首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT A rill-interrill erosion model was applied to a mined and reclaimed area. Soil loss from the interrill areas was estimated by the Universal Soil Loss Equation (USLE). The model considers the fate and ultimate disposition of the sediment from interrill areas along with the fate and destination of soil materials detached by the rill flow. The net sediment loss was predicted by comparing, for a given flow, the amounts of eroded soil to rill transport capacity. When applied to a selected stripmined and reclaimed site the model displayed the location of contributing areas and the amount of erosion and deposition. The predicted areal distribution of erosion and deposition was compared to measured data. Agreement between the predicted and measured values was within 25 percent.  相似文献   

2.
An erosion and sediment transport component incorporated in the HYdrology Simulation using Time‐ARea method (HYSTAR) upland watershed model provides grid‐based prediction of erosion, transport and deposition of sediment in a dynamic, continuous, and fully distributed framework. The model represents the spatiotemporally varied flow in sediment transport simulation by coupling the time‐area routing method and sediment transport capacity approach within a grid‐based spatial data model. This avoids the common, and simplistic, approach of using the Universal Soil Loss Equation (USLE) to estimate erosion rates with a delivery ratio to relate gross soil erosion to sediment yield of a watershed, while enabling us to simulate two‐dimensional sediment transport processes without the complexity of numerical solution of the partial differential governing equations. In using the time‐area method for routing sediment, the model offers a novel alternative to watershed‐scale sediment transport simulation that provides detailed spatial representation. In predicting four‐year sediment hydrographs of a watershed in Virginia, the model provided good performance with R2 of 0.82 and 0.78 and relative error of ?35% and 11% using the Yalin and Yang's sediment transport capacity equations, respectively. Prediction of spatiotemporal variation in sediment transport processes was evaluated using maps of sediment transport rates, concentrations, and erosion and deposition mass, which compare well with expected behavior of flow hydraulics and sediment transport processes.  相似文献   

3.
ABSTRACT: A soil erosion simulation model that considered the physical conditions of agricultural watersheds and that interfaced with the modified USDAHL-74 watershed hydrology model was developed. The erosion model simulates the detachment and transport of soil particles caused by raindrop impact and overland flow from rill and interrill areas. The model considers temporal and spatial variation of plant residue, crop canopy cover, snow cover, and the moisture content of surface soil as modifying factors of the erosive forces of raindrop impact and overland flow. The hydrology model simulates overland flow and some of the physical parameters that are used in the erosion model. The simulation is executed in the time interval determined by the rainfall rate or snowmelt rate. The erosion model compares the transport capacity of the overland flow and the sediment loaded in the overland flow to determine the fate account for the free soil particles that have already been detached and are readily available to be transported by the overland flow. The model was tested with data from two small agricultural watersheds in the Palouse region of the Pacific Northwest dryland. The model was calibrated by trial-and-error to determine the coefficients of the model.  相似文献   

4.
ABSTRACT: The two‐dimensional soil erosion model CASC2D‐SED simulates the dynamics of upland erosion during single rainstorms. The model is based on the raster‐based surface runoff calculations from CASC2D. Rainfall precipitation is distributed in time and space. Infiltration is calculated from the Green‐Ampt equations. Surface runoff is calculated from the diffusive wave approximation to the Saint‐Venant equations in two‐dimensions. Watershed data bases in raster Geographical Information System (GIS) provide information on the soil type, size fractions, soil erodibility, cropping management, and conservation practice factors for soil erosion calculations. Upland sediment transport is calculated for the size fractions (sand, silt, and clay), and the model displays the sediment flux, the amount of suspended sediment, and the net erosion and deposition using color graphics. The model has been tested on Goodwin Creek, Mississippi. The peak discharge and time to peak are within ± 20 percent and sediment transport rates within ?50 percent to 200 percent.  相似文献   

5.
6.
The Universal Soil Loss Equation (USLE) and its derivatives are widely used for identifying watersheds with a high potential for degrading stream water quality. We compared sediment yields estimated from regional application of the USLE, the automated revised RUSLE2, and five sediment delivery ratio algorithms to measured annual average sediment delivery in 78 catchments of the Chesapeake Bay watershed. We did the same comparisons for another 23 catchments monitored by the USGS. Predictions exceeded observed sediment yields by more than 100% and were highly correlated with USLE erosion predictions (Pearson r range, 0.73-0.92; p < 0.001). RUSLE2-erosion estimates were highly correlated with USLE estimates (r = 0.87; p < 001), so the method of implementing the USLE model did not change the results. In ranked comparisons between observed and predicted sediment yields, the models failed to identify catchments with higher yields (r range, -0.28-0.00; p > 0.14). In a multiple regression analysis, soil erodibility, log (stream flow), basin shape (topographic relief ratio), the square-root transformed proportion of forest, and occurrence in the Appalachian Plateau province explained 55% of the observed variance in measured suspended sediment loads, but the model performed poorly (r(2) = 0.06) at predicting loads in the 23 USGS watersheds not used in fitting the model. The use of USLE or multiple regression models to predict sediment yields is not advisable despite their present widespread application. Integrated watershed models based on the USLE may also be unsuitable for making management decisions.  相似文献   

7.
Abstract:  Tracer studies are needed to better understand watershed soil erosion and calibrate watershed erosion models. For the first time, stable nitrogen and carbon isotopes (δ15N and δ13C) and the carbon to nitrogen atomic ratio (C/N) natural tracers are used to investigate temporal and spatial variability of erosion processes within a sub‐watershed. Temporal variability was assessed by comparing δ15N, δ13C, and C/N of eroded‐soils from a non‐equilibrium erosion event immediately following freezing and thawing of surface soils with two erosion events characterized by equilibrium conditions with erosion downcutting. Spatial variability was assessed for the equilibrium events by using the δ15N and δ13C signatures of eroded‐soils to measure the fraction of eroded‐soil derived from rill/interrill erosion on upland hillslopes as compared to headcut erosion on floodplains. In order to perform this study, a number of tasks were carried out including: (1) sampling source‐soils from upland hillslopes and floodplains, (2) sampling eroded‐soils with an in situ trap in the stream of the sub‐watershed, (3) isotopic and elemental analysis of the samples using isotope ratio mass spectrometry, (4) fractioning eroded‐soil to its upland rill/interrill and floodplain headcut end‐members using an unmixing model within a Bayesian Markov Chain Monte Carlo framework, and (5) evaluating tracer unmixing model results by comparison with process‐based erosion prediction models for rill/interrill and headcut erosion processes. Results showed that finer soil particles eroded during the non‐equilibrium event were enriched in δ15N and δ13C tracers and depleted in C/N tracer relative to coarser soil particles eroded during the equilibrium events. Correlation of tracer signature with soil particle size was explainable based on known biogeochemical processes. δ15N and δ13C were also able to distinguish between upland rill/interrill erosion and floodplain headcut erosion, which was due to different plant cover at the erosion sources. Results from the tracer unmixing model highlighted future needs for coupling rill/interrill and headcut erosion prediction models.  相似文献   

8.
ABSTRACT: A simulation model that computes sediment yield due to sheet and rill erosion at the outlet of a large watershed requires daily precipitation and the soil, topographic, and vegetative characteristics of the watershed. An important problem, particularly in a large watershed, is the transport of sediment produced in the sub-watersheds to the outlet of the whole watershed. This problem is approached mathematically by a sediment routing model that is used as a component of the total model.  相似文献   

9.
An erosion-based land classification system for military installations   总被引:3,自引:0,他引:3  
The universal soil loss equation (USLE) has been integrated with a geographic information system known as the geographical resources analysis support system (GRASS) to create a land classification system for use by military trainers and land managers to minimize the environmental impacts of military training activities. The USLE provides an estimate of current average annual sheet and rill erosion based upon factors representing climate, soil erodibility, topography, cover, and conservation support practices. The erosion estimate is compared to erosion tolerance values to produce an expression of the current erosion status. An index of inherent site erodibility is also achieved through manipulation of the USLE. Based on published soil surveys, satellite imagery, and ground-truth vegetation transects, data layers are created within GRASS for each of the component factors of the USLE. Appropriate mathematical operations are performed with the data layers, and color-coded maps are produced that represent the erosion status and erodibility index for each 50-m × 50-m area of soil surface. These maps aid military trainers and land managers in scheduling appropriate kinds and intensities of military training activities.  相似文献   

10.
Ability to adequately estimate sediment yield is an important step in dealing effectively with soil erosion problems. Predictions of sediment yield made using the Universal Soil Loss Equation (USLE) with different forms of sediment delivery ratio (SDR) are compared with those made by Modified USLE (MUSLE) and a fundamentally derived Erosion-Deposition Model (EDM). The USLE and USLE with SDR are poor predictors of sediment yield for individual storms compared to the MUSLE and EDM. Although MUSLE gave better results than USLE it showed somewhat more scatter of data points than the recently developed EDM.  相似文献   

11.
The Himalaya-Gangetic Plain region is the iconic example of the debate about the impact on lowlands of upland land-use change. Some of the scientific aspects of this debate are revisited by using new techniques to examine the role of deforestation in erosion and river sediment transport. The approach is whole-of-catchment, combining a history of deforestation with a history of sediment sources from well before deforestation. It is shown that deforestation had some effect on one very large erosional event in 1970, in the Alaknanda subcatchment of the Upper Ganga catchment, but that both deforestation and its effects on erosion and sediment transport are far from uniform in the Himalaya. Large magnitude erosional events occur for purely natural reasons. The impact on the Gangetic Plain of erosion caused by natural events and land cover change remains uncertain.  相似文献   

12.
Abstract: Despite widespread interest, few sediment budgets are available to document patterns of erosion and sedimentation in developing watersheds. We assess the sediment budget for the Good Hope Tributary, a small watershed (4.05 km2) in Montgomery County, Maryland, from 1951‐1996. Lacking monitoring data spanning the period of interest, we rely on a variety of indirect and stratigraphic methods. Using regression equations relating sediment yield to construction, we estimated an upland sediment production of 5,700 m3 between 1951 and 1996. Regression equations indicate that channel cross‐sectional area is correlated with the extent of development; these relationships, when combined with historical land use data, suggest that upland sediment yield was augmented by 6,400 m3 produced by enlargement of first‐order and second‐order stream channels. We used dendrochronology to estimate that 4,000 m3 of sediment was stored on the floodplain from 1951‐1996. The sediment yield from the watershed, obtained by summing upstream contributions, totals 8,100 m3 of sediment, or 135 tons/km2/year. These results indicate that upland erosion, channel enlargement, and floodplain storage are all significant components of the sediment budget of our study area, and all three are approximately equal in magnitude. Erosion of “legacy” floodplain sediments originally deposited during poor agricultural practices of the 19th and early 20th Centuries has likely contributed between 0 and 20% of the total sediment yield, indicating that these remobilized deposits are not a dominant component of the sediment yield of our study area.  相似文献   

13.
ABSTRACT: The effectiveness of streamside management zones (SMZs) was assessed for reducing sediment transport from concentrated overland flow draining two Georgia Piedmont clearcuts that had undergone mechanical and chemical site preparation and planting. Silt fences were used to trap sediment transport from zero‐order ephemeral swales at the edge of and within SMZs. Four control swales and nine treatment swales were studied. A double mass curve approach was used to graphically compare sediment accumulation rates at the edge of SMZs to accumulation rates within the SMZs at a distance consistent with current recommendations for SMZ width in Georgia. SMZ efficiencies for trapping sediment transported by concentrated flow ranged from 71 to 99 percent. No statistical model was found to explain how SMZ efficiencies varied with SMZ and contributing area characteristics. Measured sediment accumulations at the SMZ boundary were compared to Revised Universal Soil Loss Equation (RUSLE) predictions of up‐ slope erosion, and a delivery ratio of 0.25 was calculated. SMZs had a quantifiable and substantial ameliorating effect on sediment transport from concentrated overland flow on the clearcut study sites.  相似文献   

14.
SOIL EROSION AND SEDIMENT YIELD PREDICTION ACCURACY USING WEPP1   总被引:1,自引:0,他引:1  
ABSTRACT: The objectives of this paper are to discuss expectations for the Water Erosion Prediction Project (WEPP) accuracy, to review published studies related to WEPP goodness of fit, and to evaluate these in the context of expectations for WEPP's goodness of fit. WEPP model erosion predictions have been compared in numerous studies to observed values for soil loss and sediment delivery from cropland plots, forest roads, irrigated lands and small watersheds. A number of different techniques for evaluating WEPP have been used, including one recently developed where the ability of WEPP to accurately predict soil erosion can be compared to the accuracy of replicated plots to predict soil erosion. In one study involving 1,594 years of data from runoff plots, WEPP performed similarly to the Universal Soil Loss Erosion (USLE) technology, indicating that WEPP has met the criteria of results being “at least as good with respect to observed data and known relationships as those from the USLE,” particularly when the USLE technology was developed using relationships derived from that data set, and using soil erodibility values measured on those plots using data sets from the same period of record. In many cases, WEPP performed as well as could be expected, based on comparisons with the variability in replicate data sets. One major finding has been that soil erodibility values calculated using the technology in WEPP for rainfall conditions may not be suitable for furrow irrigated conditions. WEPP was found to represent the major storms that account for high percentages of soil loss quite well—a single storm application that the USLE technology is unsuitable for—and WEPP has performed well for disturbed forests and forest roads. WEPP has been able to reflect the extremes of soil loss, being quite responsive to the wide differences in cropping, tillage, and other forms of management, one of the requirements for WEPP validation. WEPP was also found to perform well on a wide range of small watersheds, an area where USLE technology cannot be used.  相似文献   

15.
ABSTRACT: The watershed model GAMES is used for the evaluation of a targeting approach to control fluvial sedimentation arising from soil erosion in agricultural areas. The data considered for the analysis consists of output from the application of the model to existing and hypothetical soil and crop management systems in two small watersheds of southern Ontario, one in the rolling uplands and the other in a very flat lowland area. The model output includes estimates of spring sediment yield from field-size cells to the stream outlet for existing agricultural management conditions, and estimates of sediment yield resulting from the successive implementation of two levels of soil erosion controls under four remedial measures strategies. The results reveal that, for the rolling upland watershed exhibiting a wide range of soil erosion and sediment yield rates, targeted control programs can be expected to provide an extremely effective approach to sediment control. For flat lowland watersheds, exhibiting relatively uniform soil erosion and sediment yield rates, the strategy of targeting controls may be somewhat more effective than a random approach to control, but not as efficient as in the case of watersheds in more rolling terrain. It is evident from the study that a screening model such as GAMES provides a very useful tool for the planning and evaluation of erosion and sediment control programs.  相似文献   

16.
A total maximum daily load for the Chesapeake Bay requires reduction in pollutant load from sources within the Bay watersheds. The Conestoga River watershed has been identified as a major source of sediment load to the Bay. Upland loads of sediment from agriculture are a concern; however, a large proportion of the sediment load in the Conestoga River has been linked to scour of legacy sediment associated with historic millpond sites. Clarifying this distinction and identifying specific segments associated with upland vs. channel sources has important implications for future management. In order to address this important question, we combined the strengths of two widely accepted watershed management models — Soil and Water Assessment Tool (SWAT) for upland agricultural processes, and Hydrologic Simulation Program FORTRAN (HSPF) for instream fate and transport — to create a novel linked modeling system to predict sediment loading from critical sources in the watershed including upland and channel sources, and to aid in targeted implementation of management practices. The model indicates approximately 66% of the total sediment load is derived from instream sources, in agreement with other studies in the region and can be used to support identification of these channel source segments vs. upland source segments, further improving targeted management. The innovated linked SWAT‐HSPF model implemented in this study is useful for other watersheds where both upland agriculture and instream processes are important sources of sediment load.  相似文献   

17.
High intensity wildfire due to long-term fire suppression and heavy fuels buildup can render watersheds highly susceptible to wind and water erosion. The 2002 "Gondola" wildfire, located just southeast of Lake Tahoe, NV-CA, was followed 2 wk later by a severe hail and rainfall event that deposited 7.6 to 15.2 mm of precipitation over a 3 to 5 h time period. This resulted in a substantive upland ash and sediment flow with subsequent down-gradient riparian zone deposition. Point measurements and ESRI ArcView were applied to spatially assess source area contributions and the extent of ash and sediment flow deposition in the riparian zone. A deposition mass of 380 Mg of ash and sediment over 0.82 ha and pre-wildfire surface bulk density measurements were used in conjunction with two source area assessments to generate an estimation of 10.1 mm as the average depth of surface material eroded from the upland source area. Compared to previous measurements of erosion during rainfall simulation studies, the erosion of 1800 to 6700 g m(-2) mm(-1) determined from this study was as much as four orders of magnitude larger. Wildfire, followed by the single event documented in this investigation, enhanced soil water repellency and contributed 17 to 67% of the reported 15 to 60 mm ky(-1) of non-glacial, baseline erosion rates occurring in mountainous, granitic terrain sites in the Sierra Nevada. High fuel loads now common to the Lake Tahoe Basin increase the risk that similar erosion events will become more commonplace, potentially contributing to the accelerated degradation of Lake Tahoe's water clarity.  相似文献   

18.
Abstract: An investigation of the erosion mechanics and washout time rates of erodible control embankments were made with hydraulic scale models in the laboratory. The water control dams have both homogeneous and cores. A wide range of configurations and layouts were tested and equations were developed to make possible the computation of erosion rates. Model scale relationships were analyzed from the developed equations and compared with the results obtained analytically from sediment transport equations.  相似文献   

19.
The official environmental discourse in Laos describes a “chain of degradation” stretching from upland shifting cultivation, increased runoff and soil erosion to the siltation of wetlands and reservoirs. This perspective has had wide‐ranging impacts on rural development policy which, in the uplands, has long favoured forest conservation over agriculture. Integrating soil erosion and water sediment data with local perceptions of land degradation in an upland village of northern Laos, this study tests the validity of the official environmental discourse. Biophysical measurements made in a small agricultural catchment indicate a significant correlation between the spatial extent of cultivation and soil erosion rates. However, sediment yields recorded at the outlet of the catchment highlight relatively low levels of off‐site sediment exportation. Furthermore, farmers' perceptions suggest that local land degradation issues and crop yield declines could be less related to soil erosion than to agricultural land shortage, increased weed competition, and fertility losses resulting from the intensification of shifting cultivation. The study concludes that a better understanding and management of land degradation issues can be achieved by developing more inclusive and scientifically‐informed approaches to environmental perceptions and narratives.  相似文献   

20.
Predicting soil erosion for alternative land uses   总被引:3,自引:0,他引:3  
The APEX (Agricultural Policy-Environmental eXtender) model developed in the United States was calibrated for northwestern China's conditions. The model was then used to investigate soil erosion effects associated with alternative land uses at the ZFG (Zi-Fang-Gully) watershed in northwestern China. The results indicated that the APEX model could be calibrated reasonably well (+/-15% errors) to fit those areas with >50% slope within the watershed. Factors being considered during calibration include runoff, RUSLE (Revised Universal Soil Loss Equation) slope length and steepness factor, channel capacity flow rate, floodplain saturated hydraulic conductivity, and RUSLE C factor coefficient. No changes were made in the APEX computer code. Predictions suggest that reforestation is the best practice among the eight alternative land uses (the status quo, all grass, all grain, all grazing, all forest, half tree and half grass, 70% tree and 30% grain, and construction of a reservoir) for control of water runoff and soil erosion. Construction of a reservoir is the most effective strategy for controlling sediment yield although it does nothing to control upland erosion. For every 1 Mg of crop yield, 11 Mg of soil were lost during the 30-yr simulation period, suggesting that expanding land use for food production should not be encouraged on the ZFG watershed. Grass species are less effective than trees in controlling runoff and erosion on steep slopes because trees generally have deeper and more stable root systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号