共查询到20条相似文献,搜索用时 15 毫秒
1.
David C. Gosselin Donald C. Rundquist Stuart K. McFeeters 《Journal of the American Water Resources Association》2000,36(5):1039-1051
ABSTRACT: The Landsat‐Muitispectral Scanner (MSS) data were used to measure lake area fluctuations (1972–1989) for 130 ground‐water dominated lakes in the Western Lakes Region of the Nebraska Sand Hills. In general, the pattern shown in lake area hydrographs was similar to that for in‐situ lake elevations. In‐situ lake‐elevation data verify that remote monitoring of surface‐area fluctuations, even at relatively coarse spatial resolution, is not only practical and useful, but also it elucidates the hydrologic characteristics of groundwater‐dominated lakes of the Sand Hills. The apparent differences in behavior between lakes in the northern and southern portions of the study area may be related to both their location in the regional ground water system and the substantial local hydrologic complexity. 相似文献
2.
Richard Lawford Sushel Unninayar George J. Huffman Wolfgang Grabs Angélica Gutiérrez Toshio Koike 《Journal of the American Water Resources Association》2023,59(5):877-884
Given the wide diversity of data services provided to national water management agencies, the Group on Earth Observations (GEO) in collaboration with the Committee on Earth Observation Satellites (CEOS) developed the approach described in the report, Implementing the GEOSS Water Strategy—From Observations to Decisions to develop more coherent and equitable data services for water management through the use of Earth observations. Among other water resource issues, it recognized the need to enhance data-enriched water management services to support decision making related to drought monitoring, flood warning, tracking and improving sustainable development and monitoring and ameliorating the impacts of climate change. Needs associated with the Strategy's four themes: improved data acquisition for essential water variables, research and product development, interoperability and coordination, and capacity development and decision support, are reviewed. Responses to the recommendations have been undertaken by GEO, led by its Global Water Sustainability (GEOGloWS) initiative which includes NASA contributions, CEOS, and the Global Terrestrial Network for Hydrology (GTN-H). Progress on the themes is reviewed and benefits of these developments for international and US water management are identified. The commentary concludes with a summary of what has been achieved, what remains to be done, and the priority focus areas for implementation in the final year of the Strategy. 相似文献
3.
S. W. Hostetler 《Journal of the American Water Resources Association》1991,27(4):637-647
ABSTRACT: Steamboat Creek basin is an important source of timber and provides crucial spawning and rearing habitat for anadromous steelhead trout (Oncorhynchus mykiss). Because stream temperatures are near the upper limit of tolerance for the survival of juvenile steelhead, the possible long-term effect of clear-cut logging on stream temperatures was assessed. Twenty-year (1969–1989) records of summer stream temperature and flow from four tributaries and two reaches of Steamboat Creek and Boulder Creek (a nearby unlogged watershed) were analyzed. Logging records for the Steamboat Creek basin and air temperature records also were used in the analysis. A time-series model of the components of stream temperature (seasonal cycle of solar radiation, air temperature, streamflow, an autoregressive term of order 1, and a linear trend variable) was fitted to the water-temperature data. The linear trend variable was significant in all the fitted models except Bend Creek (a tributary fed by cool ground-water discharge) and Boulder Creek. Because no trends in either climate (i.e., air temperature) or streamflow were found in the data, the trend variable was associated with the pre-1969 loss and subsequent regrowth of riparian vegetation and shading canopies. 相似文献
4.
Robert W. Dudley Glenn A. Hodgkins Jesse E. Dickinson 《Journal of the American Water Resources Association》2017,53(6):1424-1436
We present a logistic regression approach for forecasting the probability of future groundwater levels declining or maintaining below specific groundwater‐level thresholds. We tested our approach on 102 groundwater wells in different climatic regions and aquifers of the United States that are part of the U.S. Geological Survey Groundwater Climate Response Network. We evaluated the importance of current groundwater levels, precipitation, streamflow, seasonal variability, Palmer Drought Severity Index, and atmosphere/ocean indices for developing the logistic regression equations. Several diagnostics of model fit were used to evaluate the regression equations, including testing of autocorrelation of residuals, goodness‐of‐fit metrics, and bootstrap validation testing. The probabilistic predictions were most successful at wells with high persistence (low month‐to‐month variability) in their groundwater records and at wells where the groundwater level remained below the defined low threshold for sustained periods (generally three months or longer). The model fit was weakest at wells with strong seasonal variability in levels and with shorter duration low‐threshold events. We identified challenges in deriving probabilistic‐forecasting models and possible approaches for addressing those challenges. 相似文献
5.
Keith W. Hipel 《Journal of the American Water Resources Association》1985,21(4):609-623
ABSTRACT: By employing a set of criteria for classifying the capabilities of time series models, recent developments in time series analysis are assessed and put into proper perspective. In particular, the inherent attributes of a wide variety of time series models and modeling procedures presented by the authors of the 18 papers contained in this volume are clearly pointed out. Additionally, it is explained how these models can address many of the time series problems encountered when modeling hydrologic, water quality and other kinds of time series. For instance, families of time series models are now available for modeling series which may contain nonlinearities or may follow nonGaussian distributions. Based upon a sound physical understanding of a problem and results from exploratory data analyses, the most appropriate model to fit to a data set can be found during confirmatory data analyses by following the identification, estimation and diagnostic check stages of model construction. Promising future research projects for developing flexible classes of time series models for use in water resources applications are suggested. 相似文献
6.
Jessica M. Driscoll Lauren E. Hay Andrew R. Bock 《Journal of the American Water Resources Association》2017,53(3):655-666
Assessment of water resources at a national scale is critical for understanding their vulnerability to future change in policy and climate. Representation of the spatiotemporal variability in snowmelt processes in continental‐scale hydrologic models is critical for assessment of water resource response to continued climate change. Continental‐extent hydrologic models such as the U.S. Geological Survey National Hydrologic Model (NHM) represent snowmelt processes through the application of snow depletion curves (SDCs). SDCs relate normalized snow water equivalent (SWE) to normalized snow covered area (SCA) over a snowmelt season for a given modeling unit. SDCs were derived using output from the operational Snow Data Assimilation System (SNODAS) snow model as daily 1‐km gridded SWE over the conterminous United States. Daily SNODAS output were aggregated to a predefined watershed‐scale geospatial fabric and used to also calculate SCA from October 1, 2004 to September 30, 2013. The spatiotemporal variability in SNODAS output at the watershed scale was evaluated through the spatial distribution of the median and standard deviation for the time period. Representative SDCs for each watershed‐scale modeling unit over the conterminous United States (n = 54,104) were selected using a consistent methodology and used to create categories of snowmelt based on SDC shape. The relation of SDC categories to the topographic and climatic variables allow for national‐scale categorization of snowmelt processes. 相似文献
7.
Yonghong Hao Jiaojuan Zhao Huamin Li Bibo Cao Zhongtang Li Tian‐Chyi J. Yeh 《Journal of the American Water Resources Association》2012,48(4):656-666
Hao, Yonghong, Jiaojuan Zhao, Huamin Li, Bibo Cao, Zhongtang Li, and Tian‐Chyi J. Yeh, 2012. Karst Hydrological Processes and Grey System Model. Journal of the American Water Resources Association (JAWRA) 48(4): 656‐666. DOI: 10.1111/j.1752‐1688.2012.00640.x Abstract: The karst hydrological processes are the response of karst groundwater system to precipitation. This study provided a concept model of karst hydrological processes. The hydraulic response time of spring discharge to precipitation includes the time that precipitation penetrates through the vadose zone, and the subsequent groundwater pressure wave propagates to a spring outlet. Due to heterogeneities in karst aquifers, the hydraulic response time is different in different areas. By using grey system theory, we proposed a karst hydrological model that offers a calculation of hydraulic response time, and a response model of spring discharge to precipitation. Then, we applied the models to the Liulin Springs Basin, China. In the south part of the Liulin Springs Basin, where large fields of carbonate rocks outcrop with intensive karstification, the hydraulic response time is one year. In the north, where the Ordovician karst aquifer is covered by Quaternary loess sediments, the response time is seven years. The grey system GM(1,3) response model of spring discharge to precipitation was applied in consideration of the hydraulic response time. The model calibration showed that the average error was 6.55%, and validation showed that the average error was 12.19%. 相似文献
8.
Paul C Baracos Keith W. Hipel A. Ian McLeod 《Journal of the American Water Resources Association》1981,17(3):414-422
The general intervention model is applied to hydrologic and meteorologjc time series from the Canadian Arctic. The authors show how the model is able to account for environmental interventions, missing observations in the data, changes in data collection procedures, the effects of external inputs, as well as seasonality and autocorrelation. Methods for identifying transfer functions by making use of a physical understanding of the processes involved are demonstrated and sample applications of the general intervention model to Arctic data are shown. 相似文献
9.
Vujica Yevjevich Nilgun Bayraktar Harmancioglu 《Journal of the American Water Resources Association》1985,21(4):625-633
ABSTRACT: water resources supply and demand time series consist of several or all of the four basic characteristics: tendency, intermittency, periodicity and stochasticity. Their importance changes from one type of variables to another. Historic developments of analysis of time series in hydrology have varied significantly over the past, from the stress on search for periodicities and persistence in annual series to the emphasis on the series stochastic properties. Supply and demand series are often highly interrelated, which fact is most often neglected in planning water resources systems in general, and water storage capacities in particular. The future of series analysis in water resources will likely be by a joint use of physically-based structural analysis and the use of advanced methods of treating data by stochastic processes, statistical estimation and inference techniques. The most intriguing challenge of the future of this analysis may be the treatment of nonnormal, nonlinear and in general nonstationary hydrologic and water use time series. The proper treatment of complex multivariate processes will also challenge the specialists, especially for the purposes of transfer of information between data on variables at given points, or between data at several points of a given variable, or both. 相似文献
10.
Sensitivity of SCS Models to Curve Number Variation1 总被引:1,自引:0,他引:1
Timothy R. Bondelid Richard H. McCuen Thomas J. Jackson 《Journal of the American Water Resources Association》1982,18(1):111-116
ABSTRACT: The Soil Conservation Service (SCS) models, including the TR-20 computer program and the simplified methods in TR-55, are widely used in hydrologic design. The runoff curve number (CN), which is an important input parameter to SCS models, is defined in terms of land use tretments, hydrologic, condition, antecedent soil moisture, and soil type. The objective of this study was to evaluate the sensitivity of the SCS models to errors in CN estimates. The results show that the effects of CN variation decrease as the design rainfall depth increases, such as for the larger storm events. The value and use of the sensitivity curves are demonstrated using a comparison of Landsat and conventionally derived curve numbers for three watersheds in Pennsylvania. 相似文献
11.
Comparison of Measured and MM5 Modeled Meteorology Data for Simulating Flow in a Mountain Watershed1
Joel W. Herr Krish Vijayaraghavan Eladio Knipping 《Journal of the American Water Resources Association》2010,46(6):1255-1263
Herr, Joel W., Krish Vijayaraghavan, and Eladio Knipping, 2010. Comparison of Measured and MM5 Modeled Meteorology Data for Simulating Flow in a Mountain Watershed. Journal of the American Water Resources Association (JAWRA) 46(6):1255–1263. DOI: 10.1111/j.1752-1688.2010.00489.x Abstract: Accurate simulation of time-varying flow in a river system depends on the quality of meteorology inputs. The density of meteorology measurement stations can be insufficient to capture spatial heterogeneity of precipitation, especially in mountainous areas. The Watershed Analysis Risk Management Framework (WARMF) model was applied to the Catawba River watershed of North and South Carolina to simulate flow and water quality in rivers and a series of 11 reservoirs. WARMF was linked with the AMSTERDAM air model to analyze the water quality benefit from reduced atmospheric emissions. The linkage requires accurate simulation of meteorology for all seasons and for all types of precipitation events. WARMF was driven by the mesoscale meteorology model MM5 processed by the Meteorology Chemistry Interface Processor, which provides greater spatial density but less accuracy than meteorology stations. WARMF was also run with measured data from the National Climatic Data Center (NCDC) to compare the performance of the watershed model using measured data vs. modeled meteorology as input. A one year simulation using MM5 modeled meteorology performed better overall than the simulation using NCDC data for the volumetric water balance measure used for calibration, but MM5 represented precipitation from a dissipated hurricane poorly, which propagated into errors of simulated flow. 相似文献
12.
Richard G. Allen Ricardo Trezza Ayse Kilic Masahiro Tasumi Hongjun Li 《Journal of the American Water Resources Association》2013,49(3):592-604
The speed and direction of air flow through complex terrain are difficult to define. Both impact sensible and latent heat flux exchanges at the surface. Evapotranspiration (ET) models such as Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC?) estimate ET as a residual of the surface energy process and are thus sensitive to aerodynamics, including terrain‐induced impacts on roughness governing convective heat transfer (H). There is a need to explore the sensitivities of H estimation and thereby ET estimation to wind speed and terrain roughness in mountainous areas and to determine the merit of operating complex mesoscale wind field models in conjunction with the energy balance process. A sensitivity analysis is explored in METRIC where we increased wind speed in proportion to a relative elevation parameter and we increased aerodynamic roughness to assimilate impacts of relative terrain roughness, estimated in proportion to standard deviation of elevation within a 3 km locality. These aerodynamic modifications increased convective heat transfer in complex terrain and reduced estimated ET. In other sensitivity runs, we reduced estimated wind speed on estimated leeward slopes. Estimated ET with and without these sensitivity adjustments is shown for mountainous areas of Montana and Nevada. Changes in ET ranged from little change (<5%) for lower slopes to about 30% reductions on windward slopes and 25% increases on leeward slopes for some mid to high elevations in the Montana application. 相似文献
13.
Michele C. Eddy Jennifer Phelan Lauren Patterson Jessie Allen Sam Pearsall 《Journal of the American Water Resources Association》2017,53(1):30-41
Hydroecological classification systems are typically based on an assemblage of streamflow metrics and seek to divide streams into ecologically relevant classes. Assignment of streams to classes is suggested as an initial step in the process of establishing ecological flow standards. We used two distinct hydroecological river classification systems available within North Carolina to evaluate the ability of a hydrologic model to assign the same classes as those determined by observed streamflows and to assess the transferability of such systems to ungaged streams. Class assignments were examined by rate of overall matches, rate of class matches, spatial variability in matches, and time period used in class assignment. The findings of this study indicate assignments of stream class: (1) are inconsistent among different classification systems; (2) differ between observed and modeled data; and (3) are sensitive to the period of record within observed data. One clear source of inconsistency/sensitivity in class assignments lies with the use of threshold values for metrics that distinguish stream classes, such that even small changes in metric values can result in different class assignments. Because these two hydroecological classification systems are representative of other classification systems that rely on quantitative decision thresholds, it can be surmised that the use of such systems based on stream flow metrics is not a reliable approach for guiding ecological flow determinations. 相似文献
14.
Thomas J. Jackson Walter J. Rawls 《Journal of the American Water Resources Association》1981,17(5):857-862
Estimating the Curve Numbers used in the Soil Conservation Service hydrologic models is a tedious and costly task. Recent advances in remote sensing and data processing have led to the development of readily available land cover data bases for many areas of the United States. This study evaluated the potential of using a Landsat data base to make the Curve Number estimation process more cost-effective and less tedious. Ten watersheds in the Washington, D.C., area were evaluated using a Landsat land cover data base developed by the U.S. Geological Survey. Results showed that these data can be useful. Predictions can be improved if ancillary data on residential lot size are included. It was concluded that this type of data base must be examined carefully before implementation. 相似文献
15.
Sun F Shih Jonathan D. Jordan 《Journal of the American Water Resources Association》1992,28(4):713-719
ABSTRACT: Landsat satellite Thematic Mapper (TM) data were used to assess regional soil moisture conditions. The mid-infrared (MIR) data of TM band 7 were overlain onto four principal land-use categories (Agricultural/Irrigated, Urban/Clearings, Forest/ Wetlands, Water) using a geographic information system (GIS). M data were used to assess four qualitative surface soil-moisture conditions (water/very wet, wet, moist, and dry) within each land-use category of a 208,354 ha southwestern Florida study area. The MIR response was inversely related to the qualitative surface soil-moisture content. Integration of Landsat TM MIR data with land use through GIS appears to be a useful technique for high-resolution regional soil moisture assessment, and further research to reline this technique is recommended. 相似文献
16.
Robert M. Thompstone Keith W. Hipel A. Ian McLeod 《Journal of the American Water Resources Association》1985,21(5):731-741
Recent developments with respect to transfer function-noise models are reviewed and used to model and forecast quarter-monthly (i.e., near-weekly) natural inflows to the Lac St-Jean reservoir in the Province of Quebec, Canada. The covariate series are rainfall and snowmelt, the latter being a novel derivation from daily rainfall, snowfall and temperature series. It is clearly demonstrated using the residual variance and the Akaike information criterion that modeling is improved as one starts with a deseasonalized ARMA model of the inflow series and successively adds transfer functions for the rainfall and snowmelt series. It is further demonstrated that the transfer function-noise model is better than a periodic autoregressive model of the inflow series. A split-sample experiment is used to compare one-step-ahead forecasts from this transfer function-noise model with forecasts from other stochastic models as well as with forecasts from a so-called conceptual hydrological model (i.e., a model which attempts to mathematically simulate the physical processes involved in the hydrological cycle). It is concluded that the transfer function-noise model is the preferred model for forecasting the quarter-monthly Lac St-Jean inflow series. 相似文献
17.
A. Ramachandra Rao Srinivasa G. Rao R. L. Kashyap 《Journal of the American Water Resources Association》1985,21(5):757-770
Stochastic models fitted to hydrologic data of different time scales are interrelated because the higher time scale data (aggregated data) are derived from those of lower time scale. Relationships between the statistical properties and parameters of models of aggregated data and of original data are examined in this paper. It is also shown that the aggregated data can be more accurately predicted by using a valid model of the original data than by using a valid model of the aggregated data. This property is particularly important in forecasting annual values because only a few annual values are usually available and the resulting forecasts are relatively inaccurate if models based only on annual data are used. The relationships and forecasting equations are developed for general aggregation time and can be used for hourly and daily, daily and monthly or monthly and yearly data. The method is illustrated by using monthly and yearly streamflow data. The results indicate that various statistical characteristics and parameters of the model of annual data can be accurately estimated by using the monthly data and forecasts of annual data by using monthly models have smaller one step ahead mean square error than those obtained by using annual data models. 相似文献
18.
Scott D. Lindsey Robert W. Gunderson J. Paul. Riley 《Journal of the American Water Resources Association》1992,28(5):865-875
ABSTRACT: Many hydrologic models have input data requirements that are difficult to satisfy for all but a few well-instrumented, experimental watersheds. In this study, point soil moisture in a mountain watershed with various types of vegetative cover was modeled using a generalized regression model. Information on sur-ficial characteristics of the watershed was obtained by applying fuzzy set theory to a database consisting of only satellite and a digital elevation model (DEM). The fuzzy-c algorithm separated the watershed into distinguishable classes and provided regression coefficients for each ground pixel. The regression model used the coefficients to estimate distributed soil moisture over the entire watershed. A soil moisture accounting model was used to resolve temporal differences between measurements at prototypical measurement sites and validation sites. The results were reasonably accurate for all classes in the watershed. The spatial distribution of soil moisture estimates corresponded accurately with soil moisture measurements at validation sites on the watershed. It was concluded that use of the regression model to distribute soil moisture from a specified number of points can be combined with satellite and DEM information to provide a reasonable estimation of the spatial distribution of soil moisture for a watershed. 相似文献
19.
Jose D. Salas Guillermo Q. Tabios Paolo Bartolini 《Journal of the American Water Resources Association》1985,21(4):683-708
ABSTRACT: Alternative approaches suggested for modeling multiseries of water resources systems are reviewed and compared. Most approaches fall within the general framework of multivariate ARMA models. Formal modeling procedures suggest a three-stage iterative process, namely: model identification, parameter estimation and diagnostic checks. Although a number of statistical tools are already available to follow such modeling process, in general, it is not an easy task, especially if high order vector ARMA models are used. However, simpler ARMA models such as the contemporaneous and the transfer-function models may be sufficient for most applications in water resources. Two examples of modeling bivariate and trivariate streamflow series are included. Alternative modeling procedures are used and compared by using data generation techniques. The results obtained suggest that low order models, as well as contemporaneous ARMA models, reproduce quite well the main statistical characteristics of the time series analyzed. It is assumed that the same conclusions apply for most water resources time series. 相似文献
20.
Pamela J. Lombard David J. Holtschlag 《Journal of the American Water Resources Association》2018,54(4):949-961
We test the use of a mixed‐effects model for estimating lag to peak for small basins in Maine (drainage areas from 0.8 to 78 km2). Lag to peak is defined as the time between the center of volume of the excess rainfall during a storm event and the resulting peak streamflow. A mixed‐effects model allows for multiple observations at sites without violating model assumptions inherent in traditional ordinary least squares models, which assume each observation is independent. The mixed model includes basin drainage area and maximum 15‐min rainfall depth for individual storms as explanatory features. Based on a remove‐one‐site cross‐validation analysis, the prediction errors of this model ranged from ?42% to +73%. The mixed model substantially outperformed three published models for lag to peak and one published model for centroid lag for estimating lag to peak for small basins in Maine. Lag to peak estimates are a key input to rainfall–runoff models used to design hydraulic infrastructure. The improved accuracy and consistency with model assumptions indicates that mixed models may provide increased data utilization that could enhance models and estimates of lag to peak in other regions. 相似文献