition and characteristics of MSW over time.  相似文献   

8.
Predicted growth of world urban food waste and methane production.   总被引:1,自引:0,他引:1  
Landfill gas emissions are one of the largest anthropogenic sources of methane especially because of food waste (FW). To prevent these emissions growing with world population, future FW best management practices need to be evaluated. The objective of this paper was therefore to predict FW production for 2025 if present management practices are maintained, and then, to compare the impact of scenario 1: encouraging people to stay in rural areas and composting 75% of their FW, and; of scenario 2, where in addition to scenario 1, composting or anaerobically digesting 75% of urban FW (UFW). A relationship was established between per capita gross domestic product (GDP) and the population percentage living in urban areas (%UP), as well as production of municipal solid waste (MSW) and UFW. With estimated GDP and population growth per country, %UP and production of MSW and UFW could be predicted for 2025. A relatively accurate (R(2) > 0.85) correlation was found between GDP and %UP, and between GDP and mass of MSW and FW produced. On a global scale, MSW and UFW productions were predicted to increase by 51 and 44%, respectively, from 2005 to 2025. During the same period, and because of its expected economic development, Asia was predicted to experience the largest increase in UFW production, of 278 to 416 Gkg. If present MSW management trends are maintained, landfilled UFW was predicted to increase world CH4 emissions from 34 to 48 Gkg and the landfill share of global anthropogenic emissions from 8 to 10%. In comparison with maintaining present FW management practices, scenario 1 can lower UFW production by 30% and maintain the landfill share of the global anthropogenic emissions at 8%. With scenario 2, the landfill share of global anthropogenic emissions could be further reduced from 8 to 6% and leachate production could be reduced by 40%.  相似文献   

9.
In the present paper, a new system of purpose built landfill (PBLF) has been proposed for the control of methane emissions from municipal solid waste (MSW), by considering all favourable conditions for improved methane generation in tropical climates. Based on certain theoretical considerations multivariate functional models (MFMs) are developed to estimate methane mitigation and energy generating potential of the proposed system. Comparison was made between the existing waste management system and proposed PBLF system. It has been found that the proposed methodology not only controlled methane emissions to the atmosphere but also could yield considerable energy in terms of landfill gas (LFG). Economic feasibility of the proposed system has been tested by comparing unit cost of waste disposal in conventional as well as PBLF systems. In a case study of MSW management in Mumbai (INDIA), it was found that the unit cost of waste disposal with PBLF system is seven times lesser than that of the conventional waste management system. The proposed system showed promising energy generation potential with production of methane worth of Rs. 244 millions/y ($5.2 million/y). Thus, the new waste management methodology could give an adaptable solution for the conflict between development, environmental degradation and natural resources depletion.  相似文献   

10.
The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions.This study is designed to estimate the N2O emission factors from MSW incineration plants, and calculate the N2O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N2O concentrations from the MSW incinerators were measured using gas chromatography-electron capture detection (GC-ECD) equipment.The average of the N2O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153 g-N2O/ton-waste, respectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N2O emissions from MSW incineration comprised 19% of the total N2O emissions.  相似文献   

11.
The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250kg of coal per ton of waste. Based on observed environmental impacts of incineration, fossil CO(2) and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits in mitigating global warming, whereas incineration with a mass of coal can avoid more impacts to acidification, photochemical ozone and nutrient enrichment because of increased electricity substitution and reduced emission from coal power plants. The "Emission standard of air pollutants for thermal power plants (GB13223-2011)" implemented in 2012 introduced stricter policies on controlling SO(2) and NO(x) emissions from coal power plants. Thus, increased use of auxiliary coal during incineration yields fewer avoided impacts on acidification and nutrient enrichment. When two-thirds of ash is source-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese political reduction targets. Results indicate that heavy metal and acidic gas emissions should be given more attention in waste incineration. This study provides scientific support for the management of MSW systems dominated by incineration with auxiliary coal in China.  相似文献   

12.
Municipal solid waste disposal in Portugal   总被引:1,自引:0,他引:1  
In recent years municipal solid waste (MSW) disposal has been one of the most important environmental problems for all of the Portuguese regions. The basic principles of MSW management in Portugal are: (1) prevention or reduction, (2) reuse, (3) recovery (e.g., recycling, incineration with heat recovery), and (4) polluter-pay principle. A brief history of legislative trends in waste management is provided herein as background for current waste management and recycling activities. The paper also presents and discusses the municipal solid waste management in Portugal and is based primarily on a national inquiry carried out in 2003 and directed to the MSW management entities. Additionally, the MSW responsibility and management structure in Portugal is presented, together with the present situation of production, collection, recycling, treatment and elimination of MSW. Results showed that 96% of MSW was collected mixed (4% was separately collected) and that 68% was disposed of in landfill, 21% was incinerated at waste-to-energy plants, 8% was treated at organic waste recovery plants and 3% was delivered to sorting. The average generation rate of MSW was 1.32 kg/capita/day.  相似文献   

13.
Landfill leachate characterization is a critical factor in establishing a corresponding effective management strategy or treatment process. However, it is often difficult to forecast leachate quality because of a variety of influencing factors such as waste composition and landfill operations. This paper describes leachate formation mechanisms, summarizes leachate quality indicators, and investigates the temporal variation of leachate quality from pre-sorted and baled municipal solid waste characterized with high organic and moisture content. The purpose of the study is to evaluate the potential effects of waste composition and site-specific operational procedures on biodegradation processes and leachate quality at a field-scale landfill that receives in excess of 1800 tonnes per day of refuse. For this purpose, waste disposal and leachate generation rates were monitored and leachate samples were collected for a period of 18 months during the early stages of refuse deposition. Chemical analysis was performed on the samples and the temporal variation of several parameters were monitored including pH, COD, TOC, TDS, chlorides, sulfates, orthophosphates, nitrates, ammonia nitrogen, hardness, and heavy metals. Chemical concentration levels were related to biological activity within the landfill and the results indicated that: (1) pre-sorting and baling of the waste did not hinder waste stabilization; and (2) the high organic and moisture contents resulted in an extremely strong leachate, particularly at the onset of biodegradation processes, which can affect the leachate treatment facility.  相似文献   

14.
A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.  相似文献   

15.
Water flows were analysed for the filling phase and the first 4 years after closure of two types of full-scale landfill cells: 'special cells' containing mostly fly ash from municipal solid waste (MSW) incineration disposed with other special/hazardous waste, and 'biocells' (biological cells) containing co-disposed MSW and food industry sludge. The landfill cells were constructed about -1.5 m above sea level (masl) at Lomma Bay, southern Sweden. The hydrological effects of water intrusion into the special cells from surroundings and sludge moisture within the biocells were studied. HELP modelling of hydrological processes predicted delay in peaks of leachate generation from uncovered special cells following rain, which was not confirmed. Faster leachate production as a response to rainfall from special cells than from biocells was observed. It was inferred that special waste has more intensive channelling, lower water absorption and higher hydraulic conductivity than mixtures of sludge/MSW. To avoid convergence problems in modelling uncovered special cells, the use of a 5 cm deep top layer with saturated hydraulic conductivity 1.7 x 10(-3) cm s(-1), porosity 0.437, and field capacity 0.105, is suggested.  相似文献   

16.
This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price.  相似文献   

17.
Greenhouse gas (GHG) emissions from post-consumer waste and wastewater are a small contributor (about 3%) to total global anthropogenic GHG emissions. Emissions for 2004-2005 totalled 1.4 Gt CO2-eq year(-1) relative to total emissions from all sectors of 49 Gt CO2-eq year(-1) [including carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and F-gases normalized according to their 100-year global warming potentials (GWP)]. The CH4 from landfills and wastewater collectively accounted for about 90% of waste sector emissions, or about 18% of global anthropogenic methane emissions (which were about 14% of the global total in 2004). Wastewater N2O and CO2 from the incineration of waste containing fossil carbon (plastics; synthetic textiles) are minor sources. Due to the wide range of mature technologies that can mitigate GHG emissions from waste and provide public health, environmental protection, and sustainable development co-benefits, existing waste management practices can provide effective mitigation of GHG emissions from this sector. Current mitigation technologies include landfill gas recovery, improved landfill practices, and engineered wastewater management. In addition, significant GHG generation is avoided through controlled composting, state-of-the-art incineration, and expanded sanitation coverage. Reduced waste generation and the exploitation of energy from waste (landfill gas, incineration, anaerobic digester biogas) produce an indirect reduction of GHG emissions through the conservation of raw materials, improved energy and resource efficiency, and fossil fuel avoidance. Flexible strategies and financial incentives can expand waste management options to achieve GHG mitigation goals; local technology decisions are influenced by a variety of factors such as waste quantity and characteristics, cost and financing issues, infrastructure requirements including available land area, collection and transport considerations, and regulatory constraints. Existing studies on mitigation potentials and costs for the waste sector tend to focus on landfill CH4 as the baseline. The commercial recovery of landfill CH4 as a source of renewable energy has been practised at full scale since 1975 and currently exceeds 105 Mt CO2-eq year(-1). Although landfill CH4 emissions from developed countries have been largely stabilized, emissions from developing countries are increasing as more controlled (anaerobic) landfilling practices are implemented; these emissions could be reduced by accelerating the introduction of engineered gas recovery, increasing rates of waste minimization and recycling, and implementing alternative waste management strategies provided they are affordable, effective, and sustainable. Aided by Kyoto mechanisms such as the Clean Development Mechanism (CDM) and Joint Implementation (JI), the total global economic mitigation potential for reducing waste sector emissions in 2030 is estimated to be > 1000 Mt CO2-eq (or 70% of estimated emissions) at costs below 100 US$ t(-1) CO2-eq year(-1). An estimated 20-30% of projected emissions for 2030 can be reduced at negative cost and 30-50% at costs < 20 US$ t(-) CO2-eq year(-1). As landfills produce CH4 for several decades, incineration and composting are complementary mitigation measures to landfill gas recovery in the short- to medium-term--at the present time, there are > 130 Mt waste year(-1) incinerated at more than 600 plants. Current uncertainties with respect to emissions and mitigation potentials could be reduced by more consistent national definitions, coordinated international data collection, standardized data analysis, field validation of models, and consistent application of life-cycle assessment tools inclusive of fossil fuel offsets.  相似文献   

18.
Gasification characteristics of MSW and an ANN prediction model   总被引:1,自引:0,他引:1  
Gasification characteristics make up the important parts of municipal solid waste (MSW) gasification and melting technology. These characteristics are closely related to the composition of MSW, which alters with climates and seasons. It is important to find a practical way to predict gasification characteristics. In this paper, five typical kinds of organic components (wood, paper, kitchen garbage, plastic, and textile) and three representative types of simulated MSW are gasified in a fluidized-bed at 400-800 degrees C with the equivalence ratio (ER) in the range of 0.2-0.6. The lower heating value (LHV) of gas, gasification products, and gas yield are reported. The results indicate that gasification characteristics are different from sample to sample. Based on the experimental data, an artificial neural networks (ANN) model is developed to predict gasification characteristics. The training and validating relative errors are within +/-15% and +/-20%, respectively, and predicting relative errors of an industrial sample are below +/-25%. This indicates that it is acceptable to predict gasification characteristics via ANN model.  相似文献   

19.
We study the impact of some local policies aimed at municipal solid waste (MSW) reduction on the cost efficiency of MSW collection and disposal. We explicitly account for differences between municipalities in background conditions by using a bootstrapped version of the Data Envelopment Analysis methodology in combination with a matching technique. Using data on 299 municipalities in Flanders, Belgium, for the year 2003, our results indicate that municipalities that are member of a waste collection joint venture, or that subscribe to a voluntary agreement to reduce MSW at the highest ambition level, collect and process MSW more efficiently than other municipalities. Weekly instead of two-weekly waste collection, or using a weight-based pricing system appears to have no impact on efficiency. Our results show that aiming at MSW reduction does not lead to lower efficiency of public service provision, even on the contrary.  相似文献   

20.
Bioreactor landfills are operated to enhance refuse decomposition, gas production, and waste stabilization. The major aspect of bioreactor landfill operation is the recirculation of collected leachate back through the refuse mass. Due to the accelerated decomposition and settlement of solid waste, bioreactor landfills are gaining popularity as an alternative to the conventional landfill. The addition or recirculation of leachate to accelerate the waste decomposition changes the geotechnical characteristics of waste mass. The daily cover soils, usually up to 20–30% of total MSW volumes in the landfill, may also influence the decomposition and shear strength behavior of MSW. The objective of this paper is to study the effects of daily covers soils on the shear strength properties of municipal solid waste (MSW) in bioreactor landfills with time and decomposition. Two sets of laboratory-scale bioreactor landfills were simulated in a laboratory, and samples were prepared to represent different phases of decomposition. The state of decomposition was quantified by methane yield, pH, and volatile organic content (VOC). Due to decomposition, the matrix structure of the degradable solid waste component was broken down and contributed to a significant decrease in the reinforcing effect of MSW. However, the daily cover soil, a non-degradable constituent of MSW, remains constant. Therefore, the interaction between daily cover soil particles and MSW particles will affect shear strength behavior. A number of triaxial tests were performed to evaluate the shear strength of MSW. The test results indicated that the shear strength of MSW was affected by the presence of cover soils. The friction angle of MSW with the presence of cover soil is higher than the friction angle of MSW without any cover soils. The friction angle of MSW increased from 27° to 30° due to the presence of cover soils for Phase 1 samples. The increased strength was attributed to the friction nature of sandy soil that was used as daily covers soils. Therefore, the effects of cover soils on the shear strength properties of MSW should be evaluated and taken into consideration during stability analyses and design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号