首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Analytical solutions for flow fields near continuous wall reactive barriers   总被引:1,自引:0,他引:1  
Permeable reactive barriers (PRBs) are widely applied for in-situ remediation of contaminant plumes transported by groundwater. Besides the goal of a sufficient contaminant remediation inside the reactive cell (residence time) the width of plume intercepted by a PRB is of critical concern. A 2-dimensional analytical approach is applied to determine the flow fields towards rectangular PRBs of the continuous wall (CW) configuration with and without impermeable side walls (but yet no funnel). The approach is based on the conformal mapping technique and assumes a homogeneous aquifer with a uniform ambient flow field. The hydraulic conductivity of the reactive material is furthermore assumed to exceed the conductivity of the aquifer by at least one order of magnitude as to neglect the hydraulic gradient across the reactor. The flow fields are analyzed regarding the widths and shapes of the respective capture zones as functions of the dimensions (aspect ratio) of the reactive cell and the ambient groundwater flow direction. Presented are an improved characterization of the advantages of impermeable side walls, a convenient approach to improved hydraulic design (including basic cost-optimization) and new concepts for monitoring CW PRBs. Water level data from a CW PRB at the Seneca Army Depot site, NY, are used for field demonstration.  相似文献   

2.
Geochemical and mineralogical changes were evaluated at a field Fe0-PRB at the Oak Ridge Y-12 site concerning operation performance during the treatment of U in high NO3- groundwater. In the 5-yr study period, the Fe0 remained reactive as shown in pore water monitoring data, where increases in pH and the removal of certain ionic species persisted. However, coring revealed varying degrees of cementation. After 3.8-yr treatment, porosity reduction of up to 41.7% was obtained from mineralogical analysis on core samples collected at the upgradient gravel-Fe0 interface. Elsewhere, Fe0 filings were loose with some cementation. Fe0 corrosion and pore volume reduction at this site are more severe due to the presence of NO3- at a high level. Tracer tests indicate that hydraulic performance deteriorated: the flow distribution was heterogeneous and under the influence of interfacial cementation a large portion of water was diverted around the Fe0 and transported outside the PRB. Based on the equilibrium reductions of NO3- and SO4(2-) by Fe0 and mineral precipitation, geochemical modeling predicted a maximum of 49% porosity loss for 5 yr of operation. Additionally, modeling showed a spatial distribution of mineral precipitate volumes, with the maximum advancing from the interface toward downgradient with time. This study suggests that water quality monitoring, coupled with hydraulic monitoring and geochemical modeling, can provide a low-cost method for assessing PRB performance.  相似文献   

3.
Geochemical and mineralogical changes were evaluated at a field Fe0-PRB at the Oak Ridge Y-12 site concerning operation performance during the treatment of U in high NO3- groundwater. In the 5-year study period, the Fe0 remained reactive as shown in pore-water monitoring data, where increases in pH and the removal of certain ionic species persisted. However, coring revealed varying degrees of cementation. After 3.8-year treatment, porosity reduction of up to 41.7% was obtained from mineralogical analysis on core samples collected at the upgradient gravel-Fe0 interface. Elsewhere, Fe0 filings were loose with some cementation. Fe0 corrosion and pore volume reduction at this site are more severe due to the presence of NO3- at a high level. Tracer tests indicate that hydraulic performance deteriorated: the flow distribution was heterogeneous and under the influence of interfacial cementation a large portion of water was diverted around the Fe0 and transported outside the PRB. Based on the equilibrium reductions of NO3- and SO4(2-) by Fe0 and mineral precipitation, geochemical modeling predicted a maximum of 49% porosity loss for 5 years of operation. Additionally, modeling showed a spatial distribution of mineral precipitate volumes, with the maximum advancing from the interface toward downgradient with time. This study suggests that water quality monitoring, coupled with hydraulic monitoring and geochemical modeling, can provide a low-cost method for assessing PRB performance.  相似文献   

4.
Column experiments and numerical simulation were conducted to test the hypothesis that iron material having a high corrosion rate is not beneficial for the long-term performance of iron permeable reactive barriers (PRBs) because of faster passivation of iron and greater porosity loss close to the influent face of the PRBs. Four iron materials (Connelly, Gotthart-Maier, Peerless, and ISPAT) were used for the column experiments, and the changes in reactivity toward cis-dichloroethene (cis-DCE) degradation in the presence of dissolved CaCO3 were evaluated. The experimental results showed that the difference in distribution of the accumulated precipitates, resulting from differences in iron corrosion rate, caused a difference in the migration rate of the cis-DCE profiles and a significant difference in the pattern of passivation, indicating a faster passivation in the region close to the influent end for the material having a higher corrosion rate. For the numerical simulation, the accumulation of secondary minerals and reactivity loss of iron were coupled using an empirically-derived relationship that was incorporated into a multi-component reactive transport model. The simulation results provided a reasonable representation of the evolution of iron reactivity toward cis-DCE treatment and the changes in geochemical conditions for each material, consistent with the observed data. The simulations for long-term performance were also conducted to further test the hypothesis and predict the differences in performance over a period of 40 years under typical groundwater conditions. The predictions showed that the cases of higher iron corrosion rates had earlier cis-DCE breakthrough and more reduction in porosity starting from near the influent face, due to more accumulation of carbonate minerals in that region. Therefore, both the experimental and simulation results appear to support the hypothesis and suggest that reactivity changes of iron materials resulting from evolution of geochemical conditions should be considered in the design of iron PRBs.  相似文献   

5.
Long-term column experiments were conducted under different geochemical conditions to estimate the longevity of Fe 0 permeable reactive barriers (PRBs) treating hexavalent chromium (Cr(VI)). Secondary carbonate minerals were precipitated, and their effects on the performance, such as differences in the mechanism for Cr removal and the changes in system hydraulics, were assessed. Sequestration of Cr(VI) occurred primarily by precipitation of Fe(III)-Cr(III) (oxy)hydroxides. Trace amounts of Cr were observed in iron hydroxy carbonate presumably due to substitution of Cr3+ for Fe3+. The formation of Fe(III)-Cr(III) (oxy)hydroxide greatly decreased the reactivity of the Fe 0 and thus resulted in migration of the Cr removal front. Carbonate minerals did not appear to contribute to further passivation with regard to reactivity toward Cr removal; rather, the column receiving high contents of dissolved calcium carbonate showed slightly enhanced Cr removal by means of a higher corrosion rate of Fe 0 and because of sequestration by an iron hydroxy carbonate. Precipitation of carbonates, however, governed other geochemical parameters. The porosity and hydraulic conductivity in the column receiving high contents of dissolved calcium carbonate did not indicate a great loss in system permeability because the accumulation of carbonates declined as the Fe 0 was passivated over time. However, the accumulated carbonates and associated Fe(III)-Cr(III) (oxy)hydroxide could cause problems because the presence of these solids resulted in a decline in flow rate after about 1400 pore volumes of operation.  相似文献   

6.
Long-term performance is a key consideration for the granular iron permeable reactive barrier (PRB) technology because the economic benefit relies on sustainable operation for substantial periods of time. However, predictions on the long-term performance have been limited mainly because of the lack of reliable modeling tools. This study evaluated the predictive capability of a recently-developed reactive transport model at two field-scale PRBs, both having relatively high concentrations of dissolved carbonate in the native groundwater. The first site, with 8 years of available monitoring data, was a funnel-and-gate installation, with a low groundwater velocity through the gate (about 0.12 m d(-1)). The loss in iron reactivity caused by secondary mineral precipitation was small, maintaining relatively high removal rates for chlorinated organics. The simulated concentrations for most constituents in the groundwater were within the range of the monitoring data. The second site, with monitoring data available for 5 years, was a continuous wall PRB, designed for a groundwater velocity of 0.9 m d(-1). A comparison of measured and simulated aqueous concentrations suggested that the average groundwater velocity through the PRB could be lower than the design value by a factor of two or more. The distribution and amounts of carbonate minerals measured in core samples supported the decreased groundwater velocity used in the simulation. The generally good agreement between the simulated and measured aqueous and solid-phase data suggest that the model could be an effective tool for predicting long-term performance of granular iron PRBs, particularly in groundwater with high concentrations of carbonate.  相似文献   

7.
The operating life of an Fe(0)-based permeable reactive barrier (PRB) is limited due to chemical reactions of Fe(0) in groundwater. The relative contributions from mineral precipitation, gas production, and microbial activity to the degradation of PRB performance have been uncertain. In this controlled field study, nitrate-rich, site groundwater was treated by Fe(0) in large-volume, flow-through columns to monitor the changes in chemical and hydraulic parameters over time. Tracer tests showed a close relationship between hydraulic residence time and pH measurements. The ionic profiles suggest that mineral precipitation and accumulation is the primary mechanism for pore clogging around the inlet of the column. Accumulated N(2) gas generated by biotic processes also affected the hydraulics although the effects were secondary to that of mineral precipitation. Quantitative estimates indicate a porosity reduction of up to 45.3% near the column inlet over 72 days of operation under accelerated flow conditions. According to this study, preferential flow through a PRB at a site with similar groundwater chemistry should be detected over approximately 1 year of operation. During the early operation of a PRB, pH is a key indicator for monitoring the change in hydraulic residence time resulting from heterogeneity development. If the surrounding native material is more conductive than the clogged Fe-media, groundwater bypass may render the PRB ineffective for treating contaminated groundwater.  相似文献   

8.
Geophysical methods have been proposed as technologies for non-invasively monitoring geochemical alteration in permeable reactive barriers (PRBs). We conducted column experiments to investigate the effect of mineralogy on the electrical signatures resulting from iron corrosion and mineral precipitation in Fe0 columns using (a) Na2SO4, and (b) NaHCO3 plus CaCl2 mixture, solutions. At the influent interface where the reactions were most severe, a contrasting time-lapse electrical response was observed between the two columns. Solid phase analysis confirmed the formation of corrosion halos and increased mineralogical complexity in the corroded sections of the columns compared to the minimal/non-corroded sections. We attribute the contrasting time-lapse signatures to the differences in the electrical properties of the mineral phases formed within the two columns. While newly precipitated/transformed polarizable and semi-conductive iron oxides (mostly magnetite and green rust) increase the polarization and conductivity of the sulfate column, the decrease of both parameters in the bicarbonate column is attributed to the precipitation of non-polarizable and non-conductive calcite. Our results show that precipitate mineralogy is an important factor influencing the electrical properties of the corroded iron cores and must be considered if electrical geophysical methods are to be developed to monitor PRB barrier corrosion processes in situ.  相似文献   

9.
This paper evaluates the importance of seven types of parameters to virus transport: hydraulic conductivity, porosity, dispersivity, sorption rate and distribution coefficient (representing physical-chemical filtration), and in-solution and adsorbed inactivation (representing virus inactivation). The first three parameters relate to subsurface transport in general while the last four, the sorption rate, distribution coefficient, and in-solution and adsorbed inactivation rates, represent the interaction of viruses with the porous medium and their ability to persist. The importance of four types of observations to estimate the virus-transport parameters are evaluated: hydraulic heads, flow, temporal moments of conservative-transport concentrations, and virus concentrations. The evaluations are conducted using one- and two-dimensional homogeneous simulations, designed from published field experiments, and recently developed sensitivity-analysis methods. Sensitivity to the transport-simulation time-step size is used to evaluate the importance of numerical solution difficulties. Results suggest that hydraulic conductivity, porosity, and sorption are most important to virus-transport predictions. Most observation types provide substantial information about hydraulic conductivity and porosity; only virus-concentration observations provide information about sorption and inactivation. The observations are not sufficient to estimate these important parameters uniquely. Even with all observation types, there is extreme parameter correlation between porosity and hydraulic conductivity and between the sorption rate and in-solution inactivation. Parameter estimation was accomplished by fixing values of porosity and in-solution inactivation.  相似文献   

10.
A newly developed reactive transport model was used to evaluate the potential effects of mine closure on the geochemical evolution in the aquifer downgradient from a mine site. The simulations were conducted for the K?nigstein uranium mine located in Saxony, Germany. During decades of operation, uranium at the former mine site had been extracted by in situ acid leaching of the ore underground, while the mine was maintained in a dewatered condition. One option for decommissioning is to allow the groundwater level to rise to its natural level, flooding the mine workings. As a result, pore water containing high concentrations of dissolved metals, radionuclides, and sulfate may be released. Additional contamination may arise due to the dissolution of minerals contained in the aquifer downgradient of the mine. On the other hand, dissolved metals may be attenuated by reactions within the aquifer. The geochemical processes and interactions involved are highly non-linear and their impact on the quality of the groundwater and surface water downstream of the mine is not always intuitive. The multicomponent reactive transport model MIN3P, which can describe mineral dissolution-precipitation reactions, aqueous complexation, and oxidation-reduction reactions, is shown to be a powerful tool for investigating these processes. The predictive capabilities of the model are, however, limited by the availability of key geochemical parameters such as the presence and quantities of primary and secondary mineral phases. Under these conditions, the model can provide valuable insight by means of sensitivity analyses.  相似文献   

11.
A permeable reactive barrier (PRB) for remediation of coal spoil heap drainage in Northumberland, UK, is described. The drainage has typical chemical characteristics of pH<4, [acidity]>1400 mg/L as CaCO3, [Fe]>300 mg/L, [Mn]>165 mg/L, [Al]>100mg/L and [SO4]>6500 mg/L. During 2 years of operation the PRB has typically removed 50% of the iron and 40% of the sulphate from this subsurface spoil drainage. Bacterial sulphate reduction appears to be a key process of this remediation. Treatment of the effluent from the PRB results in further attenuation; overall reductions in iron and sulphate concentrations are 95% and 67% respectively, and acidity concentration is reduced by an order of magnitude. The mechanisms of attenuation of these, and other, contaminants in the drainage are discussed. Future research and operational objectives for this novel, low-cost, treatment system are also outlined.  相似文献   

12.
Laboratory column tests conducted to gain insight regarding the biological and chemical clogging mechanisms in a porous medium are presented. To seed the porous medium with landfill bacteria, a mixture of Keele Valley Landfill and synthetic leachate permeated through the column under anaerobic conditions for the first 9 days of operation. After this, 100% synthetic leachate was used. The synthetic leachate approximated Keele Valley Landfill leachate in chemical composition but contained negligible suspended solids and bacteria compared with real leachate. The removal of volatile fatty acids (VFAs), primarily acetate, in leachate as it passed through the medium was highly correlated with the precipitation of calcium carbonate (CaCO(3(s))) from solution. The columns experienced a decrease in drainable porosity from an initial value of about 0.38 to less than 0.1 after steady state chemical oxygen demand (COD) removal, resulting in a five-order magnitude decrease in hydraulic conductivity. The decrease in drainable porosity prior to steady state COD removal was primarily due to the growth of a biofilm on the medium surface. After steady state COD removal, calcium precipitation was at least equally responsible for the decrease in drainable porosity as biofilm growth. Clog composition analyses showed that CaCO(3(s)) was the dominant clog constituent and that 99% of the carbonate in the clog material was bound to calcium.  相似文献   

13.
The delineation of well capture zones is of utmost environmental and engineering relevance as pumping wells are commonly used both for drinking water supply needs, where protection zones have to be defined, and for investigation and remediation of contaminated aquifers. We analyze the probabilistic nature of well capture zones within the well field located at the "Lauswiesen" experimental site. The test site is part of an alluvial heterogeneous aquifer located in the Neckar river valley, close to the city of Tübingen in South-West Germany. We explore the effect of different conceptual models of the structure of aquifer heterogeneities on the delineation of three-dimensional probabilistic well catchment and time-related capture zones, in the presence of migration of conservative solutes. The aquifer is modeled as a three-dimensional, doubly stochastic composite medium, where distributions of geo-materials and hydraulic properties are uncertain. We study the relative importance of uncertain facies geometry and uncertain hydraulic conductivity and porosity on predictions of catchment and solute time of travel to the pumping well by focusing on cases in which (1) the facies distribution is random, but the hydraulic properties of each material are fixed, and (2) both facies geometry and material properties vary stochastically. The problem is tackled within a conditional numerical Monte Carlo framework. Results are provided in terms of probabilistic demarcations of the three-dimensional well catchment and time-related capture zones. Our findings suggest that the uncertainty associated with the prediction of the location of the outer boundary of well catchment at the "Lauswiesen" site is significantly affected by the conceptual model adopted to incorporate the heterogeneous nature of the aquifer domain in a predictive framework. Taking into account randomness of both lithofacies distribution and materials hydraulic conductivity allows recognizing the existence of preferential flow paths that influence the extent of the well catchment and the solute travel time distribution at the site.  相似文献   

14.
Geochemical and stable carbon isotope data from closely spaced vertical intervals in a hydrocarbon-impacted aquifer were used to assess the relationship between biodegradation, mineral weathering, and enhanced bulk conductivity zones. The results show that depth zones of enhanced bulk conductivity in the contaminated aquifer had higher total dissolved solids (TDS) compared to background groundwater. The higher TDS in contaminated groundwater were due to elevated ion concentrations from enhanced mineral weathering. Depth intervals with higher concentrations of major cations overlapped with zones with higher total petroleum hydrocarbons, which were the same zones where reduction of nitrate, iron, manganese, sulfate, and methanogenesis was occurring. Hence, the zones of higher bulk conductivity may be explained by mineral weathering related to hydrocarbon biodegradation. Our results suggest that biodegradation of hydrocarbons may impart changes to the aquifer geochemistry that can be indirectly observed using geophysical techniques. We therefore argue for inclusion of geophysical investigations as part of natural attenuation assessment programs.  相似文献   

15.
Conventional methods to measure the hydraulic conductivity of an aquifer on a relatively large scale (10-100 m) require extraction of significant quantities of groundwater. This can be expensive, and otherwise problematic, when investigating a contaminated aquifer. In this study, innovative approaches that make use of tandem circulation wells to measure hydraulic conductivity are proposed. These approaches measure conductivity on a relatively large scale, but do not require extraction of groundwater. Two basic approaches for using circulation wells to measure hydraulic conductivity are presented; one approach is based upon the dipole-flow test method, while the other approach relies on a tracer test to measure the flow of water between two recirculating wells. The approaches are tested in a relatively homogeneous and isotropic artificial aquifer, where the conductivities measured by both approaches are compared to each other and to the previously measured hydraulic conductivity of the aquifer. It was shown that both approaches have the potential to accurately measure horizontal and vertical hydraulic conductivity for a relatively large subsurface volume without the need to pump groundwater to the surface. Future work is recommended to evaluate the ability of these tandem circulation wells to accurately measure hydraulic conductivity when anisotropy and heterogeneity are greater than in the artificial aquifer used for these studies.  相似文献   

16.
Calcium carbonate is a secondary mineral precipitate influencing zero valent iron (ZVI) barrier reactivity and hydraulic performance. We conducted column experiments to investigate electrical signatures resulting from concurrent CaCO3 and iron oxides precipitation under simulated field geochemical conditions. We identified CaCO3 as a major mineral phase throughout the columns, with magnetite present primarily close to the influent based on XRD analysis. Electrical measurements revealed decreases in conductivity and polarization of both columns, suggesting that electrically insulating CaCO3 dominates the electrical response despite the presence of electrically conductive iron oxides. SEM/EDX imaging suggests that the electrical signal reflects the geometrical arrangement of the mineral phases. CaCO3 forms insulating films on ZVI/magnetite surfaces, restricting charge transfer between the pore electrolyte and ZVI particles, as well as across interconnected ZVI particles. As surface reactivity also depends on the ability of the surface to engage in redox reactions via charge transfer, electrical measurements may provide a minimally invasive technology for monitoring reactivity loss due to CaCO3 precipitation. Comparison between laboratory and field data shows consistent changes in electrical signatures due to iron corrosion and secondary mineral precipitation.  相似文献   

17.
In Thun, Switzerland, a permeable reactive barrier (PRB) for Cr(VI) reduction by gray cast iron was installed in May 2008. The PRB is composed of a double array of vertical piles containing iron shavings and gravel. The aquifer in Thun is almost saturated with dissolved oxygen and the groundwater flow velocities are ca. 10-15m/day. Two years after PRB installation Cr(VI) concentrations still permanently exceed the Swiss threshold value for contaminated sites downstream of the barrier at selected localities. Groundwater δ(53/52)Cr(SRM979) measurements were used to track Cr(VI) reduction induced by the PRB. δ(53/52)Cr(SRM979) values of two samples downstream of the PRB showed a clear fractionation towards more positive values compared to four samples from the hotspot, which is clear evidence of Cr(VI) reduction induced by the PRB. Another downstream sample did not show a shift to more positive δ(53/52)Cr(SRM979) values. Because this latter location correlates with the highest downstream Cr(VI) concentration it is proposed that a part of the Cr(VI) plume is bypassing the barrier. Using a Rayleigh fractionation model a minimum present-day overall Cr(VI) reduction efficiency of ca. 15% was estimated. A series of 2D model simulations, including the fractionation of Cr isotopes, confirm that only a PRB bypass of parts of the Cr(VI) plume can lead to the observed values. Additionally, the simulations revealed that the proposed bypass occurs due to an insufficient permeability of the individual PRB piles. It is concluded that with this type of PRB a complete and long-lasting Cr(VI) reduction is extremely difficult to achieve for Cr(VI) contaminations located in nearly oxygen and calcium carbonate saturated aquifer in a regime of high groundwater velocities. Additional remediation action would limit the environmental impact and allow to reach target concentrations.  相似文献   

18.
Permeable reactive barriers (PRBs) are now an established approach for groundwater remediation. However, one concern is the deterioration of barrier material performance due to pore clogging. This study sought to quantify the effect of pore clogging on the alteration of the physical porous architecture of two novel potential PRB materials (clinoptilolite and calcified seaweed) using image analysis of SEM-derived images. Results after a water treatment contaminated with heavy metals over periods of up to 10 months identified a decrease in porosity from c. 22% to c. 15% for calcified seaweed and from c. 22% to c. 18% for clinoptilolite. Porosity was reduced by as much as 37% in a calcified seaweed column that clogged. The mean pore size (2D) of both materials slightly decreased after water treatment with c. 11% reduction in calcified seaweed and c. 7% reduction in clinoptilolite. An increase in the proportion of crack-shaped pores was observed in both materials after the contaminated water treatment, most noticeably in the bottom of columns where contaminated water first reacted with the material. The distribution of pores (within a given image) derived from the distance transform indicated the largest morphological differences in materials was recorded in calcified seaweed columns, which is likely to impact significantly on their performance as barrier materials. The magnitude of porosity reduction over a short time period in relation to predicted barrier longevity suggest these and similar materials may be unsuited for barrier installation in their present form.  相似文献   

19.
The effects of biofilm growth on flow and solute transport through a sandblasted glass parallel plate fracture was investigated. The fracture was inoculated using soil microorganisms. Glucose, oxygen and other nutrients were supplied to support growth. The biomass initially formed discrete clusters attached to the glass surfaces, but over time formed a continuous biofilm. From dye tracer tests conducted during biofilm growth, it was observed that channels and low-permeability zones dominated transport. The hydraulic conductivity of the fracture showed a sigmoidal decrease with time. The hydraulic conductivity was reduced by a factor of 0.033, from 18 to 0.6 cm/s, corresponding to a 72% decrease in the hydraulic aperture, from 500 to 140 microm. In contrast, the mass balance aperture, determined from fluoride tracer tests, remained relatively constant, indicating that the impact of biomass growth on effective fracture porosity was much less than the effect on hydraulic conductivity. Analyses of pre-biofilm tracer tests revealed that both Taylor dispersion and macrodispersion were influencing transport. During biofilm growth, only macrodispersion was dominant. The macrodispersion coefficient alpha(macro) was found to increase logarithmically with hydraulic conductivity reduction.  相似文献   

20.
We obtain an analytical solution for two-dimensional steady-state transport of conservative contaminant between injecting and pumping wells. Flow and transport are considered in the vertical cross-section. The Dupuit approximation and conformal mapping onto the complex potential domain are employed to determine the velocity and concentration distributions, respectively. We use this solution to derive a priori conditions under which widely used 1-D analytical solutions with constant velocity and dispersion coefficients provide accurate approximations. These conditions are formulated in terms of aquifer parameters, such as hydraulic conductivity, porosity and dispersivities, and remediation strategy, e.g., well spacing and pumping regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号