首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Subsurface tile drain flows can be a major s ource of nurient loss from agricultural landscapes. This study quantifies flows and nitrogen and phosphorus yields from tile drains at three intensively grazed dairy pasture sites over 3- to 5-yr periods and evaluates the capacity of constructed wetlands occupying 0.66 to 1.6% of the drained catchments too reduce nutrient loads. Continuous flow records are combined with automated flow-proportional sampling of nutrient concentrations to calculate tile drain nutrient yields and wetland mass removal rates. Annual drainage water yields rangedfrom 193 to 564 mm (16-51% of rainfall) at two rain-fed sites and from 827 to 853 mm (43-51% of rainfall + irrigation) at an irrigated site. Annually, the tile drains exported 14 to 109 kg ha(-1) of total N (TN), of which 58 to 90% was nitrate-N. Constructed wetlands intercepting these flows removed 30 to 369 gTN m(-2) (7-63%) of influent loadings annually. Seasonal percentage nitrate-N and TN removal were negatively associated with wetland N mass loadings. Wetland P removal was poor in all wetlands, with 12 to 115% more total P exported annually overall than received. Annually, the tile drains exported 0.12 to 1.38 kg ha of total P, of which 15 to 93% was dissolved reactive P. Additional measures are required to reduce these losses or provide supplementary P removal. Wetland N removal performance could be improved by modifying drainage systems to release flows more gradually and improving irrigation practices to reduce drainage losses.  相似文献   

2.
Assessment of cumulative impacts on wetlands can benefit by recognizing three fundamental wetland categories: basin, riverine, and fringe. The geomorphological settings of these categories have relevance for water quality.Basin, or depressional, wetlands are located in headwater areas, and capture runoff from small areas. Thus, they are normally sources of water with low elemental concentration. Although basin wetlands normally possess a high capacity for assimilating nutrients, there may be little opportunity for this to happen if the catchment area is small and little water flows through them.Riverine wetlands, in contrast, interface extensively with uplands. It has been demonstrated that both the capacity and the opportunity for altering water quality are high in riverine wetlands.Fringe wetlands are very small in comparison with the large bodies of water that flush them. Biogeochemical influences tend to be local, rather than having a measurable effect on the larger body of water. Consequently, the function of these wetlands for critical habitat may warrant protection from high nutrient levels and toxins, rather than expecting them to assume an assimilatory role.The relative proportion of these wetland types within a watershed, and their status relative to past impacts can be used to develop strategies for wetland protection. Past impacts on wetlands, however, are not likely to be clearly revealed in water quality records from monitoring studies, either because records are too short or because too many variables other than wetland impacts affect water quality. It is suggested that hydrologic records be used to reconstruct historical hydroperiods in wetlands for comparison with current, altered conditions. Changes in hydroperiod imply changes in wetland function, especially for biogeochemical processes in sediments. Hydroperiod is potentially a more sensitive index of wetland function than surface areas obtained from aerial photographs. Identification of forested wetlands through photointerpretation relies on vegetation that may remain intact for decades after drainage. Finally, the depositional environment of wetlands is a landscape characteristic that has not been carefully evaluated nor fully appreciated. Impacts that reverse depositional tendencies also may accelerate rates of change, causing wetlands to be large net exporters rather than modest net importers. Increases in rates as well as direction can cause stocks of materials, accumulated over centuries in wetland sediments, to be lost within decades, resulting in nutrient loading to downstream aquatic ecosystems.  相似文献   

3.
SPAtially Referenced Regression on Watershed models developed for the Upper Midwest were used to help evaluate the nitrogen‐load reductions likely to be achieved by a variety of agricultural conservation practices in the Upper Mississippi‐Ohio River Basin (UMORB) and to compare these reductions to the 45% nitrogen‐load reduction proposed to remediate hypoxia in the Gulf of Mexico (GoM). Our results indicate that nitrogen‐management practices (improved fertilizer management and cover crops) fall short of achieving this goal, even if adopted on all cropland in the region. The goal of a 45% decrease in loads to the GoM can only be achieved through the coupling of nitrogen‐management practices with innovative nitrogen‐removal practices such as tile‐drainage treatment wetlands, drainage–ditch enhancements, stream‐channel restoration, and floodplain reconnection. Combining nitrogen‐management practices with nitrogen‐removal practices can dramatically reduce nutrient export from agricultural landscapes while minimizing impacts to agricultural production. With this approach, it may be possible to meet the 45% nutrient reduction goal while converting less than 1% of cropland in the UMORB to nitrogen‐removal practices. Conservationists, policy makers, and agricultural producers seeking a workable strategy to reduce nitrogen export from the Corn Belt will need to consider a combination of nitrogen‐management practices at the field scale and diverse nitrogen‐removal practices at the landscape scale.  相似文献   

4.
We evaluated the impacts of natural wetlands and various land uses on stream nitrogen concentration in two grassland-dominated catchments in eastern Hokkaido, Japan. Analyzing land use types in drainage basins, measuring denitrification potential of its soil, and water sampling in all seasons of 2003 were performed. Results showed a highly significant positive correlation between the concentration of stream NO3-N and the proportion of upland area in drainage basins in both catchments. The regression slope, which we assumed to reflect the impact on water quality, was 24% lower for the Akkeshi catchment (0.012 +/- 0.001) than for the Shibetsu catchment (0.016 +/- 0.001). In the Akkeshi catchment, there was a significant negative correlation between the proportion of wetlands in the drainage basins and stream NO3-N concentration. Stream dissolved organic nitrogen (DON) and carbon (DOC) concentrations were significantly higher in the Akkeshi catchment. Upland and urban land uses were strongly linked to increases in in-stream N concentrations in both catchments, whereas wetlands and forests tended to mitigate water quality degradation. The denitrification potential of the soils was highest in wetlands, medium in riparian forests, and lowest in grasslands; and was significant in wetlands and riparian forests in the Akkeshi catchment. The solubility of soil organic carbon (SOC) and soil moisture tended to determine the denitrification potential. These results indicate that the water environment within the catchments, which influences denitrification potential and soil organic matter content, could have caused the difference in stream water quality between the two catchments.  相似文献   

5.
Straight, trapezoidal‐shaped surface drainage channels efficiently drain the soil profile, but their deviations from natural fluvial conditions drive the need for frequent maintenance. Ecological and socioeconomic impacts of drainage ditch maintenance activities can be significant, leading to harmful algal blooms and increased sedimentation. We developed a two‐stage ditch design that is more consistent with fluvial form and process. The approach has potential to enhance ecological services while meeting drainage needs essential for agricultural production. We studied geomorphic change of the inset channel, benches and banks of seven two‐stage ditches in Ohio, Indiana, and Michigan. Three to 10 years after construction, inset channel changes reflected natural adjustments, but not all ditches had reached their quasi‐equilibrium state. Ditches had experienced both degradation and aggradation on the benches at a rate of 0.5‐13 mm/yr. Aggradation on the benches was not likely to threaten tile drain outlets. Localized scour was observed on the banks at some sites, but at all but one site changes were not statistically significant. Except for the removal of woody vegetation, none of the ditches required routine maintenance since construction. Two‐stage ditches can be a stable, viable option for drainage ditch management if designed and installed properly on the landscape.  相似文献   

6.
In New England, patterns of glacial deposition strongly influence wetland occurrence and function. Many wetlands are associated with permeable deposits and owe their existence to groundwater discharge. Whether developed on deposits of high or low permeability, wetlands are often associated with streams and appear to play an important role in controlling and modifying streamflow. Evidence is cited showing that some wetlands operate to lessen flood peaks, and may have the seasonal effect of increasing spring discharges and depressing low flows. Wetlands overlying permeable deposits may be associated with important aquifers where they can produce slight modifications in water quality and head distribution within the aquifer. Impacts to wetlands undoubtedly will affect these functions, but the precise nature of the effect is difficult to predict. This is especially true of incremental impacts to wetlands, which may, for example, produce a change in streamflow disproportionate to wetland area in the drainage basin, i.e., a nonlinear effect as defined by Preston and Bedford (1988). Additional research is needed before hydrologic function can be reliably correlated with physical properties of wetlands and landscapes.A model is proposed to structure future research and explore relationships between hydrologic function and physical properties of wetlands and landscapes. The model considers (1) the nature of the underlying deposits (geologic type), (2) location in the drainage basin (topographic position), (3) relationship to the principal zone of saturation (hydrologic position), and (4) hydrologic character of the organic deposit.  相似文献   

7.
Abstract: In 2006, we collected flow, sediment, and phosphorus (P) data at stream locations upstream and downstream of a small degraded wetland in south‐central Wisconsin traversed by a stream draining a predominantly agricultural watershed. The amount of sediment that left the wetland in the two largest storms, which accounted for 96% of the exported sediment during the observation period, was twice the amount that entered the wetland, even though only 50% of the wetland had been inundated. This apparently anomalous result is due to erosion of sediment that had accumulated in the low‐gradient channel and to the role of drainage ditches, which trapped sediment during the wetland‐filling phase. In the case of total P, the inflow to the wetland approximately equaled the outflow, although the wetland sequestered 30% of the incoming dissolved reactive P. The discrepancy is almost certainly due to net export of sediment. Many wetlands in the glaciated midwestern United States are ditched and traversed by low‐gradient channels draining predominantly agricultural areas, so the processes observed in this wetland are likely to be common in that region. Knowledge of this behavior presents opportunities to improve water quality in this and similar regions.  相似文献   

8.
The ability to accurately simulate flow and nutrient removal in treatment wetlands within an agricultural, watershed‐scale model is needed to develop effective plans for meeting nutrient reduction goals associated with protection of drinking water supplies and reduction of the Gulf of Mexico hypoxic zone. The objectives of this study were to incorporate new equations for wetland hydrology and nutrient removal in Soil and Water Assessment Tool (SWAT), compare model performance using original and improved equations, and evaluate the ramifications of errors in watershed and tile drain simulation on prediction of NO3‐N dynamics in wetlands. The modified equations produced Nash‐Sutcliffe Efficiency values of 0.88 to 0.99 for daily NO3‐N load predictions, and percent bias values generally less than 6%. However, statistical improvement over the original equations was marginal and both old and new equations provided accurate simulations. The new equations reduce the model's dependence on detailed monitoring data and hydrologic calibration. Additionally, the modified equations increase SWAT's versatility by incorporating a weir equation and an irreducible nutrient concentration and temperature coefficient. Model improvements enhance the utility of SWAT for simulating flow and nutrients in wetlands and other impoundments, although performance is limited by the accuracy of inflow and NO3‐N predictions from the contributing watershed. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

9.
Coastal communities along the United States coast often experience significant economic damage resulting from the impacts of tropical storms and hurricanes. Research suggests that certain factors that affect economic damages are increasing the vulnerability of coastal communities. Population growth, which increases vulnerability by placing valuable lives and assets in the path of storms, is expected to increase. Climate change has the potential to cause more frequent and intense storms, and coastal wetland loss is contributing to the vulnerability of coastal populations. Wetlands conservation and restoration is often advocated for as a means of reducing the impacts of coastal storms. The relationship between wetlands and storm surge energy is understood relatively well in physical terms, but very little economic analysis has been conducted to estimate the degree to which wetlands reduce economic impacts. Using factor analysis, the relationships among coastal populations, wetlands, storm intensity, and economic damage are explored. The factor analysis suggests that wetland presence is associated with a reduction in economic damages from coastal storms. Factor score analysis suggests that the proportion of damage explained by wetland presence is smaller for more intense storms. These results are consistent with those found in the physical science literature and have potentially large consequences for how wetlands are used in risk reduction.  相似文献   

10.
The United States Soil Conservation Service (SCS) conducts a survey for the purpose of establishing an agricultural land use database. This survey is called the National Resources Inventory (NRI) database. The complex NRI land classification system, in conjunction with the quantitative information gathered by the survey, has numerous applications. The current paper uses the wetland area data gathered by the NRI in 1982 and 1987 to examine empirically the factors that generate wetland loss in the United States. The cross-section regression models listed here use the quantity of wetlands, the stock of drainage capital, the realty value of farmland and drainage costs to explain most of the cross-state variation in wetland loss rates. Wetlands preservation efforts by federal agencies assume that pecuniary economic factors play a decisive role in wetland drainage. The empirical models tested in the present paper validate this assumption.  相似文献   

11.
ABSTRACT: Wetlands exist in a transition zone between aquatic and terrestrial environments which can be altered by subtle changes in hydrology. Twentieth century climate records show that the United States is generally experiencing a trend towards a wetter, warmer climate; some climate models suggest that this trend will continue and possibly intensify over the next 100 years. Wetlands that are most likely to be affected by these and other potential changes (e.g., sea‐level rise) associated with atmospheric carbon enrichment include permafrost wetlands, coastal and estuanne wetlands, peat lands, alpine wetlands, and prairie pothole wetlands. Potential impacts range from changes in community structure to changes in ecological function, and from extirpation to enhancement. Wetlands (particularly boreal peat‐lands) play an important role in the global carbon cycle, generally sequestering carbon in the form of biomass, methane, dissolved organic material and organic sediment. Wetlands that are drained or partially dried can become a net source of methane and carbon dioxide to the atmosphere, serving as a positive biotic feedback to global warming. Policy options for minimizing the adverse impacts of climate change on wetland ecosystems include the reduction of current anthropogenic stresses, allowing for inland migration of coastal wetlands as sea‐level rises, active management to preserve wetland hydrology, and a wide range of other management and restoration options.  相似文献   

12.
Creating and restoring wetland and riparian ecosystems between farms and adjacent streams and rivers in the Upper Mississippi River Basin would reduce nitrogen loads and hypoxia in the Gulf of Mexico and increase local environmental benefits. Economic efficiency and economic impacts of the Hennepin and Hopper Lakes Restoration Project in Illinois were evaluated. The project converted 999 ha of cropland to bottomland forest, backwater lakes, and flood‐plain wetland habitat. Project benefits were estimated by summing the economic values of wetlands estimated in other studies. Project costs were estimated by the loss in the gross value of agricultural production from the conversion of corn and soybean acreage to wetlands. Estimated annual net benefit of wetland restoration in the project area amounted to US$1,827 per ha of restored wetland or US$1.83 million for the project area, indicating that the project is economically efficient. Impacts of the project on the regional economy were estimated (using IMPLAN) in terms of changes in total output, household income, and employment. The project is estimated to increase total output by US$2,028,576, household income by US$1,379,676, and employment by 56 persons, indicating that it has positive net economic impacts on the regional economy.  相似文献   

13.
ABSTRACT: The delineation of inland wetlands requires close field examination of the biological and physical gradients (transition zones) between wetlands and bordering uplands. As part of a study on the detection and delineation of inland wetlands in eastern Connecticut by remote sensing techniques, this effort was designed to investigate vegetation distribution and composition and selected physical and chemical properties of the soils of wetland to upland transition zones in deciduous wetland forests. Field research was conducted during the growing season of 1975 within a test area consisting of the 45 mi2 Town of Mansfield, Connecticut. Changes in vegetation composition and structure, soil pH, and soil water content were determined along line transects extended over wetland to upland transition zones. Differences in soil pH occurred along the transects but were of such magnitude that they probably have little impact on plant distribution. There were significant changes in soil water content along the wetland to upland gradients. Discriminant analysis applied to statistical “index of abundance” data describing vegetation distribution among the various zones (wetland, transition, upland) showed which plant species best distinguish wetlands from uplands. Of the criteria studied, vegetation composition and distribution, soil water content, and relief are the most useful criteria for delineating deciduous wetland forests.  相似文献   

14.
Wetlands provide a variety of ecological services, but are attractive sites for many development activities. Between the mid-1950's and mid-1970's about 550,000 acres, or about 0.5 percent, of the vegetated wetlands remaining in the conterminous states were converted to other uses each year. About 80 percent of these losses involved draining and clearing of inland wetlands for agricultural purposes. Recent reductions in national wetland conversion rates are due primarily to declining rates of agricultural drainage and secondarily to government programs that regulate wetlands use. Several governmental policies and programs exist that either encourage or discourage wetland conversions. Section 404 of the Clean Water Act is the major tool for Federal involvement in controlling the conversion of wetlands to other uses. The 404 program, in combination with State regulatory programs, is responsible for reducing annual conversions nationwide by about 50 percent of what is applied for, or 50,000 acres of wetlands per year, primarily through project modifications. Coastal wetlands are reasonably well protected. Inland, freshwater wetlands are generally poorly protected. Efforts to protect wetlands, given a set level of resources, could be improved by categorizing wetlands according to their relative importance and focusing existing wetland programs on high value wetlands.  相似文献   

15.
Irrigated Agriculture and Wildlife Conservation: Conflict on a Global Scale   总被引:10,自引:0,他引:10  
/ The demand for water to support irrigated agriculture has led to the demise of wetlands and their associated wildlife for decades. This thirst for water is so pervasive that many wetlands considered to be hemispheric reserves for waterbirds have been heavily affected; for example, the California and Nevada wetlands in North America, the Macquarie Marshes in Australia, and the Aral Sea in central Asia. These and other major wetlands have lost most of their historic supplies of water and some have also experienced serious impacts from contaminated subsurface irrigation drainage. Now mere shadows of what they once were in terms of biodiversity and wildlife production, many of the so-called "wetlands of international importance" are no longer the key conservation strongholds they were in the past. The conflict between irrigated agriculture and wildlife conservation has reached a critical point on a global scale. Not only has local wildlife suffered, including the extinction of highly insular species, but a ripple effect has impacted migratory birds worldwide. Human societies reliant on wetlands for their livelihoods are also bearing the cost. Ironically, most of the degradation of these key wetlands occurred during a period of time when public environmental awareness and scientific assertion of the need for wildlife conservation was at an all-time high. However, designation of certain wetlands as "reserves for wildlife" by international review boards has not slowed their continued degradation. To reverse this trend, land and water managers and policy makers must assess the true economic costs of wetland loss and, depending on the outcome of the assessment, use the information as a basis for establishing legally enforceable water rights that protect wetlands from agricultural development.  相似文献   

16.
Given the unique biogeochemical, physical, and hydrologic services provided by floodplain wetlands, proper management of river systems should include an understanding of how floodplain modifications influence wetland ecosystems. The construction of levees can reduce river–floodplain connectivity, yet it is unclear how levees affect wetlands within floodplains, let alone the cumulative impacts within an entire watershed. This paper explores spatial relationships between levee and floodplain wetland systems in the Wabash Basin, United States. We used a hydrogeomorphic floodplain delineation technique to map floodplain extents and identify wetlands that may be hydrologically connected to river networks. We then spatially examined the relationship between levee presence, wetland area, and other river network attributes within discrete subbasins. Our results show that cumulative wetland area is relatively constant in subbasins that contain levees, regardless of maximum stream order within the subbasin. In subbasins that do not contain levees, cumulative wetland area increases with maximum stream order. However, we found that wetland distributions around levees can be complex, and further studies on the influence of levees on wetland habitat may need to consider finer resolution spatial scales.  相似文献   

17.
ABSTRACT: The important ecological and hydrological roles of wetlands are widely recognized, but the geomorphic functions of wetlands are also critical. Wetlands can be defined in geomorphic, as well as in hydrological or biological terms, and a geomorphic definition of wetlands is proposed. An analysis of fluvial sediment budget studies shows that wetlands typically serve as short-term sediment sinks or longer-term sediment storage sites. In ten study basins of various sizes, an estimated 14 to 58 percent of the total upland sediment production is stored in alluvial wetland or other aquatic environments. Of the sediment reaching streams, 29 to 93 percent is stored in alluvial wetland or channel environments. For basins of more than 100 km2, more than 15 percent of total upland sediment production and more than 50 percent of sediment reaching streams is deposited in wetlands. The data underestimates the magnitude of wetland sediment storage due to the lack of data from large river systems. A theoretical analysis of river channel sediment delivery shows that wetland and aquatic sediment storage is inevitable in fluvial systems and systematically related to basin size. Results suggest that wetlands should be managed in the context of drainage basins, rather than as discrete, independent units.  相似文献   

18.
ABSTRACT: The applicability of empirical relationships governing phosphorus (P) retention and nutrient assimilation in lakes and reservoirs was extended to include free surface water wetland treatment systems. Mixed reactor models have been used in lakes to predict steady state P concentration, characterize trophic state, compare P‐dynamics, and predict permissible P‐loading rates. Applying lake models to free surface water wetlands treatment systems, it was found that: sedimentation rates, loading rates, and settling velocity in these wetlands, and their typology are comparable to their lake counterparts. The analyses also suggest that phosphorus removal efficiency in a free surface water wetland treatment system is independent of trophic status, and similar to lakes, these wetlands can be classified according to their trophic state. Oligo‐and eutrophic wetland treatment systems can be defined by low and high TP inflow concentrations, respectively. In this study, olig‐otrophic status is defined as systems receiving inflow P‐loading less than 0.10 g m‐2 year‐1, and their P inputs are mainly derived from agricultural and stormwater runoff. Eutrophic treatment systems, on the other hand, are defined as those receiving inflow P‐loading higher than 0.20 g m2 year‐1, and their inputs are mainly derived from industrial and municipal wastewater. The comparability found between lakes and free surface water wetlands treatment systems raises the question: should we consider these wetlands “shallow lakes?”  相似文献   

19.
Few quantitative studies have been done on the hydrology of fens, bogs, and mires. Consequently predicting the cumulative impacts of disturbances on their hydrologic functions is extremely difficult. For example, few data are available on the role of bogs and fens with respect to flood desynchronization and shoreline anchoring. However, recent studies suggest that very small amounts of groundwater discharge are sufficient to radically modify mire surface-water chemistry, and consequently, vegetation communities and their associated surface-water hydrology. Bogs and fens are, in a sense, hydrobiologic systems, and any evaluation of cumulative impacts will have to (1) consider the complicated and little understood interactions among wetland hydrology, water chemistry, and biota, and (2) place the effect of individual wetland impacts within the context of the cumulative impacts contributed to the watershed from other geomorphic areas and land uses.It is difficult to evaluate the potential cumulative impacts on wetland hydrology because geologic settings of wetlands are often complex and the methods used to measure wetland streamflow, groundwater flow, and evapotranspiration are inexact (Winter 1988). This is especially so for bogs, fens, and mires underlain by thick organic soils. These wetlands, found in the circumboreal areas of North America, Europe, and Asia, are major physiographic features in eastern North America, northern Europe, and Siberia (Kivenen and Pakarinen 1981, Gore 1983, Glaser and Janssens 1986). Their very scale makes it difficult to quantify the hydrologic function accurately. The hydrology of small bogs and fens found elsewhere is just as poorly understood because of conflicting conceptual models of pertinent hydrologic processes.This article (1) reviews our current understanding of the hydrologic function of bogs, fens, and mires at different scales and in different physiographic settings and (2) presents hypotheses on potential cumulative impacts on the hydrologic function that might occur with multiple disturbances.  相似文献   

20.
ABSTRACT: Weighted averages (WA) was investigated as a vegetation-based method for wetland designation, to be used in conjunction with the wetland indicator status of plants from Wetland Plants of the United States of America 1986 (Reed, 1986). Ecological indices were assigned to indicator groups and were used to compute weighted averages for quantitative data obtained from four studies of wetland vegetation conducted in various regions of the United States. Weighted averages of vegetation data proved to be a useful tool for assessing wetland status of the vegetation types included in our study: (1) rankings of vegetation stands or types by WA correlated well with their positions on environmental moisture gradients; and (2) the results of WA could be used, together with a wetland/upland break-point, to designate vegetation types as wetland or upland in a way that agreed well, in three of the four studies, with an alternative classification of wetland habitats. The variation of weighted averages among the sampling units representing a vegetation type was generally small relative to the range of ecological indices assigned. However, designations based on weighted average scores close to the break-point should be considered provisional and must be verified with supplementary data on soils and hydrology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号