首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Future limitations on the availability of selected resources stress the need for increased material efficiency. In addition, in a climate-constrained world the impact of resource use on greenhouse gas emissions should be minimized. Waste management is key to achieve sustainable resource management. Ways to use resources more efficiently include prevention of waste, reuse of products and materials, and recycling of materials, while incineration and anaerobic digestion may recover part of the embodied energy of materials. This study used iWaste, a simulation model, to investigate the extent to which savings in energy consumption and CO2 emissions can be achieved in the Netherlands through recycling of waste streams versus waste incineration, and to assess the extent to which this potential is reflected in the LAP2 (currently initiated policy). Three waste streams (i.e. household waste, bulky household waste, and construction and demolition waste) and three scenarios compare current policy to scenarios that focus on high-quality recycling (Recycling+) or incineration with increased efficiency (Incineration+). The results show that aiming for more and high-quality recycling can result in emission reductions of 2.3 MtCO2 annually in the Netherlands compared to the reference situation in 2008. The main contributors to this reduction potential are found in optimizing the recycling of plastics (PET, PE and PP), textiles, paper, and organic waste. A scenario assuming a higher energy conversion efficiency of the incinerator treating the residual waste stream, achieves an emission reduction equivalent to only one third (0.7 MtCO2/year) of the reduction achieved in the Recycling+ scenario. Furthermore, the results of the study show that currently initiated policy only partially realizes the full potential identified. A focus on highest quality use of recovered materials is essential to realize the full potential energy and CO2 emission reduction identified for the Netherlands. Detailed economic and technical analyses of high quality recycling are recommended to further evaluate viable integrated waste management policies.  相似文献   

2.
Shredder residue is the residue from the shredding of end-of-life vehicles and white goods, after removal of the main metals. Approximately 850,000 tonnes of shredder waste is produced in the UK each year, and historically sent to landfill. Due to European legislation such as the End-of-Life Vehicle (ELV) Directive and the Landfill Directive there is pressure to minimise this waste through recycling and recovery.In this paper, primary data are presented showing that 40% of materials are potentially recoverable in the coarser fraction of UK automotive shredder residue (>30 mm). Barriers to such recycling are discussed in the context of several recent drivers, including this waste's possible reclassification as hazardous.The lack of full and timely implementation of the ELV Directive in the UK has made it an ineffective driver, and it is now unlikely that its 2006 recycling targets will be met as intended.  相似文献   

3.
Inadequate management of household solid waste is a serious problem in many developing cities. The study aimed to evaluate the quantities and composition of household solid waste generation in Abuja within different socioeconomic groups. The wastes from 74 households across different socioeconomic levels in Abuja were collected, weighted and classified on a daily basis for seven days in February 2012. The result showed that the average daily per capita household waste generation is 0.634 kg/capita/day. The characteristic of solid waste in Abuja are typical for the developing cities and dominated by organic waste. Households waste consisted of 63.6% organic waste, 9.7% paper, 8.7% plastics, 3.2% metal, 2.6% glass, 1.6% textile and 10.6% others (unclassified) and the bulk density was 240 kg/m3. The evaluation of relationship between income and daily per capita household waste generation showed a positive relationship. The study revealed a statistically significant difference between household size and daily per capita household waste generation in high-income group; a slight significant difference between household size and daily per capita household waste generation in medium income group and no statistically significant difference between household size and daily per capita household waste generation in low-income group.  相似文献   

4.
This study was undertaken to evaluate the quantity and composition of household solid waste to identify opportunities for waste recycling in Can Tho city, the capital city of the Mekong Delta region in southern Vietnam. Two-stage survey of 100 households was conducted for dry season and rainy season in 2009. Household solid waste was collected from each household and classified into 10 physical categories and 83 subcategories. The average household solid waste generation rate was 285.28 g per capita per day. The compostable and recyclable shares respectively accounted for 80.02% and 11.73%. The authors also analyzed the relations between some socioeconomic factors and household solid waste generation rates by physical categories and subcategories. The household solid waste generation rate per capita per day was positively correlated with the population density and urbanization level, although it was negatively correlated with the household size. The authors also developed mathematical models of correlations between the waste generation rates of main physical categories and relevant factors, such as household size and household income. The models were proposed by linear models with three variables to predict household solid waste generation of total waste, food waste, and plastic waste. It was shown that these correlations were weak and a relationship among variables existed. Comparisons of waste generation by physical compositions associated with different factors, such as seasonal and daily variation were conducted. Results presented that the significant average differences were found by the different seasons and by the different days in a week; although these correlations were weak. The greenhouse gas baseline emission was also calculated as 292.25 g (CO2 eq.) per capita per day from biodegradable components.  相似文献   

5.
This paper clarifies household income, living and working conditions of dumpsite waste pickers at Bantar Gebang final disposal site for municipal solid waste generated in Jakarta, and investigates the feasibility of integrating the informal sector into formal waste management in Indonesia. The first author did fieldwork for totally 16 months at the site and quantitative field surveys were conducted twice during the period. All respondents in the first round quantitative survey (n = 1390) were categorized as follows: waste pickers, family workers, wage labors, bosses, family of the bosses, housewives, pupils/students, preschoolers, the unemployed, and others. Based on the results of the second round quantitative survey (n = 69 households), their average household income was estimated to be approximately US 216 dollars per month (n = 59 households), which was virtually equivalent to the minimum wage in Jakarta in 2013. Living conditions of scavengers at the site were horrible, and their working conditions were dangerous due to medical waste and other sharp waste. Polluted groundwater was one of the serious environmental problems at the site. Despite the social, health and environmental problems, they were attracted to the freedom of entering the informal recycling system in Bantar Gebang and withdrawing from the system, in which a lot of opportunities were provided for the people having few marketable skills to obtain cash earnings. The freedom of their choice should be guaranteed as a prerequisite before integrating the informal sector into formal waste management. Furthermore, special attentions are required when incomes of scavengers are the same level as minimum wages and the national economy is rapidly growing, because scavengers cannot easily change their jobs due to few marketable skills. Indonesian national waste laws and regulations should be properly applied to facilitate a socialization process at final disposal sites. Measures need to be taken to prevent children from working as informal recycling actors, especially for waste pickers aged 15 or younger.  相似文献   

6.
In the UK, between 4 and 5% of the municipal solid waste stream is composed of clothes/textiles. Approximately 25% of this is recycled by companies such as the Salvation Army Trading Company Limited (SATCOL) who provide a collection and distribution infrastructure for ‘donated’ clothing and shoes. Textiles can be reused or undergo a processing stage and enter a recycling stream. Research was conducted in order to quantify the energy used by a reuse/recycling operation and whether this resulted in a net energy benefit. The energy footprint was quantified using a streamlined life cycle assessment (LCA), an LCA restricted in scope in order to target specific aspects of the footprint, in this case energy consumption. Taking into account extraction of resources, manufacture of materials, electricity generation, clothing collection, processing and distribution and final disposal of wastes it was demonstrated that for every kilogram of virgin cotton displaced by second hand clothing approximately 65 kWh is saved, and for every kilogram of polyester around 90 kWh is saved. Therefore, the reuse and recycling of the donated clothing results in a reduction in the environmental burden compared to purchasing new clothing made from virgin materials.  相似文献   

7.
Artificial aggregate made from waste stone sludge and waste silt   总被引:1,自引:0,他引:1  
In this research, waste stone sludge obtained from slab stone processing and waste silt from aggregate washing plants were recycled to manufacture artificial aggregate. Fine-powdered stone sludge was mixed with waste silt of larger particle size; vibratory compaction was applied for good water permeability, resulting in a smaller amount of solidifying agent being used. For the densified packing used in this study, the mix proportion of waste stone sludge to waste silt was 35:50, which produced artificial aggregate of more compact structure with water absorption rate below 0.1%. In addition, applying vibratory compaction of 33.3 Hz to the artificial aggregate and curing for 28 days doubled the compressive strength to above 29.4 MPa. Hence, recycling of waste stone sludge and waste silt for the production of artificial aggregate not only offers a feasible substitute for sand and stone, but also an ecological alternative to waste management of sludge and silt.  相似文献   

8.
Minimisation is the top priority of the waste management hierarchy, which is one of the guiding principals for national solid waste management planning throughout the developed world. As such it should be encouraged as a means for reducing wastes which require treatment and disposal, whether they be household, commercial or industrial in source. This paper suggests that minimisation is not being given the necessary policy frameworks or legislation within which to develop in the UK, and questions whether minimisation is being afforded the respect and attention, from all levels, that is due the most preferable waste option according to the hierarchy. This theme is investigated by surveying the county councils of England as a representative sample of waste disposal authorities in England, and former waste regulation authorities. They are responsible for guiding local and district waste policy and are the regional waste planners in the UK. If they are not seriously taking on board the message of minimisation, then there is little chance that it will succeed without further legislative developments. Some 59% of English counties have a minimisation policy, whilst only 47% have participated in and supported a minimisation programme or trial within their region. The majority of these developments have occurred within the last three years, and 78% of counties who have participated in a programme have found it a successful venture. By 1999 79% of English counties will have been actively involved in a minimisation programme in their region, which is a positive scenario. This trend must continue if waste minimisation is to become the key theme of future sustainable waste management in the UK as was intended by declarations at the Rio '92 conference and in subsequent UK Government policy and strategy.  相似文献   

9.
Algae offer a multiple-benefit opportunity as the products that can result from algal cultivation are numerous and diverse. However, commercial production of algal-derived materials is scarce and in Queensland Australia is virtually non-existent, partly due to challenges around readily available resources. In this work, the potential to regionally recycle waste nitrogen (N), phosphorus (P) and CO2 to support algal production is considered. A feature of the work is mapping the availability of the three resources for algal cultivation (N, P and CO2) together with climatic and land use considerations. Mapping resolution is defined by the boundaries of Queensland's (Australia) regional authorities. Layering the maps enables identification of regional hotspots for growing algae. Waste resources are shown to be most abundant in Mackay, Burdekin, Toowoomba, Cassowary and Bundaberg; regions which also have favourable eco-climatic conditions. Waste nitrogen is the limiting waste stream, in these and most other regions however additional requirements can be fixed atmospherically, whereas waste CO2 is shown to be abundant relative to waste nutrients. It is found that, based on the availability of waste phosphorus, the top 5 most suitable regions have sufficient resources to produce around 1.1 million t/y of algal biomass. This could potentially produce 309 ML of biodiesel which is 5% of Queensland's 2011 diesel oil sales. The outcomes of this work highlight new opportunities for industrial ecology in non-urban regions.  相似文献   

10.
Every year, nurseries waste about 40 t of residual biomass for each ha of potted plants cultivation. The European nursery sector deals with about 90,000 ha of cultivated land and 120,000 ha of nurseries, with a turnover of 19.8 billion Euros in 2011. In recent years, a number of Italian projects highlighted that GHG (greenhouse gas) emissions for the nursery sector range between 37 tCO2eq/ha/year and 45 tCO2eq/ha/year for potted plants, mainly due to the consumption of electric energy, plastics and peat. Moreover, other studies analyse the impacts associated to nurseries, recommending best practices for energy reductions and waste recycle or reuse. Therefore, the present work focused its attention to the possible environmental benefits associated to the reuse of residues (wood and substrate) of potted plants that are discarded from the nursery production chain. GHG emissions and fossil energy requirement were quantified by considering the CO2eq (CO2 equivalent) and the CER (cumulative energy requirement) respectively, in order to assess the environmental impacts of two different scenarios proposed for the materials recovery. Final results highlighted that the solutions which are able to recover the substrate and the wood allow impact reductions compared to landfill disposal. In particular, the scenario consisting in the immediate separation of the substrate from the root-plant system and the successive chipping of wood for energetic reuse, allows higher savings than those obtainable through shredding and subsequent wind separation. Moreover, for what concerns the CO2eq, an adequate use of the residual biomass make it possible to compensate the GHG emissions of the nurseries up to 15%.  相似文献   

11.
This paper examines the 1-year anthropogenic stocks and flows of silver as it progresses from extraction to final disposal on the European continent. The primary flows of silver include production, fabrication and manufacturing, use, and waste management. A substance flow analysis (SFA) was used to trace the flows and inventory data, and mass balance equations were used to determine the quantity of flows. The results reveal that Europe has a low level of silver mine production (1580 Mg Ag/year) and instead relies on silver imports and the recycling of scrap in production and fabrication. In the year 1997, Europe imported 1160 Mg Ag of ore concentrate and 2010 Mg Ag of refined silver, and recycled 2750 Mg Ag of new and old scrap. There is a net addition of 3320 Mg Ag/year into silver reservoirs at the use stage. This is the result of a greater amount of silver entering the system from manufacturing than is leaving the system into waste management. The waste flow with the highest content of silver is municipal solid waste, which contains 1180 Mg Ag/year. In total, 62% of all discarded silver is recycled and 38% is sent to landfills. The results of this study and other element and material flow analyses can help guide resource managers, environmental policy makers, and environmental scientists in their efforts to increase material recovery and recycling, address resource sustainability, and ameliorate environmental problems.  相似文献   

12.
The environmental impacts of food waste management strategies and the effects of energy mix were evaluated using a life cycle assessment model, EASEWASTE. Three different strategies involving landfill, composting and combined digestion and composting as core technologies were investigated. The results indicate that the landfilling of food waste has an obvious impact on global warming, although the power recovery from landfill gas counteracts some of this. Food waste composting causes serious acidification (68.0 PE) and nutrient enrichment (76.9 PE) because of NH3 and SO2 emissions during decomposition. Using compost on farmland, which can marginally reduce global warming (−1.7 PE), acidification (−0.8 PE), and ecotoxicity and human toxicity through fertilizer substitution, also leads to nutrient enrichment as neutralization of emissions from N loss (27.6 PE) and substitution (−12.8 PE). A combined digestion and composting technology lessens the effects of acidification (−12.2 PE), nutrient enrichment (−5.7 PE), and global warming (−7.9 PE) mainly because energy is recovered efficiently, which decreases emissions including SO2, Hg, NOx, and fossil CO2 during normal energy production. The change of energy mix by introducing more clean energy, which has marginal effects on the performance of composting strategy, results in apparently more loading to acidification and nutrient enrichment in the other two strategies. These are mainly because the recovered energy can avoid fewer emissions than before due to the lower background values in power generation. These results provide quantitative evidence for technical selection and pollution control in food waste management.  相似文献   

13.
In this article, for the treatment of two specific pharmaceutical waste solvents the resource consumption of an on-site distillation process is evaluated and compared with an off-site incineration process. Both techniques are evaluated based on a thermodynamic quantitative method. The exergy approach and the cumulative exergy extracted from the natural environment (CEENE) are envisaged in order to evaluate the overall resource intake at different levels. Scenarios are constructed to make a fair comparison of both techniques. Two waste solvents, toluene (TOL) and dichloromethane (DCM), from the pharmaceutical industry which are frequently sent to distillation were evaluated. The functional unit for the comparison of both treatment alternatives is the treatment of 1 kg waste solvent + the incineration of W kg low calorific hazardous waste + the delivery of X kg “recovered” solvent + the production of Y MJ heat and Z MJ electricity. W, X, Y and Z depend on the waste solvent properties. In terms of resource requirements, distillation requires 17% (TOL) and 66% (DCM) less resources than incineration. It can be concluded that the waste solvent properties, the efficiency of the distillation process and the efficiency of the fresh solvent production process are of major importance on the resource consumption and the final choice between incineration and distillation. For a full environmental impact analysis of both treatment options, also the emissions should be taken into account. It also has to be stressed that in practice, only solvents go to incineration which cannot be distilled due to the type and degree of pollution/composition of the solvent. If distillation is not feasible, then such solvents are sent to incineration with energy recovery, according to the EU directive 2006/12/EG.  相似文献   

14.
Shanghai is the largest industrial and commercial city of China, where in-use stocks of metals are likely to be significant. The in-use stocks of copper in this city are thus established by an extensive “bottom-up” study. Spatial distribution of copper stocks within Shanghai has further been characterized for better understanding of copper utilization pattern of this city. For the year 2012, the results are a total stock of 914.6 Gg Cu, and 38.4–64.1 kg Cu per capita. Nearly 94% of copper stocks distribute in subcategories of electric power transmission and distribution, water transmission and distribution, buildings, and household durable. Features of spatial distribution show that three central districts of Jing An, Hong Kou and Huang Pu have the spatial density of more than 1 Gg/km2. And Chong Ming county and Jin Shan District have the lowest spatial density of about 0.01 Gg/km2. It has been found that the copper stock density within Shanghai is largely determined by population density and economic development level.  相似文献   

15.
Devising effective strategies to facilitate waste reuse depends on the solid understanding of reuse behaviors. However, previous studies of reuse behavior have been limited in scope, focusing mostly on household recycling behaviors or very limited types of industrial wastes. To gain a better understanding of the business reuse behaviors, this study examined the impact of various factors in technical, economic, regulatory, and behavioral categories in the case of coal ash generated in the United States. The results of fixed effect models for fly ash and bottom ash particularly showed the significance role of the behavioral factor. In both models, a proxy variable, which represents knowledge sharing among the power plants or the utility's decision-making, turned out to be statistically significant and had the largest coefficient estimates among a group of variables. This finding may imply that the characteristics of waste reuse behavior are determined more by business decision-making behaviors than by market or institutional factors. However, the role of the behavioral variable was stronger in the bottom ash models than in the fly ash models. While the reuse of bottom ash was determined primarily by the behavioral variable, fly ash reuse was determined by more diverse factors including economic and regulatory variables. This could be explained by material characteristics in relation to competing resources and the nature of reuse applications.  相似文献   

16.
In 2002, about 17.1 million bales of cotton were ginned in the United States and the estimated cotton gin waste was 2.25 × 109 kg. The disposal of cotton gin waste (CGW) is a significant problem in the cotton ginning industry, but CGW could be potentially used as feedstock for bioethanol. Freshly discharged CGW and stored CGW were characterized for storage stability and potential for ethanol production by determining their summative compositions. The bulk densities of the fresh wet and dry CGW were 210.2 ± 59.9 kg m−3 and 183.3 ± 52.2 kg m−3, respectively. After six months of storage the volume of piles A, B, and C decreased by 38.7%, 41.5%, and 33.3%, respectively, relative to the volume of the pile at the start of the storage. The ash content of the CGW was very high ranging from 10% to 21% and the acid-insoluble fraction was high (21–24%). The total carbohydrate content was very low and ranged from 34% to 49%. After three months storage, chemical compositional analysis showed the loss of total carbohydrates was minimal but after six months, the losses were as high as 25%. This loss of carbohydrates suggests that under open storage conditions, the feedstock must be processed within three months to reduce ethanol yield losses.  相似文献   

17.
18.
The ability for small islands to meet sustainability goals is exacerbated by the costs of transporting goods on, and then, wastes off the islands. At small scales, recycling can be prohibitive and complicated by labor costs; the need to profitably recycle and manage solid waste output from tourism is complicated by scale and available technologies. A multi-year study documents the amount of solid waste generated on Great Exuma (Exuma), The Commonwealth of The Bahamas since 2010 with one year of benchmarking, then limited recycling of food waste generation by an all-inclusive resort, Sandals Emerald Bay (SEB). For the island of Exuma, the rapid increase in the rate of accumulation of solid waste associated with a large destination resort has led to an increase in pests such as rats and flies, along with an increased occurrence of fires associated with unburied solid waste. Solid waste has accumulated faster than the island solid waste management can absorb. SEB kitchen and hotel operations contributes an estimated 36% of all solid waste generated on the island, about 1752 t1 out of a total of 4841 t generated on the island in 2013 (exclusive of vegetation waste). Based on 4 weeks of benchmarking, 48.5% of all the waste coming out of the SEB resort is compostable, organic waste, but waste composition varies widely over time. Exuma Waste Management (EWM) and Recycle Exuma (RE), both privately-held Bahamian businesses, worked for one year (2012–2013) with SEB resort to implement a benchmarking and pilot recycling project to meet Earth Check green resort certification requirements. This paper outlines the costs and resources required for food waste recycling and some barriers to implementing more effective solid waste management for the tourism industry on small islands.  相似文献   

19.
Wastewater treatment practices should pay more attention to their environmental performances due to their resources consumption and emissions’ impact. While reclaimed water reuse seems to have become a promising practice, is it always feasible in any condition? To address this issue, this study carried out an extended emergy evaluation of a holistic wastewater treatment system. On one hand, this method was extended to include the emissions’ impact. On the other hand, this study integrated a wastewater treatment plant, its excess sludge disposal system and treated water disposal system into an integrated wastewater treatment system (IWTS), so as to evaluate its performances more completely. And then several indicators, including cost per unit pollutant eliminated (CUPE), ratio of positive output (RPO), environmental load ratio (ELR), and sustainability index (SI), were proposed for evaluating the performances of an IWTS. Two scenarios (scenario A: wastewater treatment + sludge landfilling + treated water discharges; scenario B: wastewater treatment + sludge landfilling + reclaimed water reuse) for a livestock wastewater treatment plant in Sichuan Agricultural University located in Ya’an City in Southwest China, as cases, were researched. The results show that scenario B has lower positive output efficiency and greater environmental load than scenario A. Meanwhile, the reclaimed water reuse raises cost per unit pollutant eliminated compared with the treated water being discharged directly; emissions’ impact enhances the environmental load of the two scenarios to different degree; emissions’ impact has decisive effect on the sustainability of the two scenarios. These results mean that the reclaimed water reuse should not be advocated in this case. This study provides some policy implications: (1) wastewater treatment process should be comprehensively evaluated from its resources consumption and impact of emissions; (2) reclaimed water reuse should be carefully evaluated from its pros and cons simultaneously; (3) the local conditions should be considered when implementing reclaimed water reuse, such as local water body conditions, market demands, the related laws and regulations, corporations’ economic conditions, etc.  相似文献   

20.
Industrialization and urbanization in the developing world have boosted steel demand during the recent two decades. Reliable estimates on how much steel is required for high economic development are necessary to better understand the future challenges for employment, resource management, capacity planning, and climate change mitigation within the steel sector. During their use phase, steel-containing products provide service to people, and the size of the in-use stock of steel can serve as an indicator of the total service level. We apply dynamic material flow analysis to estimate in-use stocks of steel in about 200 countries and identify patterns of how stocks evolve over time. Three different models of the steel cycle are applied and a full uncertainty analysis is conducted to obtain reliable stock estimates for the period 1700–2008.Per capita in-use stocks in countries with a long industrial history, e.g., the U.S, the UK, or Germany, are between 11 and 16 tons, and stock accumulation is slowing down or has come to a halt. Stocks in countries that industrialized rather recently, such as South Korea or Portugal, are between 6 and 10 tons per capita and grow fast. In several countries, per capita in-use stocks of steel have saturated or are close to saturation. We identify the range of saturation to be 13 ± 2 tons for the total per capita stock, which includes 10 ± 2 tons for construction, 1.3 ± 0.5 tons for machinery, 1.5 ± 0.7 tons for transportation, and 0.6 ± 0.2 tons for appliances and containers. The time series for the stocks and the saturation levels can be used to estimate future steel production and scrap supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号