首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model is presented to predict sanitary felling of Norway spruce (Picea abies) due to spruce bark beetles (Ips typographus, Pityogenes chalcographus) in Slovenia according to different climate change scenarios. The model incorporates 21 variables that are directly or indirectly related to the dependent variable, and that can be arranged into five groups: climate, forest, landscape, topography, and soil. The soil properties are represented by 8 variables, 4 variables define the topography, 4 describe the climate, 4 define the landscape, and one additional variable provides the quantity of Norway spruce present in the model cell. The model was developed using the M5′ model tree. The basic spatial unit of the model is 1 km2, and the time resolution is 1 year. The model evaluation was performed by three different measures: (1) the correlation coefficient (51.9%), (2) the Theil's inequality coefficient (0.49) and (3) the modelling efficiency (0.32). Validation of the model was carried out by 10-fold cross-validation. The model tree consists of 28 linear models, and model was calculated for three different climate change scenarios extending over a period until 2100, in 10-year intervals. The model is valid for the entire area of Slovenia; however, climate change projections were made only for the Maribor region (596 km2). The model assumes that relationships among the incorporated factors will remain unchanged under climate change, and the influence of humans was not taken into account. The structure of the model reveals the great importance of landscape variables, which proved to be positively correlated with the dependent variable. Variables that describe the water regime in the model cell were also highly correlated with the dependent variable, with evapotranspiration and parent material being of particular importance. The results of the model support the hypothesis that bark beetles do greater damage to Norway spruce artificially planted out of its native range in Slovenia, i.e., lowlands and soils rich in N, P, and K. The model calculation for climate change scenarios in the Maribor region shows an increase in sanitary felling of Norway spruce due to spruce bark beetles, for all scenarios. The model provides a path towards better understanding of the complex ecological interactions involved in bark beetle outbreaks. Potential application of the results in forest management and planning is discussed.  相似文献   

2.
Environmental conditions act above and below ground, and regulate carbon fluxes and evapotranspiration. The productivity of boreal forest ecosystems is strongly governed by low temperature and moisture conditions, but the understanding of various feedbacks between vegetation and environmental conditions is still unclear. In order to quantify the seasonal responses of vegetation to environmental factors, the seasonality of carbon and heat fluxes and the corresponding responses for temperature and moisture in air and soil were simulated by merging a process-based model (CoupModel) with detailed measurements representing various components of a forest ecosystem in Hyytiälä, southern Finland. The uncertainties in parameters, model assumptions, and measurements were identified by generalized likelihood uncertainty estimation (GLUE). Seasonal and diurnal courses of sensible and latent heat fluxes and net ecosystem exchange (NEE) of CO2 were successfully simulated for two contrasting years. Moreover, systematic increases in efficiency of photosynthesis, water uptake, and decomposition occurred from spring to summer, demonstrating the strong coupling between processes. Evapotranspiration and NEE flux both showed a strong response to soil temperature conditions via different direct and indirect ecosystem mechanisms. The rate of photosynthesis was strongly correlated with the corresponding water uptake response and the light use efficiency. With the present data and model assumptions, it was not possible to precisely distinguish the various regulating ecosystem mechanisms. Our approach proved robust for modeling the seasonal course of carbon fluxes and evapotranspiration by combining different independent measurements. It will be highly interesting to continue using long-term series data and to make additional tests of optional stomatal conductance models in order to improve our understanding of the boreal forest ecosystem in response to climate variability and environmental conditions.  相似文献   

3.
A methodology for simulating climate change impacts on tree growth was introduced into a statistical growth and yield model in relation to variations in site fertility and location implemented with current temperature sum. This was based on a procedure in which the relative enhancement in stem volume growth was calculated from short-term runs of a physiological simulation model for Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) and silver birch (Betula pendula Roth.) stands. These simulations were made for a set of stands with species-specific variations in stand characteristics, location and fertility type first in current climatic conditions and then in different combinations of CO2 and temperature elevations. Based on these simulations, the relative enhancement of volume growth induced by the climate change (relative scenario effect, RSEv) was calculated and modelled in relation to: (i) CO2 and temperature elevation, stand density and the competition status of the tree in its stand, and (ii) variations in site fertility type and current temperature sum of a stand. Finally, these transfer functions for RSEv were applied to adapt the stem volume growth in the statistical growth and yield model to reflect the response to climate change.  相似文献   

4.
This study examines the importance of climate variability when simulating forest succession using a process-based model of stand development. The FORSKA-2V forest gap model, originally developed for forcing with monthly mean climate data, was modified to accept daily weather data. The model's performance was compared using different temporal resolutions of forcing along a bioclimatic transect crossing the boreal region of central Canada, including the aspen-parkland and forest-tundra ecotones. Forcing the model with daily weather data improved the simulation of key attributes of present-day forest along the transect, particularly at the ecotones, compared to forcing with monthly data or long term averages. The results support the hypothesis that climatic variability at daily time-scales is an important determinant of present-day boreal forest composition and productivity. To simulate boreal forest response to climatic change it will be necessary to create climatic scenarios that include plausible projections of future daily scale variability.  相似文献   

5.
Long-term forest productivity decline in boreal forests has been extensively studied in the last decades, yet its causes are still unclear. Soil conditions associated with soil organic matter accumulation are thought to be responsible for site productivity decline. The objectives of this study were to determine if paludification of boreal soils resulted in reduced forest productivity, and to identify changes in the physical and chemical properties of soils associated with reduction in productivity. We used a chronosequence of 23 black spruce stands ranging in postfire age from 50 to 2350 years and calculated three different stand productivity indices, including site index. We assessed changes in forest productivity with time using two complementary approaches: (1) by comparing productivity among the chronosequence stands and (2) by comparing the productivity of successive cohorts of trees within the same stands to determine the influence of time independently of other site factors. Charcoal stratigraphy indicates that the forest stands differ in their fire history and originated either from high- or low-severity soil burns. Both chronosequence and cohort approaches demonstrate declines in black spruce productivity of 50-80% with increased paludification, particularly during the first centuries after fire. Paludification alters bryophyte abundance and succession, increases soil moisture, reduces soil temperature and nutrient availability, and alters the vertical distribution of roots. Low-severity soil burns significantly accelerate rates of paludification and productivity decline compared with high-severity fires and ultimately reduce nutrient content in black spruce needles. The two combined approaches indicate that paludification can be driven by forest succession only, independently of site factors such as position on slope. This successional paludification contrasts with edaphic paludification, where topography and drainage primarily control the extent and rate of paludification. At the landscape scale, the fire regime (frequency and severity) controls paludification and forest productivity through its effect on soil organic layers. Implications for global carbon budgets and sustainable forestry are discussed.  相似文献   

6.
An integrated process-based model was used to study how the changing climate affects the availability of water and nitrogen, and consequently the dynamics of productivity of Norway spruce (Picea abies) on sites with different initial soil water conditions in southern Finland over a 100-year period. The sensitivity of the total stem volume growth in relation to short-term availability of water and nitrogen was also analyzed. We found that a high proportion (about 88–92%) of the total precipitation was lost in total evapotranspiration (incl. canopy evaporation (Ec), transpiration (Et) and ground surface evaporation (Eg)), under both current and changing climate. Furthermore, under the changing climate the cumulative amount of Ec and Eg were significantly higher, while Et was largely lower than under the current climate. Additionally, the elevated temperature and increased expansion of needle area index (L) enhanced Ec. Under the changing climate, the increasing soil water deficit (Wd) reduced the canopy stomatal conductance (gcs), the Et, humus yield (H, available nitrogen source) and nitrogen uptake (Nup) of the trees. During the latter phases of the simulation period, the canopy net photosynthesis (Pnc) was lower due to the reduced Nup and soil water availability. This also reduced the total stem volume production (Vs) on the site with the lower initial soil moisture content. The growth was slightly more sensitive to the change in precipitation than to the change in nitrogen content of the needles, when the elevated temperature was assumed. According to our findings, drought stress episodes may become more frequent under the changing climate. Thus, adaptive management strategies should be developed to sustain the productivity of Norway spruce in these conditions, and thus, to mitigate the adverse impacts of climate change.  相似文献   

7.
Land use change, natural disturbance, and climate change directly alter ecosystem productivity and carbon stock level. The estimation of ecosystem carbon dynamics depends on the quality of land cover change data and the effectiveness of the ecosystem models that represent the vegetation growth processes and disturbance effects. We used the Integrated Biosphere Simulator (IBIS) and a set of 30- to 60-m resolution fire and land cover change data to examine the carbon changes of California's forests, shrublands, and grasslands. Simulation results indicate that during 1951-2000, the net primary productivity (NPP) increased by 7%, from 72.2 to 77.1 Tg C yr−1 (1 teragram = 1012 g), mainly due to CO2 fertilization, since the climate hardly changed during this period. Similarly, heterotrophic respiration increased by 5%, from 69.4 to 73.1 Tg C yr−1, mainly due to increased forest soil carbon and temperature. Net ecosystem production (NEP) was highly variable in the 50-year period but on average equalled 3.0 Tg C yr−1 (total of 149 Tg C). As with NEP, the net biome production (NBP) was also highly variable but averaged −0.55 Tg C yr−1 (total of -27.3 Tg C) because NBP in the 1980s was very low (-5.34 Tg C yr−1). During the study period, a total of 126 Tg carbon were removed by logging and land use change, and 50 Tg carbon were directly removed by wildland fires. For carbon pools, the estimated total living upper canopy (tree) biomass decreased from 928 to 834 Tg C, and the understory (including shrub and grass) biomass increased from 59 to 63 Tg C. Soil carbon and dead biomass carbon increased from 1136 to 1197 Tg C.Our analyses suggest that both natural and human processes have significant influence on the carbon change in California. During 1951-2000, climate interannual variability was the key driving force for the large interannual changes of ecosystem carbon source and sink at the state level, while logging and fire were the dominant driving forces for carbon balances in several specific ecoregions. From a long-term perspective, CO2 fertilization plays a key role in maintaining higher NPP. However, our study shows that the increase in C sequestration by CO2 fertilization is largely offset by logging/land use change and wildland fires.  相似文献   

8.
Inouye DW 《Ecology》2008,89(2):353-362
The timing of life history traits is central to lifetime fitness and nowhere is this more evident or well studied as in the phenology of flowering in governing plant reproductive success. Recent changes in the timing of environmental events attributable to climate change, such as the date of snowmelt at high altitudes, which initiates the growing season, have had important repercussions for some common perennial herbaceous wildflower species. The phenology of flowering at the Rocky Mountain Biological Laboratory (Colorado, USA) is strongly influenced by date of snowmelt, which makes this site ideal for examining phenological responses to climate change. Flower buds of Delphinium barbeyi, Erigeron speciosus, and Helianthella quinquenervis are sensitive to frost, and the earlier beginning of the growing season in recent years has exposed them to more frequent mid-June frost kills. From 1992 to 1998, on average 36.1% of Helianthella buds were frosted, but for 1999-2006 the mean is 73.9%; in only one year since 1998 have plants escaped all frost damage. For all three of these perennial species, there is a significant relationship between the date of snowmelt and the abundance of flowering that summer. Greater snowpack results in later snowmelt, later beginning of the growing season, and less frost mortality of buds. Microhabitat differences in snow accumulation, snowmelt patterns, and cold air drainage during frost events can be significant; an elevation difference of only 12 m between two plots resulted in a temperature difference of almost 2 degrees C in 2006 and a difference of 37% in frost damage to buds. The loss of flowers and therefore seeds can reduce recruitment in these plant populations, and affect pollinators, herbivores, and seed predators that previously relied on them. Other plant species in this environment are similarly susceptible to frost damage so the negative effects for recruitment and for consumers dependent on flowers and seeds could be widespread. These findings point out the paradox of increased frost damage in the face of global warming, provide important insights into the adaptive significance of phenology, and have general implications for flowering plants throughout the region and anywhere climate change is having similar impacts.  相似文献   

9.
The impact of 2 × CO2 driven climate change on radial growth of boreal tree species Pinus banksiana Lamb., Populus tremuloides Michx. and Picea mariana (Mill.) BSP growing in the Duck Mountain Provincial Forest of Manitoba (DMPF), Canada, is simulated using empirical and process-based model approaches. First, empirical relationships between growth and climate are developed. Stepwise multiple-regression models are conducted between tree-ring growth increments (TRGI) and monthly drought, precipitation and temperature series. Predictive skills are tested using a calibration–verification scheme. The established relationships are then transferred to climates driven by 1× and 2 × CO2 scenarios using outputs from the Canadian second-generation coupled global climate model. Second, empirical results are contrasted with process-based projections of net primary productivity allocated to stem development (NPPs). At the finest scale, a leaf-level model of photosynthesis is used to simulate canopy properties per species and their interaction with the variability in radiation, temperature and vapour pressure deficit. Then, a top-down plot-level model of forest productivity is used to simulate landscape-level productivity by capturing the between-stand variability in forest cover. Results show that the predicted TRGI from the empirical models account for up to 56.3% of the variance in the observed TRGI over the period 1912–1999. Under a 2 × CO2 scenario, the predicted impact of climate change is a radial growth decline for all three species under study. However, projections obtained from the process-based model suggest that an increasing growing season length in a changing climate could counteract and potentially overwhelm the negative influence of increased drought stress. The divergence between TRGI and NPPs simulations likely resulted, among others, from assumptions about soil water holding capacity and from calibration of variables affecting gross primary productivity. An attempt was therefore made to bridge the gap between the two modelling approaches by using physiological variables as TRGI predictors. Results obtained in this manner are similar to those obtained using climate variables, and suggest that the positive effect of increasing growing season length would be counteracted by increasing summer temperatures. Notwithstanding uncertainties in these simulations (CO2 fertilization effect, feedback from disturbance regimes, phenology of species, and uncertainties in future CO2 emissions), a decrease in forest productivity with climate change should be considered as a plausible scenario in sustainable forest management planning of the DMPF.  相似文献   

10.
The dynamics of agricultural and forestry biomass are highly sensitive to climate change, particularly in high latitude regions. Heilongjiang Province was selected as research area in North-east China. We explored the trend of regional climate warming and distribution feature of biomass resources, and then analyzed on the spatial relationship between climate factors and biomass resources. Net primary productivity (NPP) is one of the key indicators of vegetation productivity, and was simulated as base data to calculate the distribution of agricultural and forestry biomass. The results show that temperatures rose by up to 0.37°C/10a from 1961 to 2013. Spatially, the variation of agricultural biomass per unit area changed from -1.93 to 5.85 t·km–2·a–1 during 2000–2013. More than 85% of farmland areas showed a positive relationship between agricultural biomass and precipitation. The results suggest that precipitation exerts an overwhelming climate influence on agricultural biomass. The mean density of forestry biomass varied from 10 to 30 t·km–2. Temperature had a significant negative effect on forestry biomass in Lesser Khingan and northern Changbai Mountain, because increased temperature leads to decreased Rubisco activity and increased respiration in these areas. Precipitation had a significant positive relationship with forestry biomass in south-western Changbai Mountain, because this area had a warmer climate and stress from insufficient precipitation may induce xylem cavitation. Understanding the effects of climate factors on regional biomass resources is of great significance in improving environmental management and promoting sustainable development of further biomass resource use.
  相似文献   

11.
Mass-balance trophic models (Ecopath with Ecosim) are developed for the marine ecosystem of northern British Columbia (BC) for the historical periods 1750, 1900, 1950 and 2000 AD. Time series data are compiled for catch, fishing mortality and biomass using fisheries statistics and literature values. Using the assembled dataset, dynamics of the 1950-based simulations are fitted to agree with observations over 50 years to 2000 through the manipulation of trophic flow parameters and the addition of climate factors: a primary production anomaly and herring recruitment anomaly. The predicted climate anomalies reflect documented environmental series, most strongly sea surface temperature and the Pacific Decadal Oscillation index. The best-fit predator–prey interaction parameters indicate mixed trophic control of the ecosystem. Trophic flow parameters from the fitted 1950 model are transferred to the other historical periods assuming stationarity in density-dependent foraging tactics. The 1900 model exhibited an improved fit to data using this approach, which suggests that the pattern of trophic control may have remained constant over much of the last century. The 1950 model is driven forward 50 years using climate and historical fishing drivers. The resulting ecosystem is compared to the 2000 model, and the dynamics of these models are compared in a predictive forecast to 2050. The models suggest similar restoration trajectories after a hypothetical release from fishing.  相似文献   

12.
Spatially and temporally distributed information on the sizes of biomass carbon (C) pools (BCPs) and soil C pools (SCPs) is vital for improving our understanding of biosphere-atmosphere C fluxes. Because the sizes of C pools result from the integrated effects of primary production, age-effects, changes in climate, atmospheric CO2 concentration, N deposition, and disturbances, a modeling scheme that interactively considers these processes is important. We used the InTEC model, driven by various spatio-temporal datasets to simulate the long-term C-balance in a boreal landscape in eastern Canada. Our results suggested that in this boreal landscape, mature coniferous stands had stabilized their productivity and fluctuated as a weak C-sink or C-source depending on the interannual variations in hydrometeorological factors. Disturbed deciduous stands were larger C-sinks (NEP2004 = 150 gC m−2 yr−1) than undisturbed coniferous stands (e.g. NEP2004 = 8 gC m−2 yr−1). Wetlands had lower NPP but showed temporally consistent C accumulation patterns. The simulated spatio-temporal patterns of BCPs and SCPs were unique and reflected the integrated effects of climate, plant growth and atmospheric chemistry besides the inherent properties of the C pool themselves. The simulated BCPs and SCPs generally compared well with the biometric estimates (BCPs: r = 0.86, SCPs: r = 0.84). The largest BCP biases were found in recently disturbed stands and the largest SCP biases were seen in locations where moss necro-masses were abundant. Reconstructing C pools and C fluxes in the ecosystem in such a spatio-temporal manner could help reduce the uncertainties in our understanding of terrestrial C-cycle.  相似文献   

13.
Climate change models for California's Sierra Nevada predict greater inter-annual variability in precipitation over the next 50 years. These increases in precipitation variability coupled with increases in nitrogen deposition from fossil fuel consumption are likely to result in increased productivity levels and significant increases in forest understory fuel loads. Higher understory plant biomass contributes to fuel connectivity and may increase future fire size and severity in the Sierra Nevada. The objective of this research was to develop and test a model to determine how changing precipitation and nitrogen deposition levels affect shrub and herb biomass production, and to determine how often prescribed fire would be needed to counter increasing fuel loads. Model outputs indicate that under an increasing precipitation scenario significant increases in shrub and herb biomass occur that can be counteracted by decreasing the fire return interval to 10 years. Under a scenario with greater inter-annual variability in precipitation and increased nitrogen deposition, implementing fire treatments at an interval equivalent to the historical range of 15–30 years maintains understory vegetation fuel loads at levels comparable to the control.  相似文献   

14.
Proliferation of macroalgal mats is a frequent consequence of nutrient-driven eutrophication in shallow, photic coastal marine ecosystems. These macroalgae have the potential to significantly modify water quality, plankton productivity, nutrient cycling, and dissolved oxygen dynamics. We developed a model for Ulva lactuca and Gracilaria tikvahiae in Greenwich Bay, RI (USA), a shallow sub-estuary of Narragansett Bay, as part of a larger estuarine ecosystem model. The model predicts the biomass of both species in units of carbon, nitrogen, and phosphorus as a function of primary production, respiration, grazing, decay, and physical exchange, with particular attention to the effects of biomass layering on light attenuation and suppression of metabolic rates. The model successfully reproduced the magnitude and seasonal cycle of area-weighted and peak biomass in Greenwich Bay along with tissue C:N ratios, and highlighted the importance of grazing and inclusion of self-limitation primarily in the form of self-shading to overcome an order of magnitude difference in rates of production and respiration. Inclusion of luxury nutrient uptake demonstrated the importance of internal nutrient storage in fueling production when nutrients are limiting. Macroalgae were predicted to contribute a small fraction of total system primary production and their removal had little effect on predicted water quality. Despite a lack of data for calibration and a fair amount of sensitivity to individual parameter values, which highlights the need for further autecological studies to constrain formulations, the model successfully predicted macroalgal biomass dynamics and their role in ecosystem functioning. Our formulations should be exportable to other temperate systems where macroalgae occur in abundance.  相似文献   

15.
内蒙古草地NPP变化及其对气候的响应   总被引:8,自引:0,他引:8  
植被净初级生产力(Net Primary Productivity,NPP)是衡量植物群落在自然环境条件下生产能力的重要指标,NPP的变化直接反映了生态系统对环境气候条件的响应,因此可以作为生态系统功能对气候变化响应的研究指标.本文利用卫星遥感资料和地面气象观测资料,利用光能利用率模型估算了内蒙古地区1982-2003年4-10月草地NPP,并计算了与NPP密切相关的几个气候因子,分析了1982-2003年内蒙古地区草地NPP年际性变化规律、气候因子的年际变化规律,以及草地NPP对主要气候因子的响应关系.结果表明:1982-2003年内蒙古草地生长季的NPP呈波动中增加趋势,NPP的年平均递增率为C0.0036 g·m-2·Gr-1;草地NPP的空间分布与生物温度(BT)及可能蒸散率(PER)呈显著负相关,与降雨量(RAIN)、湿润度(K)及实际蒸散(AE)呈极显著正相关.内蒙古地区,草地NPP受降雨量(RAIN)及生物温度(BT)的影响较大.但NPP的变化受RAIN的影响更为明显;内蒙古地区不同草地类型的NPP变化对气候因子的响应略有不同.  相似文献   

16.
《Ecological modelling》2005,186(2):178-195
A plant–soil nitrogen (N) cycling model was developed and incorporated into the Integrated BIosphere Simulator (IBIS) of Foley et al. [Foley, J.A., Prentice, I.C., Ramankutty, N., Levis, S., Pollard, D., Sitch, S., Haxeltine, A., 1996. An integrated biosphere model of land surface process, terrestrial carbon balance and vegetation dynamics. Global Biogeochem. Cycles 10, 603–628]. In the N-model, soil mineral N regulates ecosystem carbon (C) fluxes and ecosystem C:N ratios. Net primary productivity (NPP) is controlled by feedbacks from both leaf C:N and soil mineral N. Leaf C:N determines the foliar and canopy photosynthesis rates, while soil mineral N determines the N availability for plant growth and the efficiency of biomass construction. Nitrogen controls on the decomposition of soil organic matter (SOM) are implemented through N immobilization and mineralization separately. The model allows greater SOM mineralization at lower mineral N, and conversely, allows greater N immobilization at higher mineral N. The model's seasonal and inter-annual behaviours are demonstrated. A regional simulation for Saskatchewan, Canada, was performed for the period 1851–2000 at a 10 km × 10 km resolution. Simulated NPP was compared with high-resolution (1 km × 1 km) NPP estimated from remote sensing data using the boreal ecosystem productivity simulator (BEPS) [Liu, J., Chen, J.M., Cihlar, J., Park, W.M., 1997. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sens. Environ. 44, 81–87]. The agreement between IBIS and BEPS, particularly in NPP spatial variation, was considerably improved when the N controls were introduced into IBIS.  相似文献   

17.
Atmospheric deposition of sulfur and nitrogen species have the potential to acidify terrestrial and aquatic ecosystems, but nitrate and ammonium are also critical nutrients for plant and microbial productivity. Both the ecological response and the hydrochemical response to atmospheric deposition are of interest to regulatory and land management agencies. We developed a non-spatial biogeochemical model to simulate soil and surface water chemistry by linking the daily version of the CENTURY ecosystem model (DayCent) with a low temperature aqueous geochemical model, PHREEQC. The coupled model, DayCent-Chem, simulates the daily dynamics of plant production, soil organic matter, cation exchange, mineral weathering, elution, stream discharge, and solute concentrations in soil water and stream flow. By aerially weighting the contributions of separate bedrock/talus and tundra simulations, the model was able to replicate the measured seasonal and annual stream chemistry for most solutes for Andrews Creek in Loch Vale watershed, Rocky Mountain National Park. Simulated soil chemistry, net primary production, live biomass, and soil organic matter for forest and tundra matched well with measurements. This model is appropriate for accurately describing ecosystem and surface water chemical response to atmospheric deposition and climate change.  相似文献   

18.
利用生物地球化学模犁Forest-DNDC模拟气候变化对贡嘎山亚高山暗针叶林土壤温室气体的释放的影响.以位于贡嘎山东坡海拔3 000 m的峨眉冷杉(Abies fabri)中龄林为研究对象,以1999-2006年8年的日气候数据进行平均得到的日平均最高温度、日平均最低温度和日平均降水总最作为基线(Base)气候情景,另外设置了温度+2℃(升)、温度.2℃(T-)、降水量+20%(P+)、降水量-20%(P-)、温度十2℃同时降水量+20%(T+P+)、温度-2℃同时降水量-20%(T-P-)、温度+2℃同时降水量-20%(T+P-)、温度-2℃同时降水量+20%(T-P+)8种气候变化情景.结果显示:贡嘎山峨眉冷杉林土壤CO_2释放随着温度增加而增加,土壤N_2O释放对降水量改变敏感,而土壤NO的释放对温度和降水的改变均比较敏感,二者表现为协同作用.温度+2℃同时降水量+20%(升P+)情景下土壤CO_2释放最高,高于基线情景的36.08%;温度-2℃同时降水量+20%(T-P+)情景下土壤CO_2释放最低,低于基线情景的36.89%.土壤N_2O释放随着降水量的增加而升高,随着降水量减少而降低;温度和降水最同时增加时土壤NO释放均高于单一增加温度或降水量情景,而温度和降水量同时降低时土壤NO释放均低于单一降低温度或降水量情景.  相似文献   

19.
Temperature influences carbon accumulation in moist tropical forests   总被引:2,自引:0,他引:2  
Evergreen broad-leaved tropical forests can have high rates of productivity and large accumulations of carbon in plant biomass and soils. They can therefore play an important role in the global carbon cycle, influencing atmospheric CO2 concentrations if climate warms. We applied meta-analyses to published data to evaluate the apparent effects of temperature on carbon fluxes and storages in mature, moist tropical evergreen forest ecosystems. Among forests, litter production, tree growth, and belowground carbon allocation all increased significantly with site mean annual temperature (MAT); total net primary productivity (NPP) increased by an estimated 0.2-0.7 Mg C x ha(-1) x yr(-1) x degrees C(-1). Temperature had no discernible effect on the turnover rate of aboveground forest biomass, which averaged 0.014 yr(-1) among sites. Consistent with these findings, forest biomass increased with site MAT at a rate of 5-13 Mg C x ha(-1) x degrees C(-1). Despite greater productivity in warmer forests, soil organic matter accumulations decreased with site MAT, with a slope of -8 Mg C x ha(-1) x degrees C(-1), indicating that decomposition rates of soil organic matter increased with MAT faster than did rates of NPP. Turnover rates of surface litter also increased with temperature among forests. We found no detectable effect of temperature on total carbon storage among moist-tropical evergreen forests, but rather a shift in ecosystem structure, from low-biomass forests with relatively large accumulations of detritus in cooler sites, to large-biomass forests with relatively smaller detrital stocks in warmer locations. These results imply that, in a warmer climate, conservation of forest biomass will be critical to the maintenance of carbon stocks in moist tropical forests.  相似文献   

20.
Beaver–willow (Castor-Salix) communities are a unique and vital component of healthy wetlands throughout the Holarctic region. Beaver selectively forage willow to provide fresh food, stored winter food, and construction material. The effects of this complex foraging behavior on the structure and function of willow communities is poorly understood. Simulation modeling may help ecologists understand these complex interactions. In this study, a modified version of the SAVANNA ecosystem model was developed to better understand how beaver foraging affects the structure and function of a willow community in a simulated riparian ecosystem in Rocky Mountain National Park, Colorado (RMNP). The model represents willow in terms of plant and stem dynamics and beaver foraging in terms of the quantity and quality of stems cut to meet the energetic and life history requirements of beaver. Given a site where all stems were equally available, the model suggested a simulated beaver family of 2 adults, 2 yearlings, and 2 kits required a minimum of 4 ha of willow (containing about10 stems m−2) to persist in a steady-state condition. Beaver created a willow community where the annual net primary productivity (ANPP) was 2 times higher and plant architecture was more diverse than the willow community without beaver. Beaver foraging created a plant architecture dominated by medium size willow plants, which likely explains how beaver can increase ANPP. Long-term simulations suggested that woody biomass stabilized at similar values even though availability differed greatly at initial condition. Simulations also suggested that willow ANPP increased across a range of beaver densities until beaver became food limited. Thus, selective foraging by beaver increased productivity, decreased biomass, and increased structural heterogeneity in a simulated willow community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号