首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 923 毫秒
1.
Maintenance of biodiversity through seed banks and botanical gardens, where the wealth of species’ genetic variation may be preserved ex situ, is a major goal of conservation. However, challenges can persist in optimizing ex situ collections if trade-offs exist among cost, effort, and conserving species evolutionary potential, particularly when genetic data are not available. We evaluated the genetic consequences of population preservation informed by geographic (isolation by distance [IBD]) and environmental (isolation by environment [IBE]) distance for ex situ collections for which population provenance is available. We used 19 genetic and genomic data sets from 15 plant species to assess the proportion of population genetic differentiation explained by geographic and environmental factors and to simulate ex situ collections prioritizing source populations based on pairwise geographic distance, environmental distance, or both. Specifically, we tested the impact prioritizing sampling based on these distances may have on the capture of neutral, functional, or putatively adaptive genetic diversity and differentiation. Individually, IBD and IBE explained limited population genetic differences across all 3 genetic marker classes (IBD, 10–16%; IBE, 1–5.5%). Together, they explained a substantial proportion of population genetic differences for functional (45%) and adaptive (71%) variation. Simulated ex situ collections revealed that inclusion of IBD, IBE, or both increased allelic diversity and genetic differentiation captured among populations, particularly for loci that may be important for adaptation. Thus, prioritizing population collections based on environmental and geographic distance data can optimize genetic variation captured ex situ. For the vast majority of plant species for which there is no genetic information, these data are invaluable to conservation because they can guide preservation of genetic variation needed to maintain evolutionary potential within collections.  相似文献   

2.
Many migratory animals are experiencing rapid population declines, but migration data with the geographic scope and resolution to quantify the complex network of movements between breeding and nonbreeding regions are often lacking. Determining the most frequently used migration routes and nonbreeding regions for a species is critical for understanding population dynamics and making effective conservation decisions. We tracked the migration of individual Wood Thrushes (Hylocichla mustelina) (n = 102) from across their range with light‐level geolocators and, for the first time, quantified migration routes and wintering regions for distinct breeding populations. We identified regional and species‐level migratory connectivity networks for this declining songbird by combining our tracking results with range‐wide breeding abundance estimates and forest cover data. More than 50% of the species occupied the eastern wintering range (Honduras to Costa Rica), a region that includes only one‐third of all wintering habitat and that is undergoing intensive deforestation. We estimated that half of all Wood Thrushes in North America migrate south through Florida in fall, whereas in spring approximately 73% funnel northward through a narrow span along the central U.S. Gulf Coast (88–93°W). Identifying migratory networks is a critical step for conservation of songbirds and we demonstrated with Wood Thrushes how it can highlight conservation hotspots for regional populations and species as a whole. Conectividad de Sitios de Reproducción, Invierno y Migración del Zorzal con Base en Rastreo de Cobertura Amplia  相似文献   

3.
Restoration programs in the form of ex-situ breeding combined with reintroductions are becoming critical to counteract demographic declines and species losses. Such programs are increasingly using genetic management to improve conservation outcomes. However, the lack of long-term monitoring of genetic indicators following reintroduction prevents assessments of the trajectory and persistence of reintroduced populations. We carried out an extensive monitoring program in the wild for a threatened small-bodied fish (southern pygmy perch, Nannoperca australis) to assess the long-term genomic effects of its captive breeding and reintroduction. The species was rescued prior to its extirpation from the terminal lakes of Australia's Murray-Darling Basin, and then used for genetically informed captive breeding and reintroductions. Subsequent annual or biannual monitoring of abundance, fitness, and occupancy over a period of 11 years, combined with postreintroduction genetic sampling, revealed survival and recruitment of reintroduced fish. Genomic analyses based on data from the original wild rescued, captive born, and reintroduced cohorts revealed low inbreeding and strong maintenance of neutral and candidate adaptive genomic diversity across multiple generations. An increasing trend in the effective population size of the reintroduced population was consistent with field monitoring data in demonstrating successful re-establishment of the species. This provides a rare empirical example that the adaptive potential of a locally extinct population can be maintained during genetically informed ex-situ conservation breeding and reintroduction into the wild. Strategies to improve biodiversity restoration via ex-situ conservation should include genetic-based captive breeding and longitudinal monitoring of standing genomic variation in reintroduced populations.  相似文献   

4.
The availability of genomic data for an increasing number of species makes it possible to incorporate evolutionary processes into conservation plans. Recent studies show how genetic data can inform spatial conservation prioritization (SCP), but they focus on metrics of diversity and distinctness derived primarily from neutral genetic data sets. Identifying adaptive genetic markers can provide important information regarding the capacity for populations to adapt to environmental change. Yet, the effect of including metrics based on adaptive genomic data into SCP in comparison to more widely used neutral genetic metrics has not been explored. We used existing genomic data on a commercially exploited species, the giant California sea cucumber (Parastichopus californicus), to perform SCP for the coastal region of British Columbia (BC), Canada. Using a RAD-seq data set for 717 P. californicus individuals across 24 sampling locations, we identified putatively adaptive (i.e., candidate) single nucleotide polymorphisms (SNPs) based on genotype–environment associations with seafloor temperature. We calculated various metrics for both neutral and candidate SNPs and compared SCP outcomes with independent metrics and combinations of metrics. Priority areas varied depending on whether neutral or candidate SNPs were used and on the specific metric used. For example, targeting sites with a high frequency of warm-temperature-associated alleles to support persistence under future warming prioritized areas in the southern coastal region. In contrast, targeting sites with high expected heterozygosity at candidate loci to support persistence under future environmental uncertainty prioritized areas in the north. When combining metrics, all scenarios generated intermediate solutions, protecting sites that span latitudinal and thermal gradients. Our results demonstrate that distinguishing between neutral and adaptive markers can affect conservation solutions and emphasize the importance of defining objectives when choosing among various genomic metrics for SCP.  相似文献   

5.
Evaluation of protected area effectiveness is critical for conservation of biodiversity. Protected areas that prioritize biodiversity conservation are, optimally, located and managed in ways that support relatively large and stable or increasing wildlife populations. Yet evaluating conservation efficacy remains a challenging endeavor. We used an extensive community science data set, eBird, to evaluate the efficacy of protected areas for birds across the Gulf of Mexico and Atlantic coasts of the United States. We modeled trends (2007–2018) for 12 vulnerable waterbirds that use coastal areas during breeding or wintering. We compared two types of protected areas—sites where conservation organizations implemented active stewardship or management or both to reduce human disturbance (hereafter stewardship sites) and local, state, federal, and private protected areas managed to maintain natural land cover (hereafter protected areas)—as well as unprotected areas. We evaluated differences in trends between stewardship, protected, and unprotected areas across the Gulf and Atlantic coasts as a whole. Similar to a background sample, stewardship was known to occur at stewardship sites, but unknown at protected and unprotected areas. Four of 12 target species—Black Skimmer (Rynchops niger), Brown Pelican (Pelecanus occidentalis), Least Tern (Sternula antillarum), and Piping Plover (Charadrius melodus)—had more positive trends (two to 34 times greater) at stewardship sites than protected areas. Furthermore, five target species showed more positive trends at sites with stewardship programs than unprotected sites during at least one season, whereas seven species showed more positive trends at protected than unprotected areas. No species had more negative trends at stewardship sites than unprotected areas, and two species had more negative trends at protected than unprotected areas. Anthropogenic disturbance is a serious threat to coastal birds, and our findings demonstrate that stewardship to reduce its negative impacts helps ensure conservation of vulnerable waterbirds.  相似文献   

6.
Conserving migratory species requires protecting connected habitat along the pathways they travel. Despite recent improvements in tracking animal movements, migratory connectivity remains poorly resolved at a population level for the vast majority of species, thus conservation prioritization is hampered. To address this data limitation, we developed a novel approach to spatial prioritization based on a model of potential connectivity derived from empirical data on species abundance and distance traveled between sites during migration. We applied the approach to migratory shorebirds of the East Asian‐Australasian Flyway. Conservation strategies that prioritized sites based on connectivity and abundance metrics together maintained larger populations of birds than strategies that prioritized sites based only on abundance metrics. The conservation value of a site therefore depended on both its capacity to support migratory animals and its position within the migratory pathway; the loss of crucial sites led to partial or total population collapse. We suggest that conservation approaches that prioritize sites supporting large populations of migrants should, where possible, also include data on the spatial arrangement of sites.  相似文献   

7.
Species distribution models (SDMs) are increasingly used in conservation and land-use planning as inputs to describe biodiversity patterns. These models can be built in different ways, and decisions about data preparation, selection of predictor variables, model fitting, and evaluation all alter the resulting predictions. Commonly, the true distribution of species is unknown and independent data to verify which SDM variant to choose are lacking. Such model uncertainty is of concern to planners. We analyzed how 11 routine decisions about model complexity, predictors, bias treatment, and setting thresholds for predicted values altered conservation priority patterns across 25 species. Models were created with MaxEnt and run through Zonation to determine the priority rank of sites. Although all SDM variants performed well (area under the curve >0.7), they produced spatially different predictions for species and different conservation priority solutions. Priorities were most strongly altered by decisions to not address bias or to apply binary thresholds to predicted values; on average 40% and 35%, respectively, of all grid cells received an opposite priority ranking. Forcing high model complexity altered conservation solutions less than forcing simplicity (14% and 24% of cells with opposite rank values, respectively). Use of fewer species records to build models or choosing alternative bias treatments had intermediate effects (25% and 23%, respectively). Depending on modeling choices, priority areas overlapped as little as 10–20% with the baseline solution, affecting top and bottom priorities differently. Our results demonstrate the extent of model-based uncertainty and quantify the relative impacts of SDM building decisions. When it is uncertain what the best SDM approach and conservation plan is, solving uncertainty or considering alterative options is most important for those decisions that change plans the most.  相似文献   

8.
Private lands provide key habitat for imperiled species and are core components of function protectected area networks; yet, their incorporation into national and regional conservation planning has been challenging. Identifying locations where private landowners are likely to participate in conservation initiatives can help avoid conflict and clarify trade-offs between ecological benefits and sociopolitical costs. Empirical, spatially explicit assessment of the factors associated with conservation on private land is an emerging tool for identifying future conservation opportunities. However, most data on private land conservation are voluntarily reported and incomplete, which complicates these assessments. We used a novel application of occupancy models to analyze the occurrence of conservation easements on private land. We compared multiple formulations of occupancy models with a logistic regression model to predict the locations of conservation easements based on a spatially explicit social–ecological systems framework. We combined a simulation experiment with a case study of easement data in Idaho and Montana (United States) to illustrate the utility of the occupancy framework for modeling conservation on private land. Occupancy models that explicitly accounted for variation in reporting produced estimates of predictors that were substantially less biased than estimates produced by logistic regression under all simulated conditions. Occupancy models produced estimates for the 6 predictors we evaluated in our case study that were larger in magnitude, but less certain than those produced by logistic regression. These results suggest that occupancy models result in qualitatively different inferences regarding the effects of predictors on conservation easement occurrence than logistic regression and highlight the importance of integrating variable and incomplete reporting of participation in empirical analysis of conservation initiatives. Failure to do so can lead to emphasizing the wrong social, institutional, and environmental factors that enable conservation and underestimating conservation opportunities in landscapes where social norms or institutional constraints inhibit reporting.  相似文献   

9.
Habitat loss can trigger migration network collapse by isolating migratory bird breeding grounds from nonbreeding grounds. Theoretically, habitat loss can have vastly different impacts depending on the site's importance within the migratory corridor. However, migration-network connectivity and the impacts of site loss are not completely understood. We used GPS tracking data on 4 bird species in the Asian flyways to construct migration networks and proposed a framework for assessing network connectivity for migratory species. We used a node-removal process to identify stopover sites with the highest impact on connectivity. In general, migration networks with fewer stopover sites were more vulnerable to habitat loss. Node removal in order from the highest to lowest degree of habitat loss yielded an increase of network resistance similar to random removal. In contrast, resistance increased more rapidly when removing nodes in order from the highest to lowest betweenness value (quantified by the number of shortest paths passing through the specific node). We quantified the risk of migration network collapse and identified crucial sites by first selecting sites with large contributions to network connectivity and then identifying which of those sites were likely to be removed from the network (i.e., sites with habitat loss). Among these crucial sites, 42% were not designated as protected areas. Setting priorities for site protection should account for a site's position in the migration network, rather than only site-specific characteristics. Our framework for assessing migration-network connectivity enables site prioritization for conservation of migratory species.  相似文献   

10.
Population viability analysis (PVA) is a powerful conservation tool, but it remains impractical for many species, particularly species with multiple, broadly distributed populations for which collecting suitable data can be challenging. A recently developed method of multiple-population viability analysis (MPVA), however, addresses many limitations of traditional PVA. We built on previous development of MPVA for Lahontan cutthroat trout (LCT) (Oncorhynchus clarkii henshawi), a species listed under the U.S. Endangered Species Act, that is distributed broadly across habitat fragments in the Great Basin (U.S.A.). We simulated potential management scenarios and assessed their effects on population sizes and extinction risks in 211 streams, where LCT exist or may be reintroduced. Conservation populations (those managed for recovery) tended to have lower extinction risks than nonconservation populations (mean = 19.8% vs. 52.7%), but not always. Active management or reprioritization may be warranted in some cases. Eliminating non-native trout had a strong positive effect on overall carrying capacities for LCT populations but often did not translate into lower extinction risks unless simulations also reduced associated stochasticity (to the mean for populations without non-native trout). Sixty fish or 5–10 fish/km was the minimum reintroduction number and density, respectively, that provided near-maximum reintroduction success. This modeling framework provided crucial insights and empirical justification for conservation planning and specific adaptive management actions for this threatened species. More broadly, MPVA is applicable to a wide range of species exhibiting geographic rarity and limited availability of abundance data and greatly extends the potential use of empirical PVA for conservation assessment and planning.  相似文献   

11.
Goals play important roles in people's lives because they focus attention, mobilize effort, and sustain motivation. Understanding conservationists’ satisfaction with goal progress may provide insights into real-world environmental trends and flag risks to their well-being and motivation. We asked 2694 conservationists working globally how satisfied they were with progress toward goals important to them. We then explored how this satisfaction varied among groups, including demographic and occupational. Finally, we looked at respondents' experiences associated with goal-progress satisfaction. Many (94.0%) indicated that making a meaningful contribution to conservation was an important goal for them, and over half were satisfied or very satisfied in this area (52.5%). However, respondents were generally dissatisfied with progress on collective conservation goals (e.g., stopping species loss). Some groups were more likely to report dissatisfaction than others. For instance, those in conservation for longer tended to be less satisfied with collective goal progress (log odds –0.21, 95% credibility interval [CI] –0.32 to –0.10), but practitioners reported greater satisfaction (log odds 0.38, 95% CI 0.15–0.60). Likewise, those who were more optimistic in life (log odds 0.24, 95% CI 0.17–0.32), male (log odds 0.25, 95% CI 0.10–0.41), and working in conservation practice (log odds 0.25, 95% CI 0.08–0.43) reported greater satisfaction with individual goal progress. Free-text responses suggested widespread dissatisfaction with livelihood goals, particularly related to job security and adequate compensation. Although contributing to conservation appeared to be a source of satisfaction, slow goal progress in other areas––particularly around making a living––looked to be a source of distress and demotivation. Employers, funders, professional societies, and others should consider ways to help those in the sector make a difference while making a satisfactory living by, for example, prioritizing conservationists′ well-being when allocating funding. This support could include avoiding exploitative practices, fostering supportive work environments, and celebrating positive outcomes.  相似文献   

12.
A primary constraint on effective conservation of migratory animals is our inability to track individuals through their annual cycle. One such animal is the endangered southwestern subspecies of the Willow Flycatcher, which is difficult to distinguish from conspecifics. Identifying wintering regions used by the endangered subspecies would be an important step in formulating an effective conservation strategy. Our objective was to use stable isotope ratios as a means of identifying wintering sites of Southwestern Willow Flycatchers. We analyzed stable isotope ratios of carbon, nitrogen, and hydrogen from feathers of breeding and wintering Willow Flycatchers. Based on winter samples, we document a positive trend in hydrogen isotope ratios across latitude. We also found that Willow Flycatchers use C4 food webs south of 8 degrees N latitude, but we found no evidence of use of C4 food webs farther north. Nitrogen stable isotope ratios of feathers showed no discernable geographic variation. Discriminant function analyses, based on stable isotope ratios of wintering Willow Flycatchers, were only useful (>50% accurate) for assigning individuals to winter regions if the regions were large and the threshold probability for assignment was relatively high. When using these discriminant functions, most breeding samples of Southwestern Willow Flycatchers were assigned to two wintering regions: central Mexico and Ecuador. We think that assignment of Southwestern Willow Flycatchers to Ecuador is unrealistic. Given the large percentages of samples that could not be classified with certainty, we are not confident that these two regions are truly more likely to harbor wintering Southwestern Willow Flycatchers than other winter regions. We think our inconclusive results are due primarily to weak and nonlinear gradients in isotope ratios across the winter range of Willow Flycatchers.  相似文献   

13.
The conservation of long-distance migratory birds requires coordination between the multiple countries connected by the movements of these species. The recent expansion of tracking studies is shedding new light on these movements, but much of this information is fragmented and inaccessible to conservation practitioners and policy makers. We synthesized current knowledge on the connectivity established between countries by landbirds and raptors migrating along the African–Eurasian flyway. We reviewed tracking studies to compile migration records for 1229 individual birds, from which we derived 544 migratory links, each link corresponding to a species’ connection between a breeding country in Europe and a nonbreeding country in sub-Saharan Africa. We used these migratory links to analyze trends in knowledge over time and spatial patterns of connectivity per country (across species), per species (across countries), and at the flyway scale (across all countries and all species). The number of tracking studies available increased steadily since 2010 (particularly for landbirds), but the coverage of existing tracking data was highly incomplete. An average of 7.5% of migratory landbird species and 14.6% of raptor species were tracked per country. More data existed from central and western European countries, and it was biased toward larger bodied species. We provide species- and country-level syntheses of the migratory links we identified from the reviewed studies, involving 123 populations of 43 species, migrating between 28 European and 43 African countries. Several countries (e.g., Spain, Poland, Ethiopia, Democratic Republic of Congo) are strategic priorities for future tracking studies to complement existing data, particularly on landbirds. Despite the limitations in existing tracking data, our data and results can inform discussions under 2 key policy instruments at the flyway scale: the African–Eurasian Migratory Landbirds Action Plan and the Memorandum of Understanding on the Conservation of Migratory Birds of Prey in Africa and Eurasia.  相似文献   

14.
Globally, the mean abundance of terrestrial animals has fallen by 50% since 1970, and populations face ongoing threats associated with habitat loss, fragmentation, climate change, and disturbance. Climate change can influence the quality of remaining habitat directly and indirectly by precipitating increases in the extent, frequency, and severity of natural disturbances, such as fire. Species face the combined threats of habitat clearance, changing climates, and altered disturbance regimes, each of which may interact and have cascading impacts on animal populations. Typically, conservation agencies are limited in their capacity to mitigate rates of habitat clearance, habitat fragmentation, or climate change, yet fire management is increasingly used worldwide to reduce wildfire risk and achieve conservation outcomes. A popular approach to ecological fire management involves the creation of fire mosaics to promote animal diversity. However, this strategy has 2 fundamental limitations: the effect of fire on animal movement within or among habitat patches is not considered and the implications of the current fire regime for long-term population persistence are overlooked. Spatial and temporal patterns in fire history can influence animal movement, which is essential to the survival of individual animals, maintenance of genetic diversity, and persistence of populations, species, and ecosystems. We argue that there is rich potential for fire managers to manipulate animal movement patterns; enhance functional connectivity, gene flow, and genetic diversity; and increase the capacity of populations to persist under shifting environmental conditions. Recent methodological advances, such as spatiotemporal connectivity modeling, spatially explicit individual-based simulation, and fire-regime modeling can be integrated to achieve better outcomes for biodiversity in human-modified, fire-prone landscapes. Article impact statement: Land managers may conserve populations by using fire to sustain or enhance functional connectivity.  相似文献   

15.
Habitat connectivity is a key objective of current conservation policies and is commonly modeled by landscape graphs (i.e., sets of habitat patches [nodes] connected by potential dispersal paths [links]). These graphs are often built based on expert opinion or species distribution models (SDMs) and therefore lack empirical validation from data more closely reflecting functional connectivity. Accordingly, we tested whether landscape graphs reflect how habitat connectivity influences gene flow, which is one of the main ecoevolutionary processes. To that purpose, we modeled the habitat network of a forest bird (plumbeous warbler [Setophaga plumbea]) on Guadeloupe with graphs based on expert opinion, Jacobs’ specialization indices, and an SDM. We used genetic data (712 birds from 27 populations) to compute local genetic indices and pairwise genetic distances. Finally, we assessed the relationships between genetic distances or indices and cost distances or connectivity metrics with maximum-likelihood population-effects distance models and Spearman correlations between metrics. Overall, the landscape graphs reliably reflected the influence of connectivity on population genetic structure; validation R2 was up to 0.30 and correlation coefficients were up to 0.71. Yet, the relationship among graph ecological relevance, data requirements, and construction and analysis methods was not straightforward because the graph based on the most complex construction method (species distribution modeling) sometimes had less ecological relevance than the others. Cross-validation methods and sensitivity analyzes allowed us to make the advantages and limitations of each construction method spatially explicit. We confirmed the relevance of landscape graphs for conservation modeling but recommend a case-specific consideration of the cost-effectiveness of their construction methods. We hope the replication of independent validation approaches across species and landscapes will strengthen the ecological relevance of connectivity models.  相似文献   

16.
Successful, state-dependent management, in which the goal of management is to maintain a system in a desired state, involves defining the boundaries between different states. Once these boundaries have been defined, managers require a strategic action plan with thresholds that initiate management interventions to either maintain or return the system to a desired state. This approach to management is widely used across diverse industries from agriculture, to medicine, to information technology, but it has only been adopted in conservation management relatively recently. Conservation practitioners have expressed a willingness to integrate this structured approach in their management systems, but they have also voiced concerns, including lack of a robust process for doing so. Given the widespread use of state-dependent management in other fields, we conducted an extensive review of the literature on threshold-based management to gain insight into how and where it is applied and identify potential lessons for conservation management. We identified 22 industries using 75 different methods for setting management thresholds in 843 studies. Methods spanned six broad approaches, including expert driven, statistical, predictive, optimization, experimental, and artificial intelligence methods. The objectives of each of these studies influenced the approaches used, including the methods for setting thresholds and selecting actions, and the number of thresholds set. The role of value judgments in setting thresholds was clear; studies across all industries frequently involved experts in setting thresholds, often accompanied by computational tools to simulate the consequences of proposed thresholds under different conditions. Of the 30 conservation studies examined, two-thirds used expert-driven methods, consistent with prior evidence that experience-based information often drives conservation management decisions. The methods we identified from other disciplines could help conservation decision makers set thresholds for management interventions in different contexts, linking monitoring to management actions and ensuring that conservation interventions are timely and effective.  相似文献   

17.
Protected areas are a key instrument for conservation. Despite this, they are vulnerable to risks associated with weak governance, land-use intensification, and climate change. We used a novel hierarchical optimization approach to identify priority areas for expanding the global protected area system that explicitly accounted for such risks while maximizing protection of all known terrestrial vertebrate species. To incorporate risk categories, we built on the minimum set problem, where the objective is to reach species distribution protection targets while accounting for 1 constraint, such as land cost or area. We expanded this approach to include multiple objectives accounting for risk in the problem formulation by treating each risk layer as a separate objective in the problem formulation. Reducing exposure to these risks required expanding the area of the global protected area system by 1.6% while still meeting conservation targets. Incorporating risks from weak governance drove the greatest changes in spatial priorities for protection, and incorporating risks from climate change required the largest increase (2.52%) in global protected area. Conserving wide-ranging species required countries with relatively strong governance to protect more land when they bordered nations with comparatively weak governance. Our results underscore the need for cross-jurisdictional coordination and demonstrate how risk can be efficiently incorporated into conservation planning. Planeación de las áreas protegidas para conservar la biodiversidad en un futuro incierto  相似文献   

18.
Establishing protected areas, where human activities and land cover changes are restricted, is among the most widely used strategies for biodiversity conservation. This practice is based on the assumption that protected areas buffer species from processes that drive extinction. However, protected areas can maintain biodiversity in the face of climate change and subsequent shifts in distributions have been questioned. We evaluated the degree to which protected areas influenced colonization and extinction patterns of 97 avian species over 20 years in the northeastern United States. We fitted single-visit dynamic occupancy models to data from Breeding Bird Atlases to quantify the magnitude of the effect of drivers of local colonization and extinction (e.g., climate, land cover, and amount of protected area) in heterogeneous landscapes that varied in the amount of area under protection. Colonization and extinction probabilities improved as the amount of protected area increased, but these effects were conditional on landscape context and species characteristics. In this forest-dominated region, benefits of additional land protection were greatest when both forest cover in a grid square and amount of protected area in neighboring grid squares were low. Effects did not vary with species’ migratory habit or conservation status. Increasing the amounts of land protection benefitted the range margins species but not the core range species. The greatest improvements in colonization and extinction rates accrued for forest birds relative to open-habitat or generalist species. Overall, protected areas stemmed extinction more than they promoted colonization. Our results indicate that land protection remains a viable conservation strategy despite changing habitat and climate, as protected areas both reduce the risk of local extinction and facilitate movement into new areas. Our findings suggest conservation in the face of climate change favors creation of new protected areas over enlarging existing ones as the optimal strategy to reduce extinction and provide stepping stones for the greatest number of species.  相似文献   

19.
Public agencies sometimes seek outside guidance when capacity to achieve their mission is limited. Through a cooperative agreement and collaborations with the U.S. National Park Service (NPS), we developed recommendations for a conservation program for migratory species. Although NPS manages ~36 million hectares of land and water in 401 units, there is no centralized program to conserve wild animals reliant on NPS units that also migrate hundreds to thousands of kilometers beyond parks. Migrations are imperiled by habitat destruction, unsustainable harvest, climate change, and other impediments. A successful program to counter these challenges requires public support, national and international outreach, and flourishing migrant populations. We recommended two initial steps. First, in the short term, launch or build on a suite of projects for high‐profile migratory species that can serve as proof to demonstrate the centrality of NPS units to conservation at different scales. Second, over the longer term, build new capacity to conserve migratory species. Capacity building will entail increasing the limited knowledge among park staff about how and where species or populations migrate, conditions that enable migration, and identifying species’ needs and resolving them both within and beyond parks. Building capacity will also require ensuring that park superintendents and staff at all levels support conservation beyond statutory borders. Until additional diverse stakeholders and a broader American public realize what can be lost and do more to protect it and engage more with land management agencies to implement actions that facilitate conservation, long distance migrations are increasingly likely to become phenomena of the past. Optimismo y Retos para la Conservación Científicamente Basada de Especies Migratorias Dentro y Fuera de Parques Nacionales de E.U.A.  相似文献   

20.
Subsistence hunting presents a conservation challenge by which biodiversity preservation must be balanced with safeguarding of human livelihoods. Globally, subsistence hunting threatens primate populations, including Madagascar's endemic lemurs. We used population viability analysis to assess the sustainability of lemur hunting in Makira Natural Park, Madagascar. We identified trends in seasonal hunting of 11 Makira lemur species from household interview data, estimated local lemur densities in populations adjacent to focal villages via transect surveys, and quantified extinction vulnerability for these populations based on species-specific demographic parameters and empirically derived hunting rates. We compared stage-based Lefkovitch with periodic Leslie matrices to evaluate the impact of regional dispersal on persistence trajectories and explored the consequences of perturbations to the timing of peak hunting relative to the lemur birth pulse, under assumptions of density-dependent reproductive compensation. Lemur hunting peaked during the fruit-abundant wet season (March–June). Estimated local lemur densities were roughly inverse to body size across our study area. Life-history modeling indicated that hunting most severely threatened the species with the largest bodies (i.e., Hapalemur occidentalis, Avahi laniger, Daubentonia madagascariensis, and Indri indi), characterized by late-age reproductive onsets and long interbirth intervals. In model simulations, lemur dispersal within a regional metapopulation buffered extinction threats when a majority of local sites supported growth rates above the replacement level but drove regional extirpations when most local sites were overharvested. Hunt simulations were most detrimental when timed to overlap lemur births (a reality for D. madagascariensis and I. indri). In sum, Makira lemurs were overharvested. Regional extirpations, which may contribute to broad-scale extinctions, will be likely if current hunting rates persist. Cessation of anthropogenic lemur harvest is a conservation priority, and development programs are needed to help communities switch from wildlife consumption to domestic protein alternatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号