首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 The physico-chemical microenvironment of larger benthic foraminifera was studied with microsensors for O2, CO2, pH, Ca2+ and scalar irradiance. Under saturating light conditions, the photosynthetic activity of the endosymbiotic algae increased the O2 up to 183% air saturation and a pH of up to 8.6 was measured at the foraminiferal shell surface. The photosynthetic CO2 fixation decreased the CO2 at the shell down to 4.7 μM. In the dark, the respiration of host and symbionts decreased the O2 level to 91% air saturation and the CO2 concentration reached up to 12 μM. pH was lowered relative to the ambient seawater pH of 8.2. The endosymbionts responded immediately to changing light conditions, resulting in dynamic changes of O2, CO2 and pH at the foraminiferal shell surface during experimentally imposed light–dark cycles. The dynamic concentration changes demonstrated for the first time a fast exchange of metabolic gases through the perforate, hyaline shell of Amphistegina lobifera. A diffusive boundary layer (DBL) limited the solute exchange between the foraminifera and the surrounding water. The DBL reached a thickness of 400–700 μm in stagnant water and was reduced to 100–300 μm under flow conditions. Gross photosynthesis rates were significantly higher under flow conditions (4.7 nmol O2 cm−3 s−1) than in stagnant water (1.6 nmol O2 cm −3 s−1), whereas net photosynthesis rates were unaffected by flow conditions. The Ca2+ microprofiles demonstrated a spatial variation in sites of calcium uptake over the foraminiferal shells. Ca2+ gradients at the shell surface showed total Ca2+ uptake rates of 0.6 to 4.2 nmol cm−2 h−1 in A. lobifera and 1.7 to 3.6 nmol cm−2 h−1 in Marginopora vertebralis. The scattering and reflection of the foraminiferal calcite shell increased the scalar irradiance at the surface up to 205% of the incident irradiance. Transmittance measurements across the calcite shell suggest that the symbionts are shielded from higher light levels, receiving approximately 30% of the incident light for photosynthesis. Received: 6 July 1999 / Accepted: 28 April 2000  相似文献   

2.
Oxygen and pH microelectrodes were used to investigate the microenvironment of the planktonic foraminifer Orbulina universa and its dinoflagellate endosymbionts. A diffusive boundary layer surrounds the foraminiferal shell and limits the O2 and proton transport from the shell to the ambient seawater and vice versa. Due to symbiont photosynthesis, high O2 concentrations of up to 206% air saturation and a pH of up to 8.8, i.e. 0.5 pH units above ambient seawater, were measured at the shell surface of the foraminifer at saturating irradiances. The respiration of the host–symbiont system in darkness decreased the O2 concentration at the shell surface to <70% of the oxygen content in the surrounding air-saturated water. The pH at the shell surface dropped to 7.9 in darkness. We measured a mean gross photosynthetic rate of 8.5 ± 4.0 nmol O2 h−1 foraminifer−1. The net photosynthesis averaged 5.3 ± 2.7 nmol O2 h−1. In the light, the calculated respiration rates reached 3.9 ± 1.9 nmol O2 h−1, whereas the dark respiration rates were significantly lower (1.7 ± 0.7 nmol O2 h−1). Experimental light–dark cycles demonstrated a very dynamic response of the symbionts to changing light conditions. Gross photosynthesis versus scalar irradiance curves (P vs E o curves) showed light saturation irradiances (E k) of 75 and 137 μmol photons m−2 s−1 in two O. universa specimens, respectively. No inhibition of photosynthesis was observed at irradiance levels up to 700 μmol photons m−2 s−1. The light compensation point of the symbiotic association was 50 μmol photons m−2 s−1. Radial profile measurements of scalar irradiance (E o) inside the foraminifera showed a slight increase at the shell surface up to 105% of the incident irradiance (E d). Received: 26 January 1998 / Accepted: 11 April 1998  相似文献   

3.
Singlet oxygen (1O2) and hydroxyl radical (·OH) play an important role in the degradation of pollutants in surface waters. However, the mechanism underlying the photochemical generation of 1O2 and ·OH in wastewaters is poorly known. Here we studied the photo-induced generation of 1O2 and ·OH in different sewage treatment plant units. The correlation between the generation of 1O2 and ·OH and the water constituents was discussed. Our results show that in sewage units the 1O2 formation rate ranges from 2.19 × 10?8 to 6.74 × 10?8 mol L?1 s?1, and the ·OH formation rate ranges from 1.7 × 10?11 to 3.06 × 10?10 mol L?1 s?1. The average 1O2 formation rates in the various sewage units are similar to those in wetland and estuarine waters containing rich dissolved organic matter and 2–4 times higher than those in lake and seawater samples. The average ·OH formation rates of the sewage units are 5–50 times higher than for other water samples reported. The ·OH generation rate increased with the iron content with a correlation coefficient of 0.85, which indicates that the photo-Fenton reaction plays a dominant role in ·OH generation in sewage wastewater.  相似文献   

4.
 Short-term effects of temperature and irradiance on oxygenic photosynthesis and O2 consumption in a hypersaline cyanobacterial mat were investigated with O2 microsensors in a laboratory. The effect of temperature on O2 fluxes across the mat–water interface was studied in the dark and at a saturating high surface irradiance (2162 μmol photons m−2 s−1) in the temperature range from 15 to 45 °C. Areal rates of dark O2 consumption increased almost linearly with temperature. The apparent activation energy of 18 kJ mol−1 and the corresponding Q 10 value (25 to 35 °C) of 1.3 indicated a relative low temperature dependence of dark O2 consumption due to mass transfer limitations imposed by the diffusive boundary layer at all temperatures. Areal rates of net photosynthesis increased with temperature up to 40 °C and exhibited a Q 10 value (20 to 30 °C) of 2.8. Both O2 dynamics and rates of gross photosynthesis at the mat surface increased with temperature up to 40 °C, with the most pronounced increase of gross photosynthesis at the mat surface between 25 and 35 °C (Q 10 of 3.1). In another mat sample, measurements at increasing surface irradiances (0 to 2319 μmol photons m−2 s−1) were performed at 25, 33 (the in situ temperature) and 40 °C. At all temperatures, areal rates of gross photosynthesis saturated with no significant reduction due to photoinhibition at high irradiances. The initial slope and the onset of saturation (E k = 148 to 185 μmol photons m−2 s−1) estimated from P versus E d curves showed no clear trend with temperature, while maximal photosynthesis increased with temperature. Gross photosynthesis was stimulated by temperature at each irradiance except at the lowest irradiance of 54 μmol photons m−2 s−1, where oxygenic gross photosynthesis and also the thickness of the photic zone was significantly reduced at 40 °C. The compensation irradiance increased with temperature, from 32 μmol photons m−2 s−1 at 25 °C to 77 μmol photons m−2 s−1 at 40 °C, due to increased rates of O2 consumption relative to gross photosynthesis. Areal rates of O2 consumption in the illuminated mat were higher than dark O2 consumption at corresponding temperatures, due to an increasing O2 consumption in the photic zone with increasing irradiance. Both light and temperature enhanced the internal O2 cycling within hypersaline cyanobacterial mats. Received: 30 November 1999 / Accepted: 11 April 2000  相似文献   

5.
The impact of elevated CO2 and temperature on photosynthesis and calcification in the symbiont-bearing benthic foraminifer Marginopora vertebralis was studied. Individual specimens of M. vertebralis were collected from Heron Island on the southern Great Barrier Reef (Australia). They were maintained for 5 weeks at different temperatures (28, 32 °C) and pCO2 (400, 1,000 µatm) levels spanning a range of current and future climate-change scenarios. The photosynthetic capacity of M. vertebralis was measured with O2 microsensors and a pulse-amplitude-modulated chlorophyll (Chl) fluorometer, in combination with estimates of Chl a and Chl c 2 concentrations and calcification rates. After 5 weeks, control specimens remained unaltered for all parameters. Chlorophyll a concentrations significantly decreased in the specimens at 1,000 µatm CO2 for both temperatures, while no change in Chl c 2 concentration was observed. Photoinhibition was observed under elevated CO2 and temperature, with a 70–80 % decrease in the maximum quantum yield of PSII. There was no net O2 production at elevated temperatures in both CO2 treatments as compared to the control temperature, supporting that temperature has more impact on photosynthesis and O2 flux than changes in ambient CO2. Photosynthetic pigment loss and a decrease in photochemical efficiency are thus likely to occur with increased temperature. The elevated CO2 and high temperature treatment also lead to a reduction in calcification rate (from +0.1 to >?0.1 % day?1). Thus, both calcification and photosynthesis of the major sediment-producing foraminifer M. vertebralis appears highly vulnerable to elevated temperature and ocean acidification scenarios predicted in climate-change models.  相似文献   

6.
Controlled laboratory experiments were conducted to examine how photosynthesis and growth occur in Potamogeton wrightii Morong under different photoperiods and nutrient conditions. The experiment was based on a 3×2 factorial design with three photoperiods (16, 12 and 8 h) of 200 μE · m?2·s?1 irradiance and two nutrient conditions, high (90 μmol N · L?1·d?1 and 9 μmol P · L?1·d?1) and low (30 μmol N L?1·d?1 and 3 μmol P · L?1·d?1). After 14, 28, 56 and 70 days of growth, plants were harvested to determine net photosynthesis rate and various growth parameters. Above- and below-ground biomass were investigated on days 56 and 70 only. Plants under low nutrient conditions had greater leaf area, more chlorophyll a, a higher rate of net photosynthesis and accumulated more above- and below-ground biomass than plants in the high nutrient condition. Plants with an 8 h photoperiod in the low nutrient condition had a significantly higher rate of net photosynthesis, whereas 8 h photoperiod plants in the high nutrient condition had a lower rate of net photosynthesis and their photosynthetic capacity collapsed on day 70. We conclude that P. wrightii has the photosynthetic plasticity to overcome the effects of a shorter photoperiod under a tolerable nutrient state.  相似文献   

7.
The kinetics of the oxidation of endocrine disruptor nonylphenol (NP) by potassium ferrate(VI) (K2FeO4) in water as a function of pH 8.0–10.9 at 25°C is presented. The observed second-order rate constants, k obs, decrease with an increase in pH 269–32 M?1 s?1. The speciation of Fe(VI) (HFeO 4 ? and FeO 4 2? ) and NP (NP–OH and NP–O?) species was used to explain the pH dependence of the k obs values. At a dose of 10 mg L?1 (50 μM) K2FeO4, the half-life for the removal of NP by Fe(VI), under water treatment conditions, is less than 1 min.  相似文献   

8.
The combined effects of temperature, light and symbiont density on the metabolic rate and calcification of the temperate coral Astrangia danae were studied experimentally using colonies containing different concentrations of zooxanthellae. After acclimation to five temperatures between 6.5° and 27°C, and incubation at three light levels and in darkness, respiration and photosynthesis were measured and corrected for rates due to commensals alone. Calcification rates were regressed on zooxanthellae concentration and production in order to define “symbiotic” and “non-symbiotic” averages, and the enhancement of calcification by symbiotic interactions in the polyps. Respiration by the polyparium varied less with temperature between 11.5° and 23°C than that of the commensals, suggesting physiological acclimation by the coral tissue. In-vivo zooxanthellae photosynthesis increased linearly with temperature and was near its maximum at 400 μEin m?2 s?1, but the photosynthesis of the endolithic algae of the corallum varied little between 11.5° and 27°C. Calcification at any given temperature was near its maximum at 40 μEin m?2 s?1 in both symbiotic and non-symbiotic corals. CaCO3 deposition increased linearly with temperature in non-symbiotic colonies and in symbiotic colonies incubated in the dark. In symbiotic colonies, calcification in the light increased above these basic rates as temperature rose above 15°C. Below 15°C, symbiotic interactions failed to stimulate calcification, apparently due both to a lowering of zooxanthellae photosynthesis and to a decrease in the enhancing effect of any given level of primary production.  相似文献   

9.
In August 2000 high concentrations of the dominant herbivorous copepod Calanus hyperboreus were detected in the Arctic Fram Strait, west of Spitsbergen, 1 m above the seafloor at 2,290 m water depth. Individuals from that layer were sampled by a hyper-benthic net attached to the frame of an epi-benthic sledge. For comparison, the vertical distribution of C. hyperboreus in the water column was studied simultaneously by a multiple opening/closing net haul from 2,250 m depth to the surface. Maximum abundance was found close to the surface with 6.6 and 10.0 ind. m?3 at 0–50 m and 50–100 m depth, respectively. However, the major fraction of the population (>40%) occurred between 1,000 and 1,500 m depth. In the deepest layer (2,000–2,250 m) abundance measured 2.2 ind. m?3 and was twice as high as between 100 and 1,000 m depth. In comparison to individuals from surface waters, copepods from the hyper-benthic layer were torpid and did not react to mechanical stimuli. Stage CV copepodids and females from the deep sample contained 4–10% less lipid and showed significantly reduced respiration rates of 0.24 and 0.26 ml O2 h?1 g?1 dry mass (DM) as compared to surface samples (0.49 and 0.43 ml O2 h?1 g?1 DM). All these observations indicate that the hyper-benthic part of the population had already started a dormant overwintering phase at great depth. Based on the lipid deposits and energy demands, the potential maximum duration of the non-feeding dormant phase was estimated at 76–110 days for females and at 98–137 days for CV copepodids, depending on what indispensable minimum lipid content was assumed. In any case, the estimated times could not meet the necessary requirements for a starvation period of >6 months until the next phytoplankton bloom in the following spring. The ecological implications of these results are discussed with respect to the life cycle and eco-physiological adaptations of C. hyperboreus to its high-Arctic habitat.  相似文献   

10.
Lessonia nigrescens and Durvillaea antarctica, two large sub-Antarctic brown algae from the southern Chilean coast, were exposed to solar UV radiation in an outdoor system during a summer day (for 11 h) as well as to artificial UV radiation under controlled laboratory conditions at two temperatures (15 and 20 °C) for 72 h. Chlorophyll a fluorescence–based photoinhibition of photosynthesis was measured during the outdoor exposure, while electron transport rates, lipid peroxidation, antioxidant activity and content of phlorotannins were determined at different time intervals during the laboratory exposure. Under natural solar irradiances in summer, both species displayed well-developed dynamic photoinhibition: F v/F m values decreased by 70 % at noon coinciding with the levels of PAR >1,500 μmol m?2 s?1 and UV-B radiation >1 W m?2 and recovered substantially in the afternoon. In treatments including UV radiation, recovery in D. antarctica started already during the highest irradiances at noon. The results from laboratory exposures revealed that (a) elevated temperature of 20 °C exacerbated the detrimental effects of UV radiation on photochemical parameters (F v/F m and ETR); (b) peroxidative damage measured as MDA formation occurred rapidly and was strongly correlated with the decrease in F v/F m, especially at elevated temperature of 20 °C; (c) the antioxidant activity and increases in soluble phlorotannins were positively correlated mainly in response to UV radiation; (d) phlorotannins were rapidly induced but strongly impaired at 20 °C. In general, short-term (2–6 h) exposures to enhanced UV radiation and temperature were effective to activate the photochemical and biochemical defenses against oxidative stress, and they continued operative during 72 h, a time span clearly exceeding the tidal or diurnal period. Furthermore, when algae were exposed to dim light and control temperature of 15 °C for 6 h, F v/F m increased and lipid peroxidation decreased, indicating consistently that algae retained their ability for recovery. D. antarctica was the most sensitive species to elevated temperature for prolonged periods in the laboratory. Although no conclusive evidence for the effect of the buoyancy of fronds was found, the interspecific discrepancies in thermo-sensitivity in the UV responses found in this study are consistent with various ecological and biogeographical differences described for these species.  相似文献   

11.
The concentrations and flux of CO2, 222Radon (Rn), and gaseous elemental mercury (Hg) in soil gas were investigated based on the field measurements in June 2010 at ten sites along the seismic rupture zones produced by the May 12, 2008, Wenchuan M s 8.0 earthquake in order to assess the environmental impact of degassing of CO2, Rn and Hg. Soil gas concentrations of 344 sampling points were obtained. Seventy measurements of CO2, Rn and Hg flux by the static accumulation chamber method were performed. The results of risk assessment of CO2, Rn and Hg concentration in soil gas showed that (1) the concentration of CO2 in the epicenter of Wenchuan M s 8.0 earthquake and north end of seismic ruptures had low risk of asphyxia; (2) the concentrations of Rn in the north segment of seismic ruptures had high levels of radon, Maximum was up to level 4, according to Chinese code (GB 50325-2001); (3) the average geoaccumulation index I geo of soil Hg denoted the lack of soil contamination, and maximum values classified the soil gas as moderately to strongly polluted in the epicenter. The investigation of soil gas CO2, Rn and Hg degassing rate indicated that (1) the CO2 in soil gas was characterized by a mean \(\updelta^{13}C_{CO2}\) of ?20.4 ‰ and by a mean CO2 flux of 88.1 g m?2 day?1, which were in the range of the typical values for biologic CO2 degassing. The maximum of soil CO2 flux reached values of 399 g m?2 day?1 in the epicenter; (2) the soil Rn had higher exhalation in the north segment of seismic ruptures, the maximum reached value of 1976 m Bq m?2 s?1; (3) the soil Hg flux was lower, ranging from ?2.5 to 18.7 n g m?2 h?1 and increased from south to north. The mean flux over the all profiles was 4.2 n g m?2 h?1. The total output of CO2 and Hg degassing estimated along seismic ruptures for a survey area of 18.17 km2 were approximately 0.57 Mt year?1 and 688.19 g year?1. It is recommended that land-use planners should incorporate soil gas and/or gas flux measurements in the environmental assessment of areas of possible risk. A survey of all houses along seismic ruptures is advised as structural measures to prevent the ingress of soil gases, including CO2 and Rn, were needed in some houses.  相似文献   

12.
The mechanism of calcification and its relation to photosynthesis and respiration were studied with Ca2+, pH and O2 microsensors using the scleractinian coral Galaxea fascicularis. Gross photosynthesis (Pg), net photosynthesis (Pn) and dark respiration (DR) were measured on the surface of the coral. Light respiration (LR) was calculated from the difference between Pg and Pn. Pg was about seven times higher than Pn; thus, respiration consumes most of the O2 produced by the algal symbiont's photosynthesis. The respiration rate in light was ca. 12 times higher than in the dark. The coupled Pg and LR caused an intense internal carbon and O2 cycling. The resultant product of this cycle is metabolic energy (ATP). The measured ATP content was about 35% higher in light-incubated colonies than in dark-incubated ones. Direct measurements of Ca2+ and pH were made on the outer surface of the polyp, inside its coelenteron and under the calicoblastic layer. The effects on Ca2+ and pH dynamics of switching on and off the light were followed in these three compartments. Ca2+ concentrations decreased in light on the surface of the polyp and in the coelenteron. They increased when the light was switched off. The opposite effect was observed under the calicoblastic layer. In light, the level of Ca2+ was lower on the polyp surface than in the surrounding seawater, and even lower inside the coelenteron. The concentration of calcium under the calicoblastic layer was about 0.6 mM higher than in the surrounding seawater. Thus Ca2+ can diffuse from seawater to the coelenteron, but metabolic energy is needed for its transport across the calicoblastic layer to the skeleton. The pH under the calicoblastic layer was more alkaline compared with the polyp surface and inside the coelenteron. This rise in pH increased the supersaturation of aragonite from 3.2 in the dark to 25 in the light, and brought about more rapid precipitation of CaCO3. When ruthenium red was added, Ca2+ and pH dynamics were inhibited under the calicoblastic layer. Ruthenium red is a specific inhibitor of Ca-ATPase. The results indicated that Ca-ATPase transports Ca2+ across the calicoblastic layer to the skeleton in exchange for H+. Addition of dichlorophenyldimethylurea completely inhibited photosynthesis. The calcium dynamics under the calicoblastic layer continued; however, the process was less regular. Initial rates were maintained. We conclude that light and not energy generation triggers calcium uptake; however, energy is also needed.  相似文献   

13.
Various iron oxides are used for Fenton reactions to degrade organic pollutants. The degradation efficiency may be improved by transforming an iron oxide phase to another. Here, we report on the transformation of goethite into hematite by thermal treatment at 400 °C. The products were analyzed by X-ray diffractometry, Raman spectroscopy, scanning electron microscopy and N2-physisorption. The catalytic activities were measured for orange II bleaching at initial concentration of 25 mg L?1, pH 3, catalyst concentration of 0.2 g L?1; 5 mM H2O2, 30 °C. Results show that the synthesized goethite was successfully transformed into hematite, and the specific surface area of the material increased from 134 to 163 m2 g?1. The bleaching efficiency of the orange II dye reached 100 % for the hematite product, versus 78 % for goethite. Therefore, a moderate thermal treatment of a plasma-synthesized goethite improves the catalytic oxidation of organic pollutants.  相似文献   

14.
M. J. Durako 《Marine Biology》1993,115(3):373-380
The effects of total dissolved inorganic carbon (DIC), free carbon dioxide [CO2(aq)], and bicarbonate (HCO 3 - ) concentrations on net photosynthetic oxygen evolution of the marine angiosperm Thalassia testudinum Banks ex König collected from Biscayne Bay (1988) and from Tampa Bay (1990), Florida, USA, were examined. Rates of photosynthesis declined by 85% from pH 7.25 to 8.75 in buffered seawater media with constant DIC concentration (2.20 mM), suggesting a strong influence of CO2(aq) concentration. A plateau in the pH-response curve between pH 7.75 and 8.50 indicated possible utilization of HCO 3 - . Responses of photosynthesis measured in buffered seawater media of varying DIC concentrations (0.75 to 13.17 mM) and pH (7.8 to 8.61) demonstrated that photosynthesis is rate-limited at ambient DIC levels. Photosynthesis increased in media with increasing HCO 3 - concentrations but near-constant CO2(aq) levels, confirming HCO 3 - assimilation. Calculated half-saturation constants (K s )for CO2(aq) and HCO 3 - indicated a high affinity for the former [K s (CO2)=3 to 18 M] and a much lower affinity for the latter [K s (HCO 3 - )=1.22 to 8.88 mM]. Calculated V max values for HCO 3 - were generally higher than those for CO2(aq), suggesting relatively efficient HCO 3 - utilization, despite the apparent low affinity for this carbon form.  相似文献   

15.
The purpose of this research is to obtain optimal processing conditions for the adsorption of Remazol Brilliant Violet-5R (RBV-5R) dye onto activated carbon prepared from periwinkle shells (PSAC) by chemical activation with KOH using response surface methodology. Central composite design (CCD) was used to determine the effects of three preparation variables; CO2 activation temperature, CO2 activation time and KOH:char impregnation ratio (IR) on two responses; percentage RBV-5R dye removal and PSAC yield. Based on the CCD, two quadratic models were developed for percentage RBV-5R dye removal and PSAC yield, respectively. The most influential factor on each experimental design response was identified from the analysis of variance (ANOVA). The optimum conditions for the adsorption of RBV-5R dye onto PSAC were CO2 activation temperature of 811 °C, CO2 activation time of 1.70 h and IR of 3.0, resulting in 81.28% RBV-5R dye removal and 28.18% PSAC yield. PSAC prepared under optimum conditions was mesoporous with a Brunauer–Emmett–Teller surface area of 1894 m2·g?1, total pore volume of 1.107 cm3·g?1 and average pore diameter of 2.32 nm. The surface morphology and functional groups of the activated carbon were respectively determined from the scanning electron microscopy and Fourier transform infrared analysis.  相似文献   

16.
We present a new method for quantifying spatio-temporal O2 distribution and dynamics at biologically active surfaces with a complex surface topography. Magnetized O2 optode microparticles (~80–100?μm) containing the NIR-emitting luminophore platinum (II) meso-tetra(4-fluorophenyl) tetrabenzoporphyrin (PtTPTBPF; ex. max. 615?nm; em. max. 780?nm) were distributed across the surface tissue of the scleractinian coral Caulastrea furcata and were held in place with a strong magnet. The O2-dependent luminescence of the particles was mapped with a lifetime imaging system enabling measurements of the lateral surface heterogeneity of the O2 microenvironment across coral polyps exposed to flow. Mapping steady-state O2 concentrations under constant light and O2 dynamics during experimental light–dark shifts enabled us to identify zones of different photosynthetic activities within a single coral polyp linked to the distribution of coral host pigments. Measurements under increasing irradiance showed typical saturation curves of O2 concentration and estimates of gross photosynthesis that could be spatially resolved at ~100?μm pixel resolution. The new method for O2 imaging with magnetized optode particles has much potential to be used in studies of the surface microenvironment of other aquatic systems such as sediments, biofilms, plant, and animal tissue.  相似文献   

17.
Harland  A. D.  Davies  P. S. 《Marine Biology》1995,123(4):715-722
Dark respiration of the symbiotic sea anemone Anemonia viridis (Forskäl) was observed to increase by 34% when anemones were exposed to hyperoxic sea water (150% oxygen saturation) overnight, and by 39% after exposure to 6 h in the light at a saturating irradiance of 300 E m-2 s-1 at normoxia (100% oxygen saturation). No increase due to light stimulation was observed in aposymbiotic control anemones. In darkness, the oxygen concentration of the coelenteric fluid was hypoxic. However, within 10 min of anemones being illuminated, coelenteric fluid was hyperoxic, and it remained elevated throughout a 12 h light period. When measured over a 24 h period (12 h light: 12 h dark), the dark respiration rate increased gradually over the first 6 h of the light period until it was 35% above the dark night-time resting rate. It remained elevated throughout the remaining light period and for 2 h into the following dark period, after which it fell back to the resting rate. Gross photosynthesis (P gross) increased significantly when anemones were exposed to either hyperoxia (150% oxygen saturation) or 300 E m-2 s-1 at normoxia. This increase was not observed when symbiotic anemones were illuminated at a low-light intensity of 100 E m-2 s-1. The results of this study suggest that respiration in the dark is limited by oxygen diffusion and that normal respiration is restored in the daytime by utilisation of the oxygen released by photosynthesis. Furthermore, it appears that the increased respiration following exposure to high-light intensities provides a CO2-rich intracellular environment which further enhances the photosynthetic rate of the zooxanthellae.  相似文献   

18.
Net photosynthetic O2 evolution by five marine macroalgae:Ulva lactuca L.,Enteromorpha sp.,Ceramium strictum Harvey,Fucus serratus L., andF. vesiculosus L., collected from Danish waters in the summer of 1983 was followed at increasing O2 and with pH either fixed close to pH 7, 8 or 9, or drifting upwards during photosynthesis in a closed chamber to determine the effects of changing O2, pH and DIC (dissolved inorganic carbon) on photosynthesis. Increasing O2, increasing pH and decreasing DIC together limited O2 evolution. Raising the O2 concentration with pH and DIC held constant resulted in less inhibition of net-O2 evolution than when all three factors acted together. The O2 inhibition of photosynthesis was similar to the reported O2 inhibition of ribulose 1,5-bisphosphate carboxylase isolated from lower and higher plants. Net-O2 evolution as a function of the molar ratio of O2 to HCO 3 + CO2 in solution provided a general, linear relationship (r 2 = 0.72 to 0.84), predicting inhibition of photosynthesis based on O2 pH and DIC changing together. Slopes of this relationship, representing competition between O2 and carbon based on external concentrations, were similar for the five taxonomically different algae, suggesting that similar processes act to reduce net-O2 evolution.  相似文献   

19.
There is little information on denitrification in Gulf of Mexico bottom sediment. Potential denitrification rates in surface sediment were measured along transects legs extending 0–800 m from two offshore oil production platforms. The average potential denitrification ranged from approximately 50 mg N m?2 d?1 in surface sediment near the platforms to 15 mg N m?2 d?1 in sediment 800 m from the platforms. Measured denitrification rates were correlated to a higher organic matter content in sediment nearer the platforms. This research examined only a small component of nitrogen processing in Gulf of Mexico sediment. Additional research should examine the effect of nitrogen loading and temporal and spatial variability on denitrification rate.  相似文献   

20.
This article reports the first use of coupled electrocoagulation and electro-Fenton (EF-EC) to clean domestic wastewater. Domestic wastewater contains high amounts of organic, inorganic and microbial pollutants that cannot be usually treated in a single step. Here, to produce an effluent suitable for discharge in a single process step, a hybrid process combining electrocoagulation and electro-Fenton was simultaneously used to decrease chemical oxygen demand (COD), turbidity and total suspended solids (TSS) from domestic wastewater. The electrocoagulation–electro-Fenton process was firstly tested for the production of H2O2 using Ti–IrO2 and vitreous carbon- or graphite electrodes arranged at the anode and the cathode, respectively. The concentration of H2O2 recorded at 1.5 A of current intensity during 60 min of electrolysis using vitreous carbon- and graphite electrodes at the cathode was 4.18 and 1.62 mg L?1, respectively. By comparison, when the iron electrode was used at the anode, 2.05 and 1.06 mg L?1 of H2O2 were recorded using vitreous carbon and graphite, respectively. The H2O2 concentration decrease was attributed to hydroxyl radical formation generated by the Fenton reaction. Electro-Fenton using iron electrode at the anode and vitreous carbon at the cathode with a current density imposed of 0.34 A dm?2 ensures the removal efficiency of 50.1 % CODT, 70.8 % TSS and 90.4 % turbidity. The electrocoagulation–electro-Fenton technique is therefore a promising secondary treatment to simultaneously remove organic, inorganic and microbial pollutants from domestic, municipal and industrial wastewaters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号