首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 465 毫秒
1.
In spite of the importance and popularity of swimming pools in summer, they have been identified as posing some public health risks to users due to either chemical or microbiological contamination. This study was carried out aiming at assessing the quality of water for some Alexandria's swimming pools in order to determine its compliance with the Egyptian standards no. 418/1995. Five swimming pools were selected randomly from different districts. Physical and chemical parameters, as well as biological examination of a total of 30 samples, were carried out using standard analytical methods. Water samples were collected from the studied swimming pools monthly over 6?months and pool water monitoring was carried out during afternoon of the weekends when the pools were most heavily used. The results indicated overall poor compliance with the standards. Compliance of the pool water to the microbial parameters, residual chlorine, pH, and turbidity were 56.7% (17 samples), 20% (6 samples), 46.7% (14 samples), and 46.7% (14 samples), respectively. Statistical analysis showed significant association between water contamination with microbial indicators and physical–chemical aspects such as residual chlorine, temperature, turbidity, and load of swimmers. Furthermore, Cryptosporidium oocysts and Giardia lamblia cysts has been found in 10% of samples. It was concluded that there is a need to improve disinfection and cleaning procedures, with consideration given to safety, and size of the pool in relation to bathing load. There is also a need to monitor swimming pool water quality continuously, and to increase bather hygienic practices and awareness of the risks as well as training of governmental inspectors.  相似文献   

2.
From a policy perspective, it is important to understand forestry effects on surface waters from a landscape perspective. The EU Water Framework Directive demands remedial actions if not achieving good ecological status. In Sweden, 44 % of the surface water bodies have moderate ecological status or worse. Many of these drain catchments with a mosaic of managed forests. It is important for the forestry sector and water authorities to be able to identify where, in the forested landscape, special precautions are necessary. The aim of this study was to quantify the relations between forestry parameters and headwater stream concentrations of nutrients, organic matter and acid-base chemistry. The results are put into the context of regional climate, sulphur and nitrogen deposition, as well as marine influences. Water chemistry was measured in 179 randomly selected headwater streams from two regions in southwest and central Sweden, corresponding to 10 % of the Swedish land area. Forest status was determined from satellite images and Swedish National Forest Inventory data using the probabilistic classifier method, which was used to model stream water chemistry with Bayesian model averaging. The results indicate that concentrations of e.g. nitrogen, phosphorus and organic matter are related to factors associated with forest production but that it is not forestry per se that causes the excess losses. Instead, factors simultaneously affecting forest production and stream water chemistry, such as climate, extensive soil pools and nitrogen deposition, are the most likely candidates The relationships with clear-felled and wetland areas are likely to be direct effects.  相似文献   

3.
A thorough investigation of the impact of rainbow trout (Oncorhynchus mykiss) cultivation on surface water quality in the area known as Bereket HES IV Dam Lake was conducted. Water samples were collected from October 2009 to June 2010 from four stations in the Dam Lake and analyzed for water temperature, pH, dissolved oxygen, electrical conductivity, nitrite nitrogen, nitrate nitrogen, and orthophosphate. Surface water quality was then evaluated based on the comparison of samples collected from three stations located near fish cages to those collected from a reference station outside the cultivation area as well as by the comparison with standards specified in the Water Pollution Registration Act. According to the Water Pollution Registration Act, the surface water quality of the Dam Lake was class I. Additionally, there were no significant differences in water quality within the Dam Lake among any of the sampling stations, including the reference station. Overall, these findings indicate that cage cultivation of rainbow trout may have a negative impact on the entire Dam Lake.  相似文献   

4.
The level of sampling effort required to characterize fish assemblage condition in a river for the purposes of bioassessment may be estimated via different approaches. However, the goal with any approach is to determine the minimum level of effort necessary to reach some specific level of confidence in the assessment. In the Ohio River, condition is estimated and reported primarily at the level of pools defined by lock and dam structures. The goal of this study was to determine the minimum level of sampling effort required to adequately characterize pools in the Ohio River for the purpose of bioassessment. We followed two approaches to estimating required sampling effort using fish assemblage data from a long-term intensive survey across a number of Ohio River pools. First, we estimated the number of samples beyond which variation in the multimetric Ohio River Fish Index (ORFIn) leveled off. Then, we determined the number of samples necessary to collect approximately 90% of the fish species observed across all samples collected within the pool. For both approaches, approximately 15 samples were adequate to reduce variation in IBI scores to acceptable levels and to capture 90% of observed species in a pool. The results of this evaluation provide a basis not only for the Ohio River Valley Water Sanitation Commission (ORSANCO) but also states and other basin commissions to develop sampling designs for bioassessment that ensure adequate sampling of all assessment units.  相似文献   

5.
Formosan landlocked salmon is an endangered species and is very sensitive to stream temperature change. This study attempts to improve a former stream temperature model (STM) which was developed for the salmon’s habitat to simulate stream temperature more realistically. Two modules, solar radiation modification (SRM) and surface/subsurface runoff mixing (RM), were incorporated to overcome the limitation of STM designed only for clear-sky conditions. It was found that daily temperature difference is related to cloud cover and can be used to adjust the effects of cloud cover on incident solar radiation to the ground level. The modified model (STM + SRM) improved the simulation during a baseflow period in both winter and summer with the Nash-Sutcliffe efficiency coefficient improved from 0.37 (by STM only) to 0.71 for the winter and from ?0.18 to 0.70 for the summer. On the days with surface/subsurface runoff, the incorporation of the two new modules together (STM + SRM + RM) improved the Nash-Sutcliffe efficiency coefficient from 0.00 to 0.65 and from 0.29 to 0.83 in the winter and the summer, respectively. Meanwhile, the contributions of major thermal sources to stream temperature changes were identified. Groundwater is a major controlling factor for regulating seasonal changes of stream temperature while solar radiation is the primary factor controlling daily stream temperature variations. This study advanced our understanding on short-term stream temperature variation, which could be useful for the authorities to restore the salmon’s habitat.  相似文献   

6.
This paper addresses differences in instream-flow needs (IFNs) of Pacific salmonids and lamprey across species, life stages, and stream sizes on the Pacific coast, with additional consideration of salmonid-IFN data from northern Europe. The Pacific Southwest data set was for various life stages of coho salmon and steelhead trout in small coastal streams of central and southern California. These data showed that younger life stages required less flow than adults. The Pacific Northwest data set was for spawning adults of all five salmon species and steelhead trout in Washington or northern California. These data showed that spawning salmonids required more flow, relative to mean annual flow, in smaller streams. Although these IFNs varied by species, all were much higher than IFNs to protect wetted perimeters (rearing habitat) and water quality in these streams. The high-flow guild included chinook, pink, and chum salmon, whereas the low-flow guild included coho and sockeye salmon. Steelhead were unique in showing relatively high spawning IFNs for creeks and small rivers, unlike large rivers, such that IFNs were more affected by stream size for this species than salmon.  相似文献   

7.
8.
Cryptosporidium oocysts and Giardia cysts has been isolated from waters worldwide. In Italy, studies on these parasites in the environment are still limited due to absence of epidemiological evidence and difficulty of adequate methodologies of sampling and analysis. The new Drinking Water Directive 98/83/CE states that Cryptosporidium has to be determined in water intended for human consumption if Clostridium perfringens is detected. This investigation contributes to the knowledge of both Cryptosporidium and Giardia occurrences in Italian aquatic environments through a two-year monitoring program. In addition, indicator bacteria and Clostridium perfringens were monitored in sewage, surface waters, drinking water, and swimming pools and possible correlations were calculated among all the selected parameters. Cysts and oocysts were detected in sewage and surface water and Giardia numbers always prevailed over Cryptosporidium. The parasites were not detected in drinking water, while a positive sample was obtained from the analysis of swimming pools. Pearsons correlation coefficients evidenced a reciprocal correlation between both the protozoa and the Enterococci counts.  相似文献   

9.
In-situ caged rainbow trout (Oncorhynchus mykiss) studies reveal significant fish toxicity and fish stress in a river impacted by headwater acid rock drainage (ARD). Stocked trout survival and aqueous water chemistry were monitored for 10 days at 3 study sites in the Snake River watershed, Colorado, U.S.A. Trout mortality was positively correlated with concentrations of metals calculated to be approaching or exceeding conservative toxicity thresholds (Zn, Mn, Cu, Cd). Significant metal accumulation on the gills of fish stocked at ARD impacted study sites support an association between elevated metals and fish mortality. Observations of feeding behavior and significant differences in fish relative weights between study site and feeding treatment indicate feeding and metals-related fish stress. Together, these results demonstrate the utility of in-situ exposure studies for stream stakeholders in quantifying the relative role of aqueous contaminant exposures in limiting stocked fish survival.  相似文献   

10.
利用杭州市气象局观测资料、NCEP再分析资料和中尺度天气预报模式WRF的数值模拟结果,对杭州市2011—2012年春、夏、秋、冬4个季节各一天的污染天气进行分析;同时选取2012年夏季有利于污染物扩散的天气个例进行对比分析。结果表明,杭州市容易发生轻度污染的天气类型主要有4类:高压前部、高压底部、高压控制和高压后部;500 h Pa高空系统稳定,受西南气流影响,850 h Pa有暖平流,1 000 h Pa风速较小时,容易造成污染物的积累,发生空气污染现象。WRF模拟结果显示,当杭州市为偏北风且风速较小时,容易发生空气污染事件,当为偏南风且风速较大时,空气质量一般较好。温度层结分析发现,当近地层以及高空出现较为深厚的逆温层且低层温度层结呈现中性或者稳定时,不利于污染物的扩散,污染物容易在底层积累,出现近地层空气污染现象。  相似文献   

11.
Circulation and Stream Plume Modeling in Conesus Lake   总被引:1,自引:0,他引:1  
A three-dimensional hydrodynamic model that includes the effect of drag from macrophytes was applied to Conesus Lake to study the seasonal circulation and thermal structure during spring and early summer. Local weather conditions and stream flow data were used to drive the model. The drag coefficient for macrophytes was calculated as a function of leaf density. In general, the model results show good agreements with the observations, including vertical temperature profiles measured at two locations and average surface temperature derived from calibrated thermal imagery for large-scale simulations of the entire lake. Additional high-resolution simulations were carried out to understand water circulation and transport of sediment and model-generated tracer during hydrometeorological events at stream mouths for two experimental sites. The model results show that the plume development at stream mouths during storm events in Conesus Lake are site-dependent and may either be current- or wind-driven. The results also show a significant effect from the presence of macrophytes on sediment deposition near stream mouths.  相似文献   

12.
The study addresses the distribution and diversity of mesozooplankton near the active volcano-Barren Island (Andaman Sea) in the context of persistent volcanic signature and warm air pool existing for the last few months. Sampling was done from the stations along the west and east side of the volcano up to a depth of 1,000 m during the inter monsoon (April) of 2006. Existence of feeble warm air pool was noticed around the Island (Atm. Temp. 29°C). Sea surface temperature recorded as 29.9°C on the west and 29.6°C on the east side stations. High mesozooplankton biomass was observed in the study area than the earlier reports. High density and biomass observed in the surface layer decreased significantly to the deeper depths. Lack of correlation was observed between mesozooplankton biomass and density with chl. a. Twenty-three mesozooplankton taxa were observed with copepoda as the dominant taxa followed by chaetognatha. The relative abundance of chaetognatha considerably affected the copepod population density in the surface layer. A noticeable feature was the presence of cumaceans, a hyperbenthic fauna in the surface, mixed layer and thermocline layer on the western side station where the volcano discharges in to the sea. The dominant order of copepoda, the calanoida was represented by 52 species belonging to 17 families. The order poecilostomatoida also had a significant contribution. Copepods exhibited a clear difference in their distribution pattern in different depth layers. The families Calanidae and Pontellidae showed a clear dominance in the surface whereas small-sized copepods belonging to the families Clausocalanidae and Paracalanidae were observed as the predominant community in the mixed layer and thermocline layer depth. Families Metridinidae, Augaptilidae and Aetideidae were observed as dominant in deeper layers.  相似文献   

13.
This article presents the geochemical characteristics and physicochemical properties of water and sediment from twelve semi-permanent, dryland pools in the upper Leichhardt River catchment, north-west Queensland, Australia. The pools were examined to better understand the quality of sediments and temporary waters in a dryland system with a well-established metal contamination problem. Water and sediment sampling was conducted at the beginning of the hydroperiod in May and September 2007. Water samples were analyzed for major solute compositions (Ca, Na, K, Mg, Cl, SO(4), HCO(3)) and water-soluble (operationally defined as the <0.45 μm fraction) metals (Cd, Cu, Pb, Zn). Sediment samples were analyzed for total extractable and bioaccessible metals (As, Cd, Cu, Pb, Zn), elemental composition and grain morphology. At the time of sampling a number of pools contained water and sediment with elevated concentrations, compared to Australian regulatory guidelines, of Cu (maximum: water 28 μg L(-1); sediment 770 mg kg(-1)), Pb (maximum: water 3.4 μg L(-1); sediment 630 mg kg(-1)) and Zn (maximum: water 150 μg L(-1); sediment 780 mg kg(-1)). Concentrations of Cd and As in pools were relatively low and generally within Australian regulatory guideline values. Localized factors, such as the interaction of waters with anthropogenic contaminants from modern and historic mine wastes (i.e. residual smelter and slag materials), exert influence on the quality of pool waters. Although the pools of the upper Leichhardt River catchment are contaminated, they do not appear to be the primary repository of water and sediment associated metals when compared to materials in the remainder channel and floodplain. Nevertheless, a precautionary approach should be adopted to mitigating human exposure to contaminated environments, which might include the installation of appropriate warning signs by local health and environmental authorities.  相似文献   

14.
Sampling design and three sample treatments prior the application of the seedling emergence method were tested in order to find the best method for seed bank quantification in arid Nama Karoo rangelands. I analyzed species composition and seed densities by contrasting undercanopy and open-matrix samples from two soil depths and by comparing the effects of cold-, heat-, and no stratification on germination rates of species in a greenhouse setting. The soil seed bank showed minimal similarity to the standing vegetation, with only 20 plant species germinated. Spatial distribution of seeds was highly heterogeneous. Nearly 90% of germinated seeds were located in 0- to 4-cm compared to >4- to 8-cm soil depth. Undercanopy seed banks contained significantly more species and seeds than open-matrix seed banks. Neither the number nor the diversity of seeds germinated differed significantly among the three treatments. Cold stratification tended to detect more species and seeds only at >4- to 8-cm soil depth. The results highlight the importance of spatial heterogeneity in the accurate evaluation of soil seed banks in the arid Nama Karoo and the importance of considering seasonal variability in the availability of readily germinable seeds. Data also suggest that sample pretreatment in germination trials may give little return for cost and effort, which emphasizes that it is more important to choose the sampling design most likely to give a representative number of seed bank species. Further studies are needed to analyze seed bank dynamics and species-specific germination requirements to promote recruitment of plant taxa underrepresented in the seed bank.  相似文献   

15.
Watershed-Based Survey Designs   总被引:2,自引:0,他引:2  
Watershed-based sampling design and assessment tools help serve the multiple goals for water quality monitoring required under the Clean Water Act, including assessment of regional conditions to meet Section 305(b), identification of impaired water bodies or watersheds to meet Section 303(d), and development of empirical relationships between causes or sources of impairment and biological responses. Creation of GIS databases for hydrography, hydrologically corrected digital elevation models, and hydrologic derivatives such as watershed boundaries and upstream–downstream topology of subcatchments would provide a consistent seamless nationwide framework for these designs. The elements of a watershed-based sample framework can be represented either as a continuous infinite set defined by points along a linear stream network, or as a discrete set of watershed polygons. Watershed-based designs can be developed with existing probabilistic survey methods, including the use of unequal probability weighting, stratification, and two-stage frames for sampling. Case studies for monitoring of Atlantic Coastal Plain streams, West Virginia wadeable streams, and coastal Oregon streams illustrate three different approaches for selecting sites for watershed-based survey designs.  相似文献   

16.
Water requirements to supply human needs lead water stakeholders to store more water during surplus periods to fulfil the demand during – not only – scarcity periods. At the reservoirs, mostly those in semi-arid regions, water level then fluctuates extremely between rises and downward during one single year. Besides of water management implications, changes on physical, chemical and biological dynamics of these drawdown and refilling are little known yet. This paper shows the results, throughout a year, on solids, nutrients (N and P), chlorophyll-a, and sedimentation changes on the dynamics, when the former policy was applied in a reservoir from the semi-arid Northwestern Mexico. Water level sinusoidal trend impinged changes on thermal stratification and mixing, modifying nutrient cycling and primary producer responses. According to nitrogen and phosphorus concentration as well as chlorophyll-a, reservoir was mesotrophic, becoming hypertrophic during drawdown. Nutrient concentrations were high (1.22 ± 0.70 and 0.14 ± 0.12 mg P l−1), increasing phosphorus and lowering N:P significantly throughout the study period, although no intensive agricultural, no urban development, neither industrial activities take place in the watershed. This suggests nutrient recycling complex mechanisms, including nutrient release from the sediment–water interface as the main nutrient pathway when shallowness, at the same time as mineralization, increases. Outflows controlled nitrogen and phosphorus availability on the ecosystem while organic matter depended on river inflows. As on other subtropical aquatic ecosystems, nitrogen limited primary productivity (Spearman correlation R = 0.75) but chlorophyll-a seasonal pattern showed an irregular trend, prompting other no-nutrient related limitants. Shallowness induced a homogeneous temporal pattern on water quality. This observed temporal variability was mainly explained statistically by changes on solids (mineral and organic), chlorophyll-a and flows (62.3%). Annual sedimentation rates of total solids ranged from 11.73 to 16.29 kg m−2 year−1 with organic matter comprising around 30%. N:P ratio on sedimentation rates were as high as could be expected in a resuspension dominated ecosystem, and spatially inverse related with N:P ratio on bottom sediments. Distance from river inlet into the reservoir reveals a marked spatial heterogeneity on solid and nitrogen sedimentation, showing the system dependence on river inflows and supporting resuspension as the main phosphorus pathway. Accretion rates (2.19 ± 0.40 cm year−1) were not related to hydrological variability but decreased with the distance to the river input. Total sediment accumulation (9,895 tons km−2 year−1) denotes siltation as other serious environmental problem in reservoirs but possibly not related with operational procedures.  相似文献   

17.
Thermal structure and water quality in a large and shallow lake in Malaysia were studied between January 2012 and June 2013 in order to understand variations in relation to water level fluctuations and in-stream mining activities. Environmental variables, namely temperature, turbidity, dissolved oxygen, pH, electrical conductivity, chlorophyll-A and transparency, were measured using a multi-parameter probe and a Secchi disk. Measurements of environmental variables were performed at 0.1 m intervals from the surface to the bottom of the lake during the dry and wet seasons. High water level and strong solar radiation increased temperature stratification. River discharges during the wet season, and unsustainable sand mining activities led to an increased turbidity exceeding 100 NTU, and reduced transparency, which changed the temperature variation and subsequently altered the water quality pattern.  相似文献   

18.
对影响佳木斯市大气污染物扩散的因素进行了分析。结果表明,大气稳定度、垂直和水平温度梯度、低空风场引起的平流动力输送、地面粗糙度、湍流运动、雨雾等都不同程度地影响大气污染物的扩散,以一定的传输和扩散规律决定城市大气污染水平的高低,并由此使局部区域污染程度各不相同。城市热岛效应和温度层结是影响大气污染物扩散的重要因素。影响区域主要为城市主导风向下风向的城市东部地区。  相似文献   

19.
This article investigates the relationship of local air pollution pattern with urban land use and with urban thermal landscape using a GIS approach. Ambient air quality measurements for sulfur dioxide, nitrogen oxide, carbon monoxide, total suspended particles, and dust level were obtained for Guangzhou City in South China between 1981 and 2000. Landsat TM images and aerial photo derived maps were used to examine city's land use and land cover at different times and changes. Landsat thermal infrared data were employed to compute land surface temperatures and to assess urban thermal patterns. Relationships among the spatial patterns of air pollution, land use, and thermal landscape were sought through GIS and correlation analyses. Results show that the spatial patterns of air pollutants probed were positively correlated with urban built-up density, and with satellite derived land surface temperature values, particularly with measurements taken during the summer. It is suggested that further studies investigate the mechanisms of this linkage, and that remote sensing of air pollution delves into how the energy interacts with the atmosphere and the environment and how sensors see pollutants. Thermal infrared imagery could play a unique role in monitoring and modeling atmospheric pollution.  相似文献   

20.
A new type of directional passive air sampler (DPAS) is described for collecting particulate matter (PM) in ambient air. The prototype sampler has a non-rotating circular sampling tray that is divided into covered angular channels, whose ends are open to winds from sectors covering the surrounding 360°. Wind-blown PM from different directions enters relevant wind-facing channels, and is retained there in collecting pools containing various sampling media. Information on source direction and type can be obtained by examining the distribution of PM between channels. Wind tunnel tests show that external wind velocities are at least halved over an extended area of the collecting pools, encouraging PM to settle from the air stream. Internal and external wind velocities are well-correlated over an external velocity range of 2.0-10.0 m s?1, which suggests it may be possible to relate collected amounts of PM simply to ambient concentrations and wind velocities. Measurements of internal wind velocities in different channels show that velocities decrease from the upwind channel round to the downwind channel, so that the sampler effectively resolves wind directions. Computational fluid dynamics (CFD) analyses were performed on a computer-generated model of the sampler for a range of external wind velocities; the results of these analyses were consistent with those from the wind tunnel. Further wind tunnel tests were undertaken using different artificial particulates in order to assess the collection performance of the sampler in practice. These tests confirmed that the sampler can resolve the directions of sources, by collecting particulates preferentially in source-facing channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号