首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
以溶剂热法制备Fe_3O_4磁性粒子,通过改良的St?ber法在其上包覆Si O_2,并用3-氨丙基三乙氧基硅烷对表面进行氨基修饰,制得Si O_2-NH_2/Fe_3O_4磁性复合材料,并将其用于制药废水二级出水的吸附处理(吸附剂投加量1 g/L、吸附时间120 min)。表征结果显示:Si O_2-NH_2/Fe_3O_4为粒径(510.0±3.6)nm的球形粒子。实验结果表明:在废水p H为5时,Si O_2-NH_2/Fe_3O_4对TOC、蛋白质、腐殖酸的吸附效果最佳,三者的去除率分别达44.14%,35.58%,33.07%,与Fe_3O_4相比分别提高了25.27,21.76,21.05百分点;废水p H为6时,Si O_2-NH_2/Fe_3O_4对多糖和色度的去除效果最佳,二者的去除率分别达26.03%和62.94%,与Fe_3O_4的最高去除率(p H=5时)相比分别提高了17.84百分点和22.45百分点;Si O_2-NH_2/Fe_3O_4重复使用4次,TOC和色度去除率均达初次使用时的87%以上。  相似文献   

2.
以磁性Fe_3O_4为载体负载Bi(NO_3)_3,再用NaBH_4还原Bi~(3+)制备了Bi/Fe_3O_4催化剂。采用XRD和紫外-可见光谱对催化剂进行表征。考察了Bi负载量、NaBH_4加入量和Bi/Fe_3O_4加入量对Bi/Fe_3O_4催化NaBH_4还原对硝基苯酚(4-NP)效果的影响。表征结果显示:当催化剂中Bi含量较少时,Bi分散良好;当Bi含量较多时,会形成纳米颗粒。实验结果表明:当反应温度为25℃,初始4-NP浓度为4.0 mmol/L时,在Bi负载量为5%(w)、Bi/Fe_3O_4催化剂加入量为500 mg/L,NaBH_4加入量为6.0 g/L的条件下,反应速率常数为0.581 min~(-1),4-NP的去除率为99.7%;Bi/Fe_3O_4催化剂稳定性好,重复使用15次后,活性基本不变。  相似文献   

3.
以Fe Cl_3·6H_2O和正硅酸四乙酯为原料,通过溶胶-凝胶法结合醇溶剂热法制备了Fe_3O_4@Si O_2复合气凝胶。采用XRD,FTIR,SEM,EDS等技术对Fe_3O_4@Si O_2的结构进行了表征。考察了Fe_3O_4@Si O_2对刚果红溶液的吸附性能。表征结果显示,Fe_3O_4@Si O_2复合气凝胶是由直径为10~20 nm的近球形颗粒组装而成的具有三维网络结构的纳米材料,比表面积为457.93 m~2/g,平均孔径为10.7 nm。在溶液p H为5、吸附时间为35 min的最佳工艺条件下,采用Fe_3O_4@Si O_2吸附处理质量浓度为10 mg/L的刚果红溶液,刚果红去除率为99.39%,此时溶液中刚果红的质量浓度仅为0.052 mg/L。Fe_3O_4@Si O_2复合气凝胶吸附刚果红后具有较好的解吸和再生能力。  相似文献   

4.
吴威  龚继来  曾光明 《化工环保》2015,35(4):426-431
采用液相还原法制备氧化石墨烯负载纳米零价铁吸附剂(Fe0/GO),并用于吸附去除溶液中的亚甲基蓝(MB)。考察了溶液p H、吸附温度、吸附时间、初始MB质量浓度对Fe0/GO吸附MB的影响。SEM等表征结果显示:Fe0以球形或短链形负载在GO上,增加了材料的反应活性位点;Fe0/GO的比表面积为158.32 m2/g,等电点为3。实验结果表明:在溶液p H为6、吸附时间5 h、吸附温度25℃的最佳条件下,加入400 mg/L的Fe0/GO,处理初始MB质量浓度为160 mg/L的MB溶液,MB去除率为89.26%,吸附量为125.5 mg/g;Langmuir等温吸附方程和Frenudlich等温吸附方程均能较好地描述Fe0/GO对MB的吸附过程;Fe0/GO对MB的吸附行为遵循准二级动力学方程;计算得出吸附温度为25℃、初始MB质量浓度为160 mg/L时的饱和吸附量为201.2 mg/g,平衡吸附量为124.3 mg/g。  相似文献   

5.
采用原位氧化沉淀法制备出仿酶型磁性Fe0-Fe_3O_4复合催化剂,并将其作为非均相类Fenton催化剂用于溶液中对硝基苯酚的降解;采用SEM和XRD等技术对催化剂进行了表征。表征结果显示,Fe_3O_4与Fe0结合牢固,有利于Fe0的分散。实验结果表明:Fe0-Fe_3O_4对对硝基苯酚的降解为拟一级反应;在Fe0与Fe_3O_4的质量比为0.75、Fe0-Fe_3O_4投加量为1.2 g/L、初始H_2O_2浓度为10 mmol/L、初始溶液p H为3、反应温度为30℃的条件下反应90min,反应速率常数为0.067 min-1,COD去除率为77.28%,Fe溶出量为2.12 mg/L;在对硝基苯酚的降解过程中,pH先增大后减小,Fe溶出量先降低后升高;Fe0-Fe_3O_4是一种稳定的催化剂,可再生使用。  相似文献   

6.
以纳米γ-Fe_2O_3为磁性介质制备了磁性纳米γ-Fe_2O_3/SiO_2,并将其用于水中亚甲基蓝的吸附。表征结果显示:制备的γ-Fe_2O_3/SiO_2呈不规则核壳结构,平均粒径为38 nm,比表面积为74.35 m~2/g,比饱和磁化强度为55A·m~2/kg。实验结果表明:γ-Fe_2O_3/SiO_2对亚甲基蓝的吸附适宜在中碱性条件下进行,4 h即可达吸附平衡;在初始亚甲基蓝质量浓度为1 80 mg/L、γ-Fe_2O_3/SiO_2加入量为2 g/L、初始溶液pH为7.0、吸附温度为298 K的条件下,吸附量最高为25.4 mg/g;共存金属离子会降低吸附效率,而少量的腐殖酸则会促进吸附;吸附过程符合准二级动力学方程,颗粒内扩散不是唯一的控速步骤;等温吸附满足Langmuir模型,该吸附是一个物理吸附过程;用乙醇洗涤的γ-Fe_2O_3/SiO_2重复使用4次时仍能保持约80%的原吸附量。  相似文献   

7.
以玉米淀粉为载体,采用液相还原法制备纳米零价铁/玉米淀粉,并用于溶液中Pb2+的去除。采用SEM技术对吸附材料进行了表征。考察了溶液pH、纳米零价铁/玉米淀粉加入量、初始Pb2+质量浓度、反应时间等因素对Pb2+吸附效果的影响。表征结果显示,纳米零价铁/玉米淀粉球体间主要呈链状连接,不仅保持了纳米零价铁的特性,且颗粒的团聚现象明显减少。实验结果表明,在溶液pH 7.0、纳米零价铁/玉米淀粉加入量0.8 g/L、初始Pb2+质量浓度50 mg/L、反应时间60 min的条件下,纳米零价铁/玉米淀粉对Pb2+具有较好的吸附效果,Pb2+去除率为93.17%、吸附量为47.27 mg/g。  相似文献   

8.
以氯化铜、纳米γ-Fe_2O_3和硫脲为原材料,乙二醇为溶剂,采用溶剂热法制备了磁性CuS/γ-Fe_2O_3复合光催化剂。考察了该光催化剂对刚果红染料废水的处理效果。在m(CuS)∶m(γ-Fe_2O_3)=2∶1、刚果红初始质量浓度为10 mg/L、光催化剂投加量为0.6 g/L的最佳工艺条件下,刚果红去除率达96.51%。阴离子Cl~-、NO_3~-及SO_4~(2-)对该光催化剂的催化活性具有促进作用,其中SO_4~(2-)的促进作用最显著。该光催化剂具有较好的活性稳定性,重复使用6次后刚果红去除率仍高达90.50%。  相似文献   

9.
采用共沉淀法制备了复合光催化剂Fe_3O_4-xTiO_2。运用XRD、SEM、TEM和UV-Vis DRS等技术对光催化剂进行了表征,并考察了其在太阳光下对茜素红模拟染料废水的光催化降解活性。实验结果表明,当TiO_2与Fe_3O_4的质量比为0.75、初始溶液p H为3.0时,茜素红去除率最高,光催化反应120 min后,茜素红去除率为100%。表征结果显示,Fe_3O_4-0.75TiO_2复合光催化剂不是核壳结构,而是Fe_3O_4和TiO_2的聚集体。Fe_3O_4-0.75TiO_2复合光催化剂重复使用5次后茜素红去除率几乎没有下降,活性稳定性极佳。  相似文献   

10.
采用水溶液聚合法,以丙烯酸、丙烯酰胺及改性蒙脱土为原料,纳米腐植酸为基体,N,N’-亚甲基双丙烯酰胺为交联剂,过二硫酸钾为引发剂,制备了丙烯酸-蒙脱土-丙烯酰胺/纳米腐植酸复合树脂(简称复合树脂)。考察了溶液pH、吸附时间、吸附温度、初始离子浓度等因素对复合树脂分别吸附Ni~(2+)和Cd~(2+)的影响。实验结果表明:在吸附温度35℃、吸附时间90 min、溶液pH为7、初始Ni~(2+)和Cd~(2+)的浓度分别为0.02 mol/L、复合树脂加入量16.7 g/L的条件下,Ni~(2+)和Cd~(2+)的吸附量分别为383.02 mg/g和359.27 mg/g;复合树脂吸附Ni~(2+)和Cd~(2+)的吸附等温线均满足Langmuir等温吸附方程;吸附过程均符合准二级动力学方程;复合树脂重复使用6次,其对Ni~(2+)和Cd~(2+)的吸附量分别降低了17.1%和9.3%。  相似文献   

11.
选择Al2O3,TiO2,MnO2,Fe3O4 4种金属氧化物对溶液中的对氯苯甲酸(p-CBA)进行催化臭氧氧化降解。催化剂的表征结果显示:TiO2具有最大的比表面积,为93.84 m2/g,Al2O3的比表面积最低,仅为10.28 m2/g;MnO2和Fe3O4表面含有大量强酸性位,故其等电点较低,分别为1.45和1.82。4种催化剂对p-CBA的吸附能力与其比表面积相关,而催化臭氧氧化活性高低却与其等电点的高低顺序一致。Al2O3具有最高的等电点(6.92),也表现出相对较强的催化臭氧氧化活性。在臭氧通量6 mg/min、p-CBA初始质量浓度40 mg/L、Al2O3投加量0.5 g/L、反应时间40 min的条件下,p-CBA去除率达到58.6%,远高于单独臭氧化和吸附过程的去除率。  相似文献   

12.
以海藻酸铝为主要包埋材料、纳米Al_2O_3为添加剂,包埋固定红平红球菌,制得纳米Al_2O_3固定化红平红球菌菌球,并将其用于苯酚的降解。表征结果显示:菌球内部包含丰富的菌丝体;内部孔径以中孔居多。实验结果表明:菌球的最优制备方案为0.05 g纳米Al_2O_3加入3 m L海藻酸钠溶液中、海藻酸钠质量分数6%、微生物包埋量0.5 m L/m L(以海藻酸钠溶液计)、Al_2(SO_4)_3质量分数3%;在初始苯酚质量浓度为400 mg/L、反应时间为24h、菌球加入量为8 g/L、反应p H为8.0、反应温度为30℃的条件下,菌球首次使用时可使苯酚完全降解,使用5次后的苯酚降解率仍达93%以上,具有良好的循环使用性。  相似文献   

13.
磁性膨润土的制备及类Fenton氧化法处理焦化废水   总被引:1,自引:0,他引:1       下载免费PDF全文
以Al-Fe柱撑膨润土为原料,通过原位氧化沉淀法负载纳米Fe3O4颗粒,制备磁性膨润土。采用XRD,SEM,EDS技术对磁性膨润土进行了表征,并将其作为类Fenton反应催化剂对焦化厂二沉池出水(COD为267.6 mg/L、色度为428度)进行了深度处理,探讨了各反应条件对处理效果的影响。实验结果表明:Fe3O4颗粒较为均匀地分布在膨润土表面,负载牢固;在H2O2加入量70 mmol/L、磁性膨润土加入量0.8 g/L、反应温度30 ℃、初始废水pH 5.0的条件下反应30 h,废水COD和色度的去除率分别达到78.5%和93.4%,COD和色度分别降至57.5 mg/L和28度,满足GB/T 19923—2005《城市污水再生利用 工业用水水质》的要求;磁性膨润土使用4次后,对废水的处理效果仍很稳定。  相似文献   

14.
陈东  曾玉彬  李源  汪勉  李嘉晨 《化工环保》2015,35(5):481-486
以纳米γ-Fe2O3为磁性介质制备了磁性纳米γ-Fe2O3/SiO2,并将其用于水中亚甲基蓝的吸附。表征结果显示:制备的γ-Fe2O3/SiO2呈不规则核壳结构,平均粒径为38 nm,比表面积为74.35 m2/g,比饱和磁化强度为55 A·m2/kg。实验结果表明:γ-Fe2O3/SiO2对亚甲基蓝的吸附适宜在中碱性条件下进行,4 h即可达吸附平衡;在初始亚甲基蓝质量浓度为180 mg/L、γ-Fe2O3/SiO2加入量为2 g/L、初始溶液pH为7.0、吸附温度为298 K的条件下,吸附量最高为25.4 mg/g;共存金属离子会降低吸附效率,而少量的腐殖酸则会促进吸附;吸附过程符合准二级动力学方程,颗粒内扩散不是唯一的控速步骤;等温吸附满足Langmuir模型,该吸附是一个物理吸附过程;用乙醇洗涤的γ-Fe2O3/SiO2重复使用4次时仍能保持约80%的原吸附量。  相似文献   

15.
采用催化臭氧氧化深度处理某石化厂炼油废水,制备了活性炭复合材料负载催化剂(Fe_2O_3/ACNT),与几种常见负载催化剂进行了物性和COD去除效果的对比,并对Fe_2O_3/ACNT的催化效果和稳定性进行了详细分析。结果表明:催化剂的催化臭氧氧化活性由高到低的顺序为Fe_2O_3/ACNTFe_2O_3/活性炭Fe_2O_3/Al2O3Fe_2O_3/陶粒;Fe_2O_3/ACNT催化剂具有较高的比表面积、孔体积、强度和吸水率,使COD去除率由单独臭氧氧化时的约20%提高到66.8%。在催化剂填充量200 m L、废水pH 7.6、臭氧投加量200 mg/L、体积空速1 h~(-1)的条件下运行30d,COD去除率平均达65.1%,出水COD均值为40.8 mg/L,最高值为44.3 mg/L,满足外排水COD小于50 mg/L的指标。催化剂稳定性良好,运行30 d活性未见明显降低,具有在环保领域应用的前景。  相似文献   

16.
MCM-41分子筛负载铁铈催化降解甲基橙   总被引:1,自引:0,他引:1       下载免费PDF全文
采用等体积浸渍法制备了负载型有序介孔Fe-Ce/MCM-41催化剂。研究了该催化剂降解甲基橙的适宜工艺条件,并采用XPS,XRD,TEM技术对该催化剂进行了表征。实验结果表明,该催化剂Fenton氧化降解甲基橙的较适宜工艺条件为:溶液pH 5.0、甲基橙溶液初始质量浓度100 mg/L、催化剂加入量2.0 g/L、H_2O_2浓度20 mmol/L,在此适宜条件下反应120 min时,甲基橙去除率接近100%。表征结果显示:Fe-Ce/MCM-41催化剂主要由铁、铈、氧、碳4种元素组成;铁与铈的摩尔比接近3∶1;铁和铈主要以Fe_3O_4和CeO_2的形态存在于催化剂表面。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号