首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 747 毫秒
1.
Two species of giant clams, Tridacna maxima and T. squamosa, coexist in the Red Sea, but exhibit distinctly different depth distributions: T. maxima mostly occurs in shallow waters (reef flat and edge), while T. squamosa may occur down to the lower fore-reef slope. Giant clams have been described as mixotrophic, capable of both filter-feeding and photosynthesis due to algal symbionts (zooxanthellae), therefore, observed depth preferences were investigated in relation to possible differences in autotrophy vs. heterotrophy. This study was conducted from April to June 2004, at the reef near the Marine Science Station, Aqaba, Gulf of Aqaba, Red Sea, and in May 2007, at a reef near Dahab, Sinai Peninsula, Egypt. In situ measurements using a submersible pulse amplitude modulated fluorometer (Diving PAM), revealed no significant differences in effective PSII quantum yield (ΔF/Fm′) and relative electron transport rates (ETR) between the two species; but rapid light curves (ETR vs. light, photosynthetically active irradiance, PAR) showed significant differences in maximum photosynthetic rates (ETRmax), with 20% higher values in T. maxima. Chamber incubations displayed higher net and gross oxygen production by T. maxima (88.0 and 120.3 μmol O2 cm−2 mantle area day−1) than T. squamosa (56.7 and 84.8 μmol O2 cm−2 mantle area day−1); even under shading conditions (simulated depth of 20 m) T. maxima still achieved 93% of the surface gross O2 production, whereas T. squamosa reached only 44%. A correlation was found between ETR and net photosynthesis measured as oxygen production (T. maxima: R 2 = 0.53; T. squamosa: R 2 = 0.61). Calculated compensation depth (CD) (gross photosynthesis equals respiration) in T. maxima (16 m) matches the maximum depth of occurrence in this study (17 m). By contrast, the CD of T. squamosa (9 m) was much shallower than the maximum vertical range (42 m). Findings suggest T. maxima is a strict functional photoautotroph limited by light, whereas T. squamosa is a mixotroph whose photoautotrophic range is extended by heterotrophy. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Bacterial abundance, production, and extracellular enzyme activity were determined in the shallow water column, in the epiphytic community of Thalassia testudinum, and at the sediment surface along with total carbon, nitrogen, and phosphorus in Florida Bay, a subtropical seagrass estuary. Data were statistically reduced by principle components analysis (PCA) and multidimensional scaling and related to T. testudinum leaf total phosphorus content and phytoplankton biomass. Each zone (i.e., pelagic, epiphytic, and surface sediment community) was significantly dissimilar to each other (Global R = 0.65). Pelagic aminopeptidase and sum of carbon hydrolytic enzyme (esterase, peptidase, and α- and β-glucosidase) activities ranged from 8 to 284 mg N m−2 day−1 and 113–1,671 mg C m−2 day−1, respectively, and were 1–3 orders of magnitude higher than epiphytic and sediment surface activities. Due to the phosphorus-limited nature of Florida Bay, alkaline phosphatase activity was similar between pelagic (51–710 mg P m−2 day−1) and sediment (77–224 mg P m−2 day−1) zones but lower in the epiphytes (1.1–5.2 mg P m−2 day−1). Total (and/or organic) C (111–311 g C m−2), N (9.4–27.2 g N m−2), and P (212–1,623 mg P m−2) content were the highest in the sediment surface and typically the lowest in the seagrass epiphytes, ranging from 0.6 to 8.7 g C m−2, 0.02–0.99 g N m−2, and 0.5–43.5 mg P m−2. Unlike nutrient content and enzyme activities, bacterial production was highest in the epiphytes (8.0–235.1 mg C m−2 day−1) and sediment surface (11.5–233.2 mg C m−2 day−1) and low in the water column (1.6–85.6 mg C m−2 day−1). At an assumed 50% bacterial growth efficiency, for example, extracellular enzyme hydrolysis could supply 1.8 and 69% of epiphytic and sediment bacteria carbon demand, respectively, while pelagic bacteria could fulfill their carbon demand completely by enzyme-hydrolyzable organic matter. Similarly, previously measured T. testudinum extracellular photosynthetic carbon exudation rates could not satisfy epiphytic and sediment surface bacterial carbon demand, suggesting that epiphytic algae and microphytobenthos might provide usable substrates to support high benthic bacterial production rates. PCA revealed that T. testudinum nutrient content was related positively to epiphytic nutrient content and carbon hydrolase activity in the sediment, but unrelated to pelagic variables. Phytoplankton biomass correlated positively with all pelagic components and sediment aminopeptidase activity but negatively with epiphytic alkaline phosphatase activity. In conclusion, seagrass production and nutrient content was unrelated to pelagic bacteria activity, but did influence extracellular enzyme hydrolysis at the sediment surface and in the epiphytes. This study suggests that seagrass-derived organic matter is of secondary importance in Florida Bay and that bacteria rely primarily on algal/cyanobacteria production. Pelagic bacteria seem coupled to phytoplankton, while the benthic community appears supported by epiphytic and/or microphytobenthos production.  相似文献   

3.
Heterotrophic nitrogen-fixation (acetylene reduction) was measured during decomposition (under dark conditions) of Rhizophora mangle L. and Avicennia germinans (L.) Stearn leaf litter. Nitrogen-fixation rates in leaf litter increased following 24 d incubation, then decreased after ≃44 d for both species. Maximum rates of 66.2 and 64.6 nmol C2H4 g−1 dry wt h−1 were reached by R. mangle and A. germinans leaf litter, respectively. Higher fixation rates of leaf litter were associated with an increase in water content and sediment particles on leaf surfaces of both species. Rates of nitrogen fixation by diazotrophs attached to sediment particles were not significantly different from zero. With additions of d-glucose, ethylene production rates increased by factors of 625-, 34- and 7-fold for sediment, R. mangle and A.␣germinans leaf litter, respectively, compared to rates prior to enrichment. These organically enhanced rates of nitrogen fixation on leaves could be accounted for by increased activity associated with attached sediment particles and not the leaf material. Total phenolics [reported as tannic acid equivalent (TAE) units] decreased nitrogen-fixation rates when added to d-glucose-enriched sediment at >20 mg TAE l−1. Phenolic compounds could explain the initial lag in rates of nitrogen fixation during leaf-litter decomposition of R. mangle (initial content of 110.8 mg TAE g−1 dry wt), but not of A. germinans (initial content of 23.4 mg TAE g−1 dry wt). The higher phenolic content and reportedly lower carbon substrate of R. mangle did not result in species-specific differences in either the magnitude or temporal pattern of nitrogen fixation compared to A. germinans leaf litter. We conclude that the availability of organic substrates leached from the leaf litter along with colonization by the heterotrophic diazotrophs (as indicated by sediment accumulation) controls nitrogen-fixation rates in a similar manner in the leaf litter of both species. Received: 8 August 1997 / Accepted: 4 December 1997  相似文献   

4.
Natural bioluminescence (that not mechanically stimulated by human intervention) produced by organisms on the seafloor of the northeast Atlantic ocean between 970 and 4,800 m depth was examined using an image intensifying (ISIT) camera mounted on an autonomous lander system. In the absence of bait little or no luminescence was observed but with bait present there was a significant inverse relationship with depth, Log10 (1 + number of events h−1) = 1.7627–0.3235 depth (km) (r 2 = 0.8158, P < 0.001) indicating an average of 2.6 events h−1 at 4 km and 28 h−1 at 1 km. But in an area at ca. 1 km depth near carbonate and coral mounds the mean was 133 events h−1, much higher than predicted. In this bioluminescent hot spot 52–483 events h−1 were observed including moving luminescent targets and release of patches of luminescent material into the water around the bait so that on occasions the whole area around the bait was illuminated persisting on a time scale of minutes. At abyssal depths, luminescence was much less than reported at similar depths in the tropical NE Atlantic off Cape Verde. The sources of luminescence could not be determined but in the most active areas were associated with presence of eels Synaphobranchus kaupii which although themselves not luminescent may have stimulated luminescence from prey organisms such as ostracods (Vargula norvegica).  相似文献   

5.
Suspension-feeding bivalves increase the quantity and quality of sedimenting organic matter through the production of faeces and pseudofaeces that are remineralised in coastal sediments and thus increase sediment oxygen demand and nutrient regeneration. Bivalves are intensively cultivated worldwide; however, no bivalve biodeposit decay rates are available to parameterise models describing the environmental effects of bivalve culture. We examined sediment biogeochemical changes as bivalve biodeposits age by incubating coastal sediments to which we added fresh mussel (Perna canaliculus) biodeposits and measured O2 and nutrient fluxes as well as sediment characteristics over an 11-day period. Biodeposits elevated organic matter, chlorophyll a, phaeophytin a, organic carbon and nitrogen concentrations in the surface sediments. Sediment oxygen consumption (SOC) increased significantly (P=0.016) by ∼1.5 times to 1,010 μmol m−2 h−1 immediately after biodeposit addition and remained elevated compared to control cores without additions for the incubation period. This increase is in the range of observed in situ oxygen demand enhancements under mussel farms. To calculate a decay rate for biodeposits in sediments we fitted a first-order G model to the observed increase in SOC. The significant model fit (P=0.001, r 2=0.72) generated a decay rate of 0.16 day−1 (P=0.033, SE=0.05) that corresponds to a half-life time of 4.3 day. This decay rate is 1–2 orders of magnitude higher than published decay rates of coastal sediments without organic enrichment but similar to rates of decaying zooplankton faecal pellets. NH4+ release increased rapidly on the day of biodeposit addition (P=0.013) and reached a maximum of 144 μmol m−2 h−1 after 5 days which was 3.6 times higher compared to control cores. During this period NH4+ release was significantly (P<0.001 to P=0.043) higher in the cores with biodeposit additions than in control cores.  相似文献   

6.
Great scallop, Pecten maximus, and blue mussel, Mytilus edulis, clearance rate (CR) responses to low natural seston concentrations were investigated in the laboratory to study (1) short-term CR variations in individual bivalves exposed to a single low seston diet, and (2) seasonal variations in average CR responses of bivalve cohorts to natural environmental variations. On a short temporal scale, mean CR response of both species to 0.06 μg L−1 chlorophyll a (Chl a) and 0.23 mg L−1 suspended particulate matter (SPM) remained constant despite large intra-individual fluctuations in CR. In the seasonal study, cohorts of each species were exposed to four seston treatments consisting of ambient and diluted natural seston that ranged in mean concentration from 0.15 to 0.43 mg L−1 SPM, 0.01 to 0.88 μg L−1 Chl a, 36 to 131 μg L−1 particulate organic carbon and 0.019 to 0.330 mm3 L−1 particle volume. Although food abundance in all treatments was low, the nutritional quality of the seston was relatively high (e.g., mean particulate organic content ranged from 68 to 75%). Under these low seston conditions, a high percentage of P. maximus (81–98%) and M. edulis (67–97%) actively cleared particles at mean rates between 9 and 12 and between 4 and 6 L g−1 h−1, respectively. For both species, minimum mean CR values were obtained for animals exposed to the lowest seston concentrations. Within treatments, P. maximus showed a greater degree of seasonality in CR than M. edulis, which fed at a relatively constant rate despite seasonal changes in food and temperature. P. maximus showed a non-linear CR response to increasing Chl a levels, with rates increasing to a maximum at approximately 0.4 μg L−1 Chl a and then decreasing as food quantity continued to increase. Mean CR of M. edulis also peaked at a similar concentration, but remained high and stable as the food supply continued to increase and as temperatures varied between 4.6 and 19.6°C. The results show that P. maximus and M. edulis from a low seston environment, do not stop suspension-feeding at very low seston quantities; a result that contradicts previous conclusions on the suspension-feeding behavior of bivalve mollusks and which is pertinent to interpreting the biogeographic distribution of bivalve mollusks and site suitability for aquaculture.  相似文献   

7.
E. Mutlu 《Marine Biology》2001,138(2):329-339
The distribution of moon jellyfish (Aurelia aurita Linnaeus, 1758) in the Black Sea was determined from plankton samples collected above the anoxic zone (maximum depth 200 m) in the summer, winter and spring during 1991–1995. Distribution was patchy. Average biomass ranged from 98 to 380 g m−2, and abundance varied from 2 to 14 individuals m−2. Biomass and abundance peaked in late spring and summer. The distribution was correlated with hydrographic features in the Black Sea, with higher concentrations occurring at the peripheries of anticyclonic eddies. Centers of the two main cyclonic gyres generally had a low biomass of A. aurita. From July 1992 to March 1995, the populations were largely concentrated in offshore regions. A. aurita were confined to the upper part of the mixed layer. Smaller A. aurita (≤1 cm) were present in early spring (March), and individuals reached maximum size in the summer. Release of the epyhrae occurred in spring on the northwestern shelf of the sea when the seawater temperature was 11–12 °C. Microscopic analysis of stomach contents showed that copepods and mollusks form their main diet. Received: 3 September 2000 / Accepted: 29 September 2000  相似文献   

8.
The isopod Munnopsurus atlanticus occupies bathyal depths in both the Bay of Biscay (NE Atlantic; between 383 and 1022 m) and in the Catalan Sea (Northwestern Mediterranean; between 389 and 1859 m). The species was dominant in both assemblages, reaching bathymetric peaks of abundance on the upper part of the continental slope (400 m depth) in the Bay of Biscay and at ˜600 m in the Catalan Sea. Both the Atlantic and the Mediterranean populations are bivoltines. Demographic analysis of the Bay of Biscay population revealed the production of two generations per year with different potential longevity (5 mo for G1 and 11 mo for G2). The mean cohort-production interval (CPI) was estimated at 8 mo, and results of the demographic analysis were also used to estimate production for the Catalan Sea populations. Mean annual density (D) and biomass (B) were higher in the Bay of Biscay (D = 356.7 individuals 100 m−2; B = 0.803 mg dry wt m−2 yr−1) than in the Mediterranean (D = 16.3 individuals 100 m−2; B = 0.078 mg dry wt m−2 yr−1). Also, mean annual production was an order of magnitude higher in the Atlantic (between 4.063 and 4.812 mg dry wt 100 m−2 yr−1 depending on the method used) than in the Catalan Sea (between 0.346 and 0.519 mg dry wt 100 m−2 yr−1). M. atlanticus feeds on a wide variety of benthic and pelagic food sources. In both study areas, phytodetritus was not important in the diet of M. atlanticus. In contrast, gut-content data suggested an indirect coupling with phytoplankton production in both areas via foraminiferans. The life history and the recorded production are considered in respect to both the dynamics and levels of primary production and the total mass flux in the respective study areas. Differences in the secondary production of both populations seemed to be more consistently explained by differences in total mass flux than by differences in the primary production levels; this is also consistent with the variety of food sources exploited by M. atlanticus. Received: 22 February 1999 / Accepted: 3 February 2000  相似文献   

9.
Fricke  H.  Hissmann  K. 《Marine Biology》2000,136(2):379-386
One concept of evolutionary ecology holds that a living fossil is the result of past evolutionary events, and is adapted to recent selective forces only if they are similar to the selective forces in the past. We describe the present environment of the living coelacanth Latimeria chalumnae Smith, 1939 at Grande Comore, western Indian Ocean and report depth-dependent cave distribution, temperature, salinity and oxygen values which are compared to the fish's distribution and its physiological demands. We studied the activity pattern, feeding behaviour, prey abundance and hunting success to evaluate possible links between environmental conditions, feeding ecology and evolutionary success of this ancient fish. Transmitter tracking experiments indicate nocturnal activity of the piscivorous predator which hunts between approximately 200 m below the surface to 500 m depth. Fish and prey density were measured between 200 and 400 m, both increase with depth. Feeding tracks and feeding strikes of the coelacanth at various depths were simulated with the help of video and laser techniques. Along a 9447 m video transect a total of 31 potential feeding strikes occurred. Assuming 100% hunting success, medium-sized individuals would obtain 122 g and large females 299 g of prey. Estimates of metabolic rates revealed for females 3.7 ml O2 kg−1 h−1 and for males 4.5 ml O2 kg−1 h−1. Today coelacanths are considered to be a specialist deep-water form and to inhabit, with their ancient morphology, a contemporary environment where they compete with advanced, modern fish. Received: 5 July 1999 / Accepted: 11 November 1999  相似文献   

10.
The food sources of benthic deposit feeders were investigated at three stations in an estuarine mudflat (Idoura Lagoon, Sendai Bay, Japan) during July and August 2005, using δ13C and δ15N ratios. Sediment at the stations was characterized by low chlorophyll (chl) a content (0–1 cm depth, <4 μg cm−2) and the dominance of riverine–terrestrial materials (RTM) in the sediment organic matter (SOM) pool. Surface-deposit feeders (Macoma contabulata, Macrophthalmus japonicus, and Cyathura muromiensis) exhibited much higher δ13C values (−18.4 to −12.4‰) than did the SOM pool (<−25‰). A δ13C-based isotopic mixing model estimated that benthic diatoms comprised 45–100% (on average) of their assimilated diet, whereas RTM comprised a lesser fraction (29% maximum). The major diet of the deep-deposit feeding polychaetes Notomastus sp. and Heteromastus sp. was benthic diatoms and/or marine particulate organic matter (POM), with little RTM assimilated (39% maximum). The consumers appeared to lack specific digestive enzymes and to use detritus-derived carbon only after its transfer to the microbial biomass. The isotopic mixing model also showed that the dietary contribution of RTM increased slightly (15% maximum) in the vicinity of freshwater input, suggesting that spatial changes in RTM supply affect the dietary composition of deposit feeders. These results clearly demonstrate that deposit feeders selectively ingest and/or assimilate the more nutritious microalgal fractions in the SOM pool. Such adaptations may allow enhanced energy gain in estuarine mudflats that are rich in vascular plant detritus with low nutritive value.  相似文献   

11.
Rates of routine respiration (R R, μl O2 fish−1 h−1) and total ammonia nitrogen excretion (E R, μg NH4–N + NH3–N fish−1 h−1) were measured on larval and juvenile haddock (Melanogrammus aeglefinus) to ascertain how energy losses due to metabolism were influenced by temperature (T), dry body mass (M D, mg) and specific growth rate (SGR, % per day). R R and E R increased with M D according to y =  · M D b with b-values of 0.96, 0.98, 1.14, and 0.89, 0.78, 0.74, respectively, at 10, 7, and 4°C, respectively. Multiple regressions explained 98% of the variability in the combined effects of M D and T on R R and E R in larval haddock: R R = 0.97 · M D 0.98  · e0.092 · T ; E R = 0.06 · M D 0.79  · e0.092 · T . In young juvenile (24–30 mm standard length) haddock, R R tended to decline (P = 0.06) and E R significantly declined (P = 0.02) with increasing SGR. O:N ratios significantly increased with increasing SGR suggesting that N was spared in relatively fast-growing individuals. Our results for young larval and juvenile haddock suggest: (1) nearly isometric scaling of R R with increasing body size, (2) allometric scaling of E R with increasing body size, (3) Q 10 values of 2.5 for both R R and E R, (4) metabolic differences in substrate utilization between relatively fast- and slow-growing individuals, and (5) that rates of routine energy loss and growth were not positively related. The measurements in this study will provide robust parameter estimates for individual-based models that are currently being utilized to investigate how variability in climatic forcing influences the vital rates of early life stages of haddock. Our results also stress that inter-individual differences in rates of energy loss should not be overlooked as a factor influencing growth variability among individuals.  相似文献   

12.
Production rates, chlorophyll concentrations and general composition of periphytic diatom communities growing on glass slides were studied in relation to environmental parameters during one seasonal cycle in the Bay of Paranaguá, southern Brazil. Slides were routinely submersed at 1, 2 and 3 m depth and recovered weekly for microscopic examinations, analyses of chlorophyll, cell counts and in situ photosynthetic incubations using the Winkler titration method. Water samples were also collected at surface and bottom layers for determinations of temperature, salinity, nutrients and chlorophyll in the water. The periphytic community was mainly formed by epipelic and epipsammic species, dominated by Navicula phyllepta, Cylindrotheca closterium, Navicula spp. and Amphora sp. Weekly chlorophyll a and cell accumulations on slides varied from <1–32 mg m−2 and up to 31 × 108 cells m−2, respectively. Photosynthetic rates varied from <1 to 35 mg oxygen mg chlorophyll a −1 h−1, with higher values in summer. Daily production varied from 5 to 3,600 mg oxygen m−2 day−1 (<0.01–1.4 g carbon m−2 day−1). Multiple regression analysis revealed that vertical differences in light conditions and grazing pressure jointly affected the influence of temperature on the seasonal patterns of cell densities and chlorophyll concentrations according to depth. Received: 27 April 2000 / Accepted: 16 August 2000  相似文献   

13.
Archaster typicus, a common sea star in Indo-Pacific regions, has been a target for the ornamental trade, even though little is known about its population biology. Spatial and temporal patterns of abundance and size structure of A. typicus were studied in the Davao Gulf, the Philippines (125°42.7′E, 7°0.6′N), from February 2008 to December 2009. Specimens of A. typicus were associated with intertidal mangrove prop roots, seagrass meadows, sandy beaches, and shoals. Among prop roots, specimens were significantly smaller and had highest densities (131 ind. m−2) between November and March. High organic matter in sediment and a relatively low predation rate seemed to support juvenile life among mangroves. Size and density analyses provided evidence that individuals gradually move to seagrass, sandy habitats, and shoals as they age. Specimens were significantly larger at a shoal (maximum radius R = 81 mm). New recruits were found between August and November in both 2008 and 2009. Timing of recruitment and population size frequencies confirmed a seasonal reproductive cycle. Juveniles had relatively high growth rates (2–7 mm month−1) and may reach an R of 20–25 mm after 1 year. Growth rates of larger specimens (R > 30 mm) were generally <2 mm month−1. The activity pattern of A. typicus was related to the tidal phase and not to time of day: Specimens moved over the sediment surface during low tides and were burrowed during high tides possibly avoiding predation. This is one of the first studies to document an ontogenetic habitat shift for sea stars and provides new biological information as a basis for management of harvested A. typicus populations.  相似文献   

14.
Several studies on individual physiological traits assume that past records may predict future performance. Marine mollusks, as other animals, show a wide range of between- and within-individual variation of physiological traits. However, in this group, almost nothing is known about the relative influence of genetic factors on that variation. Repeatability (R) is a measure of the consistency of the variation of a trait, which includes its genetic variance and represents the maximum potential value of its heritability (h 2). Traits that show high inter-individual variation and high repeatability levels could potentially evolve through selection (natural or artificial). We estimated the repeatability [using intra-class (τ) and Pearson-moment (r) correlation coefficients] of several physiological traits related to energy acquisition and allocation in juvenile Pacific abalone Haliotis discus hannai, maintained under controlled environment growing systems. In order to estimate the range of the R values and the effect of the time elapsed between measurements on these estimates, we measured these traits monthly during 6 months for each individual. Among the physiological traits, those related to energy allocation like oxygen consumption (standard metabolic rate, SMR) and ammonium excretion rates, and oxygen/nitrogen ratio (O/N), showed intermediate levels of repeatability (0.48, 0.55 and 0.39, respectively), when this was estimated by τ coefficient. However, the r estimation showed that SMR and O/N repeatability were significant and high (0.6–0.7 and 0.5–0.7, respectively) during the first 5 consecutive measurements, decreasing strongly (0.3 and 0.2, respectively) during the last measurement. For ammonia excretion, although repeatability (r) decreased from 0.8 to 0.5 during the 6 consecutive measurements, they remain significant during the experimental period. Therefore, our results indicate that for H. discus hannai juveniles, physiological traits like SMR, ammonia excretion and O/N are significantly repeatable (i.e. good predictors of future measurements) during a period of 4–5 months. These significant repeatability values suggest an important genetic control upon the phenotypic variation of these physiological traits, and could potentially respond to natural or artificial selection, and be used in genetic improvement programs. By contrast, those traits related to energy acquisition (i.e. ingestion, absorption and assimilation) and physiological efficiencies (i.e. net growth and scope for growth) showed very low levels of repeatability (0–0.07). This indicates that the phenotypic variation of these traits would be more influenced by environment rather than by genetic factors.  相似文献   

15.
The ontogeny of behaviour relevant to dispersal was studied in situ with reared pelagic larvae of three warm temperate, marine, demersal fishes: Argyrosomus japonicus (Sciaenidae), Acanthopagrus australis and Pagrus auratus (both Sparidae). Larvae of 5–14 mm SL were released in the sea, and their swimming speed, depth and direction were observed by divers. Behaviour differed among species, and to some extent, among locations. Swimming speed increased linearly at 0.4–2.0 cm s−1 per mm size, depending on species. The sciaenid was slower than the sparids by 2–6 cm s−1 at any size, but uniquely, it swam faster in a sheltered bay than in the ocean. Mean speeds were 4–10 body lengths s−1. At settlement size, mean speed was 5–10 cm s−1, and the best performing individuals swam up to twice the mean speed. In situ swimming speed was linearly correlated (R 2=0.72) with a laboratory measure of swimming speed (critical speed): the slope of the relationship was 0.32, but due to a non-zero intercept, overall, in situ speed was 25% of critical speed. Ontogenetic vertical migrations of several metres were found in all three species: the sciaenid and one sparid descended, whereas the other sparid ascended to the surface. Overall, 74–84% of individual larvae swam in a non-random way, and the frequency of directional individuals did not change ontogenetically. Indications of ontogenetic change in orientated swimming (i.e. the direction of non-random swimming) were found in all three species, with orientated swimming having developed in the sparids by about 8 mm. One sparid swam W (towards shore) when <10 mm, and changed direction towards NE (parallel to shore) when >10 mm. These results are consistent with limited in situ observations of settlement-stage wild larvae of the two sparids. In situ, larvae of these three species have swimming, depth determination and orientation behaviour sufficiently well developed to substantially influence dispersal trajectories for most of their pelagic period.  相似文献   

16.
Laboratory experiments were conducted to investigate the survival rate of Monoporeia affinis in sulphide-rich sediment with oxic overlying water, and the effect of amphipod bioturbation on sulphide and oxygen profiles. As long as the oxygen content in the water is high, the amphipods seem to avoid quite high concentrations (>200 μmol l−1) of sulphide in the sediment by creating microhabitats where sulphide is rapidly oxidised. In cores with amphipods, a decrease of sulphide concentration was found in upper layers, while an increase of sulphide was found in deeper layers. Aggregation of amphipods generated pockets of light-brown sediment, characterised by high oxygen concentrations and no sulphide, and their depth was clearly dependent on amphipod density. This indicates that M. affinis has a potential to recolonise sulphide-rich sediments, devoid of macroscopic life, after the overlying water column has become oxygenated. Received: 13 April 2000 / Accepted: 8 September 2000  相似文献   

17.
The scaling of metabolic rates with body mass is one of the best known and most studied characteristics of aquatic animals. Herein, we studied how size is related to oxygen consumption, ammonia excretion, and ingestion rates in tropical (Octopus maya) and cold-water (Enteroctopus megalocyathus) cephalopod species in an attempt to understand how size affects their metabolism. We also looked at how cephalopod metabolisms are modulated by temperature by constructing the relationship between metabolism and temperature for some benthic octopod species. Finally, we estimated the energy balance for O. maya and E. megalocyathus in order to validate the use of this information for aquaculture or fisheries management. In both species, oxygen consumption and ammonia excretion increased allometrically with increasing body weight (BW) expressed as Y = aBW b . For oxygen consumption, b was 0.71 and 0.69 for E. megalocyathus and O. maya, respectively, and for ammonia excretion it was 0.37 and 0.43. Both species had low O/N ratios, indicating an apparent dependence on protein energy. The mean ingestion rates for E. megalocyathus (3.1 ± 0.2% its BW day−1) and O. maya (2.9 ± 0.5% its BW day−1) indicate that voracity, which is characteristic of cephalopods, could be independent of species. The scope for growth (P = I − (H + U + R) estimated for E. megalocyathus was 28% higher than that observed in O. maya (320 vs. 249 kJ day−1 kg−1). Thus, cold-water cephalopod species could be more efficient than tropical species. The protein and respiratory metabolisms of O. maya, E. megalocyathus, and other octopod species are directly dependent on temperature. Our results offer complementary evidence that, as Clarke (2004) stated, the metabolic response (R and U) cannot be determined mechanistically by temperature, as previously proposed (Gillooly et al. 2002).  相似文献   

18.
Field studies were conducted in Johnson Key Basin, Florida Bay, USA from September 2002 through September 2004 to examine physiological, ecological, and behavioral characteristics of the gulf toadfish, Opsanus beta (Goode and Bean in Proc US Natl Mes 3:333–345, 1880), in relation to nitrogen metabolism, habitat usage, and spawning. Fish collected 5 cm above sediments in experimental shelters (epibenthic) were compared with those collected by throw traps which were found on or burrowing within sediments. The relationship between microhabitat ammonia and urea excretion, as determined by the enzymatic activity of glutamine synthetase (GS), was examined. The hypothesis tested was that O. beta occupying epibenthic nests were less ureotelic with lower GS activities than non-nesting individuals on/in sediments, due to a decreased environmental ammonia burden. Porewater total ammonia (T Amm) concentrations at a sediment depth of 5 cm, i.e., the approximate depth of burrowing toadfish, ranged from 0 to 106.5 μmol N l−1 while the pH ranged from 7.48 to 9.14. There was a weak but significant correlation between environmental ammonia (NH3) concentration and hepatic GS activity for epibenthic toadfish (P < 0.001, r 2 = 0.10), but not for burrowing toadfish. Mean urea-N and T Amm concentrations within shelters occupied by toadfish (n = 281) were 9.8 ± 0.83 μmol N l−1 and 13.0 ± 0.7 μmol N l−1, respectively. As predicted, hepatic GS activity was significantly lower in epibenthic toadfish captured in shelters (4.40 ± 0.24 μmol min−1 g−1; n = 281) as compared to individuals on/in sediments (6.61 ± 0.47 μmol min−1 g−1; n = 128). Glutamine synthetase activity generally peaked in March (spawning season) and was lowest in July. Gender differences in hepatic and branchial GS activity were also found during the spawning season, which is attributable to the fact that males brood and guard offspring in their epibenthic nests while females often rest on or burrow into the sediments. Finally, hepatic and branchial GS appeared to have different patterns of enzymatic activity suggesting functional differences in gene expression.  相似文献   

19.
To evaluate factors regulating RNA content (RNA, μg RNA female−1) – egg production rate (EPR, eggs female−1 day−1) relationship and to develop a model for in situ egg production rate estimates for Acartia bifilosa, we (1) measured EPR and RNA in females sampled at geographically distant areas at varying temperature (T, °C), (2) determined environmental (station, season, and T), endogenous (prosome length (PL), mm and EPR) variables that influence RNA levels, and (3) explored a set of multiple regression models to predict EPR from RNA, PL, station, season, and T. Egg production experiments were carried out in spring and summer 2005 in the Gulf of Finland and in the western part of the northern Baltic proper. We found that up to 88% of the RNA variation could be explained by variations in PL, EPR, and season/T. In explaining the RNA variability, PL played a major role followed in order of importance by EPR and season/T. Further, PL, RNA, and season/T explained up to 53% of the variation in EPR, nearly half of which is explained by RNA alone. The effect of spatial origin was never significant, suggesting that the derived relationships are general for A. bifilosa inhabiting northern Baltic proper. An erratum to this article is available at .  相似文献   

20.
We analysed growth of the Antarctic bryozoan Melicerita obliqua (Thornely, 1924) by x-ray photography and stable isotope analysis. M. obliqua colonies form one segment per year, thus attaining maximum length of about 200 mm within 50 years. In the Weddell and Lazarev Seas, annual production/biomass ratio of M. obliqua is 0.1 yr−1, which is in the range of other Antarctic benthic invertebrate populations. Production amounts to 3.34 mg Corg m−2 yr−1 and 90.6 mg ash m−2 yr−1 on the shelf (100 to 600 m water depth), and to 0.13 mg Corg m−2 yr−1 and 36.8 mg ash m−2 yr−1 on the slope (600 to 1250 m water depth). Received: 27 February 1998 / Accepted: 8 May 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号