首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical oxidation of wastewater from molasses fermentation with ozone   总被引:14,自引:0,他引:14  
Color removal from biologically pre-treated molasses wastewater by means of chemical oxidation with ozone has been investigated. Batch experiments have been performed in order to analyze the influence of ozone dosage and reaction time on color removal, molecular weight distribution and decolorization kinetics. Depending on the applied ozone dosage, color removal from 71% to 93% and COD reduction from 15% to 25% were reached after 30 min reaction time. TOC values remained constant throughout ozonation. Gel permeation chromatography corroborated that high molecular weight compounds, responsible for the brown color, were present in raw wastewater. UV spectral studies confirmed that these colored compounds were melanoidins. As a result of ozonation the concentration of chromophore groups decreased. Ozonation of synthetic melanoidin under the same experimental conditions provided similar color removal efficiencies. Pseudo-first order kinetics with respect to colored compounds were found.  相似文献   

2.
Ozonation as an advanced oxidant in treatment of bamboo industry wastewater   总被引:1,自引:0,他引:1  
Wu D  Yang Z  Wang W  Tian G  Xu S  Sims A 《Chemosphere》2012,88(9):1108-1113
The present study employed ozonation process to treat the bamboo industry wastewater (BIWW). The impact of ozone dosage and initial organic concentration on color, COD and TOC removal rates were studied along with characterization of the major organics in raw and treated wastewater. The results suggested the ozone dosage of 3.15 g h−1 (concentration 52.5 mg L−1) was suitable for the treatment. After 25 min ozonation of 1 L raw wastewater, the color, COD and TOC removal efficiencies were 95%, 56% and 40%, respectively, with an influent COD concentration of 835 mg L−1. The ratio of kg O3 kg−1 COD at 3.15 g h−1 was 2.8 (<3), revealing that ozonation was a cost effective process for tertiary treatment of BIWW. Longer oxidization time was required to achieve similar results for raw wastewater with higher COD concentration. The chromatogram from gel permeation chromatography revealed that ozonation resulted in the breakdown of high molecular weight compounds into lower molecular weight components but could not completely mineralize the organic matter. The majority of these compounds were identified in both raw and ozonated samples via GC-MS analysis. In addition to ester derivatives as the main intermediates of ozonation, 1-chloroctadecane, methyl stearate, benzophenone and α-cyperone were identified as the by-products of ozonation.  相似文献   

3.
采用臭氧氧化法对生活垃圾焚烧厂沥滤液经生化处理后的废水(称沥滤液生化处理水)进行深度处理。实验结果表明,COD降解速率随废水pH的提高明显增加,其中pH=10.5时的COD降解速率常数约为pH=4时的5.8倍。在臭氧投量为52.92 mg/min、pH=10.5的条件下反应70 min后,UV254和COD去除率分别达到84.7%和59.3%。向反应体系投加叔丁醇后COD去除率下降了约15%,由羟自由基氧化去除的COD占总COD去除量的26.7%。毒性实验结果表明,沥滤液生化处理水的96 h-EC50为38%,经臭氧氧化进一步处理后出水的96 h-EC50为77%,表明经臭氧深度处理后沥滤液生化处理水的毒性明显降低。  相似文献   

4.
Chu W  Chan KH  Graham NJ 《Chemosphere》2006,64(6):931-936
In this study, the degradation of atrazine (ATZ) by ozone (O3) oxidation and its associated processes (i.e. UV, UV/O3) in the presence and absence of surfactant was investigated and compared. A non-ionic surfactant, Brij 35, was selected. It was found that the presence of a low concentration of surfactant could improve the removal of ATZ by increasing the dissolution of ozone and the indirect generation of hydroxyl radicals. The saturated ozone level and the reaction rate constants were increased with increasing the concentration of surfactant and then decreased at higher surfactant doses at pH level of 2.5. A similar trend was observed at pH level of 7.0 in the presence of bicarbonate ion, because it is capable of deactivating the hydroxyl radicals generating at higher pH level. However, when the radical reactions become dominant in the ozonation (at pH 7.0 without bicarbonate), the saturated ozone level was higher than that with bicarbonate and the kinetic rate constants were increased first and levelled off with increasing of the dose of surfactant. Through the examining of a proposed unit performance index, the low concentration of surfactant is surely beneficial to the ozonation process. Besides, the direct photolysis and photo-assisted ozonation were compared to the ozonation. A significant enhancement on the decay rate of ATZ was resulted exclusively by adding the surfactant. An enhancement index for quantifying the improvement of the various processes was developed.  相似文献   

5.
采用自蔓延溶胶凝胶法分别制备了铁氧化物和铁铜复合氧化物催化剂,以酸性红B为降解对象,对比了单独臭氧氧化、铁氧化物和铁铜复合氧化物催化臭氧氧化对酸性红B的降解效果,考察了磁力搅拌速度(500~1 640 r/min)、溶液pH(3~11)、臭氧投加速率(3.55~28.4 mg/min)对铁铜复合氧化物催化性能的影响。结果表明,与单独臭氧氧化比较,铁氧化物和铁铜复合氧化物均能加速酸性红B的降解,促进色度和COD的去除,结合催化剂的表征结果,推断催化剂表面羟基促进臭氧分解产生.OH是其氧化性能较好的主要原因,另外,催化剂的吸附能力对催化性能也有一定影响。随着磁力搅拌速度、溶液pH、臭氧投加速率的增大,铁铜复合氧化物催化臭氧氧化酸性红B的效果越好。  相似文献   

6.
The characteristics of municipal wastewater treatment by electrolysis, ozonation, and combination processes of electrolysis and aeration using three gaseous species (nitrogen [N2], oxygen [O2], and ozone [O3]) were discussed in this research using ruthenium oxide (RuO2)-coated titanium anodes and stainless-steel (SUS304) cathodes. Electrolysis and electrolysis with nitrogen aeration were characterized by a rapid decrease in 5-day biochemical oxygen demand (BODs) and total nitrogen and a slow decrease in chemical oxygen demand (COD). In contrast, ozonation, electrolysis with oxygen aeration, and electrolysis with ozone aeration were characterized by transformation of persistent organic matter to biodegradable matter and preservation of total nitrogen. The best energy efficiency in removing BOD5 and total nitrogen was demonstrated by electrolysis, as a result of direct anodic oxidation and indirect oxidation with free chlorine produced from the chloride ion (Cl-) at the anodes. However, electrolysis with ozone aeration was found to be superior to the other processes, in terms of its energy efficiency in removing COD and its ability to remove COD completely, as a result of hydroxyl radical (*OH) production via cathodic reduction of ozone.  相似文献   

7.
Ozonation characteristics of synthetic Procaine Penicillin G (PPG) formulation effluent were investigated in a semi-batch ozone reactor at different pH (3, 7 and 12), ozone feed rates (600-2600 mg h-1) and COD values (200-600 mg l-1). Ozonation of aqueous PPG effluent resulted in 37 (82)% COD removal after 60 (120) min ozonation when the reaction pH was kept constant at pH=7.900 mg l-1 (corresponding to 50% of the total introduced) ozone was absorbed during a reaction period of 1 h. The effects of increasing the applied ozone dose and the initial COD on the COD abatement rates of PPG effluent were also studied. Results have indicated that increasing the ozone dose and decreasing the COD content both have positive effects on COD removal rates. The significant contribution of the free radical (.OH) reaction pathway to PPG ozonation could be traced using tert-butyl alcohol as the .OH probe compound at varying concentrations. The bimolecular reaction rate constants for the direct reaction of PPG with ozone were found as 152 and 2404 M-1 h-1 at pH=3 and 7, respectively, using the gas phase ozone partial pressures determined from of the outlet gas stream analysis. It could be demonstrated that ozone decomposition to free radicals being triggered by increasing the pH from 3 to 7 is essential for the rate enhancement of PPG effluent ozonation.  相似文献   

8.
分别采用水解酸化/好氧MBBR/BAF和水解酸化/好氧MBBR/臭氧氧化/BAF 2种组合工艺对实际靛蓝废水进行处理规模为24 m3/d的中试研究。实验结果表明,当进水COD平均初始浓度为2 100 mg/L、平均色度为90倍、系统总水力停留时间为40 h时,前一种组合工艺对COD和色度的去除率分别达93.27%和89.87%;而后一种组合工艺对COD和色度的去除率分别达97.96%和100%,工艺中臭氧氧化单元可使处理后出水中有机物的数量大大降低。表明水解酸化/好氧MBBR/臭氧氧化/BAF组合工艺处理靛蓝废水更为有效,但增加臭氧氧化单元会使每吨废水处理成本增加0.55元。  相似文献   

9.
Distillery spent-wash has very high organic content (75,000 to 125,000 mg/L chemical-oxygen demand [COD]), color, and contains difficult-to-biodegrade organic compounds. For example, anaerobic treatment of the distillery spent-wash used in this study resulted in 60% COD reduction and low color removal. Subsequent aerobic treatment of the anaerobic effluent resulted in enhancement of COD removal to 66%. In this paper, the effect of ozonation on various properties of the anaerobically treated distillery effluent, including the effect on its subsequent aerobic biodegradation, was investigated. Ozonation of the anaerobically treated distillery effluent at various ozone doses resulted in the reduction of total-organic carbon (TOC), COD, COD/TOC ratio, absorbance, color, and increase in the biochemical-oxygen demand (BOD)/COD ratio of the effluent. Further, ozonation of the anaerobically treated distillery effluent at an ozone dose of 2.08 mg/mg initial TOC and subsequent aerobic biodegradation resulted in 87.4% COD removal, as compared to 66% removal when ozonation was not used.  相似文献   

10.
W S Kuo 《Chemosphere》1999,39(11):1853-1860
Synergistic effects including TOC elimination, ozone consumption and microtoxicity reduction for combination of photolysis and ozonation compared to those of direct photolysis and ozonation alone on destruction of chlorophenols including 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol were studied. It was found that the synergistic effects of combination of photolysis and ozonation increased obviously with increasing initial pH of solution to basic pH levels. Results showed that the synergistic effects of photolytic ozonation under the conditions imposed was notable with mineralization rate enlarging more than 100%, oxidation index (OI) decreasing 50%, and microtoxicity being reduced by 30%, indicating that the potentialities of photolytic ozonation compared to direct photolysis and ozonation alone was remarkable for treatment of industrial wastewater containing chlorophenols.  相似文献   

11.
垃圾渗滤液生物处理出水臭氧氧化的研究   总被引:3,自引:1,他引:2  
对垃圾渗滤液生物处理出水进行了臭氧氧化的研究。研究表明,随着氧化时间的延长,CODCr去除率增大;在碱性条件下进行臭氧氧化。pH越高,CODCr去除效率越高。采用BOD5/CODCr来表征垃圾渗滤液的生物降解性,研究了臭氧氧化前后垃圾渗滤液生物处理出水的生物降解性变化规律,表明臭氧氧化可以提高垃圾渗滤液生物处理出水的生物降解性,但提高的幅度不大。通过色谱-质谱法(GC—MC)对臭氧氧化前后垃圾渗滤液的成分进行分析,结果表明,臭氧氧化前后废水中的主要成分没有发生变化,仍然为难降解物质;臭氧氧化使废水中的部分物质发生了结构上的变化,减少、消失和生成的物质多为可降解物质。  相似文献   

12.
臭氧氧化法处理反渗透浓缩垃圾渗滤液   总被引:7,自引:1,他引:6  
采用臭氧氧化法处理经反渗透膜处理后的浓缩垃圾渗滤液,考察了反应时间、臭氧投量、pH和温度对COD,色度以及浓缩液中腐殖酸的去除影响,通过BOD5/COD变化分析了臭氧氧化对浓缩液生化性的提高作用。结果表明:在pH 8.0,温度30℃,臭氧投量5 g/h,反应时间90 min的条件下,浓缩液的COD、色度以及浓缩液中腐殖酸的去除率分别达到67.6%、98.0%和86.1%, BOD5/COD从0.008提升到0.26,生化性有很大提高。  相似文献   

13.
Photo-Fenton-assisted ozonation of p-Coumaric acid in aqueous solution   总被引:1,自引:0,他引:1  
The degradation of p-Coumaric acid present in olive oil mill wastewater was investigated as a pretreatment stage to obtain more easily biodegradable molecules, with lower toxicity that facilitates subsequent anaerobic digestion. Thus, photo-Fenton-assisted ozonation has been studied and compared with ozonation at alkaline pH and conventional single ultraviolet (UV) and acid ozonation treatments. In the combined process, the overall kinetic rate constant was split into various components: direct oxidation by UV light, direct oxidation by ozone and oxidation by hydroxyl radicals. Molecular and/or radical ozone reaction was studied by conducting the reaction in the presence and absence of tert-butylalcohol at pHs 2, 7 and 9. Ozone oxidation rate increases with pH or by the addition of Fenton reagent and/or UV radiation due to generation of hydroxyl radicals, *OH. Hydrogen peroxide and ferrous ion play a double role during oxidation since at low concentrations they act as initiators of hydroxyl radicals but at high concentrations they act as radical scavengers. Finally, the additional levels of degradation by formation of hydroxyl radicals have been quantified in comparison to the conventional single processes and an equation is proposed for the reaction rate as a function of studied operating variables.  相似文献   

14.
O3氧化工艺处理黄连素制药废水研究   总被引:1,自引:0,他引:1  
采用臭氧(O3)氧化法处理含高浓度黄连素和COD的制药废水,探讨了废水初始pH、O3投加量及初始黄连素浓度等因素对O3氧化过程的影响,确定了O3氧化技术处理黄连素制药废水的最佳操作条件。结果表明,O3能够有效分解废水中的黄连素,降低其COD浓度;黄连素浓度为700mg/L、COD为3500mg/L、pH为0.88的废水,进气O3浓度为14.05mg/(L·min),处理时间为180rain(即投加量为2529mg/L)时,黄连素和COD的降解率分别可达77.46%和41.28%,BOD,/COD比(B/C比)从0.06提高到0.34,增加了4.7倍;随着废水中初始黄连素浓度的升高,废水COD降解率逐渐降低。O3氧化法是一种有效的黄连素制药废水预处理技术,可以大大提高废水的可生化性。  相似文献   

15.
对臭氧氧化去除焦化废水生化出水COD的反应动力学及其影响因素进行了实验研究,结果表明,在臭氧投加量为8.50mg/min,反应温度为20'E和初始pH为10.61条件下,对COD的降解符合表观一级反应动力学模型,其相关系数R。=0.9991,表观反应速率常数k。。=1.01×10^-3s-1。该条件下,臭氧氧化对COD的降解主要来源于高活性羟基自由基的强氧化作用。在不同的臭氧投加量(4.25~12.75mg/min)、不同的反应温度(10~40℃)和不同的初始pH(3.76~12.53)下,COD的降解也同样遵循一级反应动力学规律。随着臭氧投加量的增大,COD降解的表观反应速率常数从(0.554×10^-3)s-1增加到(1.06×10&-3)s-1;随着反应温度的升高,表观反应速率常数从(0.427×10^-3)s-1增加到(1.40×10-3)s-1,温度越高反应速率提高的幅度却越小;在初始pH3.76~10.61范围内,表观反应速率常数从(0.218×10^-3)s-1增加到(1.01×10^-3)s-1,在初始pH为12.53时表观反应速率常数下降到(0.857×10^-3)s-1。  相似文献   

16.
Landfill leachate management in Istanbul: applications and alternatives   总被引:7,自引:0,他引:7  
Calli B  Mertoglu B  Inanc B 《Chemosphere》2005,59(6):819-829
Treatment alternatives for Istanbul, Komurcuoda Landfill (KL) leachate that is currently transported to the nearest central wastewater treatment plant were comprehensively investigated with laboratory scale experiments. As flow rate of leachate increases parallel to increment in landfilled solid waste, an individual treatment will be needed to reduce the transportation cost and pollution load on central treatment. However, if the leachate is separately treated and discharged to a brook, in that case more stringent discharge standards will be valid and therefore advanced processes in addition to conventional ones should be included. In laboratory scale experiments, the young landfill leachate having BOD5/COD ratio above 0.6 was successfully treated with efficiencies above 90% in upflow anaerobic reactors if pH is kept below free ammonia inhibition level. Subsequently, nitrification of anaerobically treated leachate was performed with rates of about 8.5 mg NH4+-Ng-1 VSS h-1 and efficiencies above 99% were provided with automated pH regulation by using sodium bicarbonate. Furthermore, denitrification rates as high as 8.1 mg NOx-N g-1VSS h-1 was obtained when carbon source was externally supplied. In addition to nitrification and denitrification, air stripping and struvite precipitation were also applied to remove ammonia in leachate and in average 94% and 98% efficiencies were achieved, respectively. Finally, in average 85% of biologically inert COD was successfully removed by using either ozone or Fenton's oxidation.  相似文献   

17.
Laboratory-scale experiments were conducted in order to investigate the effect of ozone as pre-aerobic treatment and post-aerobic treatment for the treatment of the distillery wastewater. The degradation of the pollutants present in distillery spent wash was carried out by ozonation, aerobic biological degradation processes alone and by using the combinations of these two processes to investigate the synergism between the two modes of wastewater treatment and with the aim of reducing the overall treatment costs. Pollutant removal efficiency was followed by means of global parameters directly related to the concentration of organic compounds in those effluents: chemical oxygen demand (COD) and the color removal efficiency in terms of absorbance of the sample at 254 nm. Ozone was found to be effective in bringing down the COD (up to 27%) during the pretreatment step itself. In the combined process, pretreatment of the effluent led to enhanced rates of subsequent biological oxidation step, almost 2.5 times increase in the initial oxidation rate has been observed. Post-aerobic treatment with ozone led to further removal of COD along with the complete discoloration of the effluent. The integrated process (ozone-aerobic oxidation-ozone) achieved approximately 79% COD reduction along with discoloration of the effluent sample as compared to 34.9% COD reduction for non-ozonated sample, over a similar treatment period.  相似文献   

18.
通过FT-IR和GC—MS检测分析,表明了压裂废水中有机物主要以苯环结构为主的芳香类化合物和其他杂环化合物,苯环及杂环上的主要官能团包括酮、酯、羧酸、醛、酚、氨基等。同时,压裂废水中的粘度为常规水粘度的2~3倍。针对压裂废水高粘度和高COD污染水质特征,实验研究了压裂废水二氧化锰臭氧催化氧化处理特性以及粘度对处理效果的影响,研究结果表明,在粘度较高(2.2×10-3 Pa·s)压裂废水中,投加的化学药剂很难扩散,羟基自由基·OH的利用效率较低,处理效果较差。通过投加过硫酸钾(5g/L)降粘后,可在很大程度上提高二氧化锰臭氧催化氧化的处理效果。通过对压裂废水中有机物分子量分布、FT-IR分析以及GC—MS分析可知,二氧化锰臭氧催化氧化处理压裂废水是通过激发羟基自由基,破坏水中有机物极性和有机物化学构造,将复杂长链有机物转变为简单有机物,其出水COD可达到国家污水综合排放标准中的二级排放标准。  相似文献   

19.
Ozonation of hydrolyzed azo dye reactive yellow 84 (CI).   总被引:17,自引:0,他引:17  
The combination of chemical and biological water treatment processes is a promising technique to reduce recalcitrant wastewater loads. The key to the efficiency of such a system is a better understanding of the mechanisms involved during the degradation processes. Ozonation has been applied to many fields in water and wastewater treatment. Especially for textile mill effluents ozonation can achieve high color removal, enhance biodegradability, destroy phenols and reduce the chemical oxygen demand (COD). However, little is known about the reaction intermediates and products formed during ozonation. This work deals with the degradation of hydrolyzed Reactive Yellow 84 (Color Index), a widely used azo dye in textile finishing processes with two monochlorotriazine anchor groups. Ozonation of the hydrolyzed dye in ultra pure water was performed in a laboratory scale cylindric batch reactor. Decolorization, determined by measuring the light absorbance at the maximum wavelength in the visible range (400 nm), was almost complete after 60 and 90 min with an ozone concentration of 18.5 and 9.1 mg/l, respectively. The TOC/TOC0 ratio after ozonation was about 30%, the COD was diminished to 50% of the initial value. The BOD5/COD ratio increased from 0.01 to about 0.8. Oxidation and cleavage of the azo group yield nitrate. Cleavage of the sulfonic acid groups of aromatic rings caused increases in the amount of sulfate. Formic acid and oxalic acid were identified as main oxidation products by high performance ion chromatography (HPIC). The concentrations of these major products were monitored at defined time intervals during ozonation.  相似文献   

20.
Ozonation of three different synthetic pharmaceutical formulation wastewater containing two human antibiotics and a veterinary antibiotic has been studied to enhance the their biodegradability. The effects of pH and initial chemical oxygen demand (COD) value as well as addition of hydrogen peroxide on ozonation process were investigated. Total organic carbon (TOC), COD, biochemical oxygen demand (BOD), and aromatic content (UV254) were the parameters followed to evaluate the performance of ozonation process. Comparison of the biodegradability of selected wastewaters containing different antibiotics confirmed that the variation of biodegradability was associated with the target compound. While BOD5/COD ratio of veterinary antibiotic formulation wastewater was increased from 0.077 to 0.38 with an applied ozone dosage of 2.96 g/l, this ratio for human antibiotic I and human antibiotic II was increased from 0 to 0.1 and 0.27 respectively. Moreover the results of this investigation showed that the ozonation process is capable of achieving high levels of COD and aromaticity removals at about their natural pH values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号