共查询到19条相似文献,搜索用时 592 毫秒
1.
扎龙湿地沉积物垂向剖面中多环芳烃分布特征 总被引:1,自引:0,他引:1
对扎龙湿地核心区沉积物分层取样,以正己烷/二氯甲烷为提取剂,用超声波方法提取沉积物中16种优控PAHs,采用GC/MS法定量分析w(PAHs). 结果表明,扎龙湿地剖面沉积物中2环和3环PAHs占PAHs总量的86%以上,4环以上的PAHs所占比例较小. 在各层沉积物中含量较高的萘、菲、芴及PAHs总量随深度的增加而减小,沉积物表层0~10 cm内的w(PAHs)最高,达396.61 ng/g. 表层沉积物中含量较高的PAHs为萘>菲>芴>荧蒽>芘>二氢苊>苊烯>. w(PAHs)与沉积物中w(TOC)呈正相关关系,相关系数为0.9347. 从扎龙湿地的低环PAHs污染特征以及同周边地区大气颗粒物中的PAHs对照分析表明,扎龙湿地沉积物中的PAHs主要来源于石油类污染. 相似文献
2.
研究分析了废旧汽车拆解区土壤剖面的美国EPA优控的16种多环芳烃的纵向分布.结果表明,表层土壤中16种多环芳烃总含量达到了17 323 ng·g-1,其中芘(Pyr)、苯并[a]蒽(BaA)、芴(Flu)含量最高,分别达到11 820、1 234和1 083 ng·g-1.汽车拆解区表面和土壤深度为10 cm的土壤均达到了重度污染级别;深度在50~350 cm之间的土壤为轻度至中度污染,当土壤深度超过400 cm,土壤基本未受到污染.但是,7种致癌性PAHs(Chr、BaA、BbF、BkF、BaP、DahA、IcdP)总量在土壤深度达到850 cm时仍有34.15 ng·g-1.随着土壤深度的增大,多环芳烃含量急剧降低,当土壤深度超过300 cm,三环的菲(Phe)、荧蒽(Fl)和二氢苊(Ace)成为优势组分.土壤剖面菲(Phe)/蒽(Ant)比值和荧蒽(Fla)/芘(Pyr)、Fluo/Pyr、BaA/(BaA+Chr)等参数表明,土壤表面的多环芳烃主要来源于石油污染. 相似文献
3.
在天津市北部山区、中部农田和东南部油田采油作业区分别采集了土壤样品, 研究了土壤中多环芳烃(PAHs)的纵向分布特征, 并对土壤中多环芳烃的来源进行了分析.结果表明, PAHs含量峰值一般位于土壤表层或次表层, 并随着土壤剖面的加深而减少.农田菜地土壤PAHs在40cm深处含量仍然较高, 而油田仅表层3cm富集PAHs, 这与耕作土壤表层常受到人为扰动有关.与高环物质相比, 低环物质更容易向下迁移.土壤中有机碳的含量、土壤的性质以及土壤的粒度均是影响PAHs迁移的重要因素.山区和菜地土壤中PAHs主要来自燃烧源, 而油田则显示为石油源和燃烧源的混合源. 相似文献
4.
典型土壤中多环芳烃纵向迁移过程模拟研究 总被引:1,自引:0,他引:1
选择北京潮土、清源潮棕壤、江西红壤和黑龙江黑土4种典型土壤,采用土柱淋滤模拟实验方法,以菲和芘为代表,对比考察多环芳烃在不同土壤中的纵向迁移过程,综合分析土壤基本理化性质对多环芳烃纵向迁移过程的影响。结果表明:土壤细颗粒(0~20μm)含量和土壤有机质是制约多环芳烃在土壤中纵向迁移的主要因素,容重和阳离子交换量对该环境过程影响不大。淋滤结束后土柱中多环芳烃残留量监测结果显示:北京潮土中,菲和芘的平均浓度最低,分别为8.81,9.94 mg/kg;黑龙江黑土中,两者的残留浓度最高,分别达14.62、17.02 mg/kg。最后,SPSS相关性分析结果表明,土柱中菲、芘的残留量与土壤细颗粒(0~20μm)含量的相关系数分别为0.99和0.93,与土壤有机质的相关系数分别为0.74和0.88。 相似文献
5.
某油泥堆放场地中多环芳烃的污染及其垂向分布特征 总被引:1,自引:1,他引:1
通过采集某油田油泥堆放场地及其周边24个表层土壤样品和2个剖面土壤样品,采用超声波萃取-气相色谱/氢火焰离子化检测分析方法,对美国环境保护局(USEPA)优控的16种多环芳烃(PAHs)进行定量分析.结果表明:该研究区域的PAHs污染已较为严重,污染场地内16种PAHs的检出率为100%,w(PAHs)平均值为7 770.7 ng/g;周边土壤的16种多环芳烃的检出率为58.3%~100%,二苯并[a,h]蒽及茚并[1,2,3-cd]芘的检出率相对较低,w(PAHs)平均值为2 038.8 ng/g.研究区域内主要污染物为萘、苊、二氢苊、芴、菲、蒽、荧蒽、、芘、苯并[a]蒽和苯并[a]芘.从母体PAHs与污染物来源的关系和单组分比值可以看出,污染场地内及周边土壤的污染源是石油源和燃烧源的混合源.w(PAHs)在土壤剖面中的峰值出现在40~60及20~40 cm处,不同组分的PAHs在土壤剖面中的迁移能力表现为2~3环PAHs>4环PAHs>5~6环PAHs. 相似文献
6.
7.
为探讨多环芳烃(PAHs)在不同有机质梯度土壤中的纵向迁移机理,以山东省广泛分布的潮土、褐土和棕壤为研究对象,配成低有机质含量(17 g/kg)、中有机质含量(30 g/kg)、高有机质含量(45 g/kg)三种梯度的较清洁土,以柴油原液配成污染土壤,采用室内土柱淋滤试验,模拟自然条件下土壤中PAHs的纵向迁移,分析淋滤后较清洁土和污染土中PAHs的含量及组成.结果表明:PAHs在潮土中更易向下迁移,褐土和棕壤无显著性差异(P>0.05). PAHs主要富集于较清洁土柱表层(69.10%~73.68%),随土柱深度增加,PAHs含量逐渐降低;在去离子水条件下淋滤,较清洁土中低环PAHs的迁移能力大于高环PAHs.与低有机质条件相比,中有机质条件下PAHs的淋滤率降低了20.43%~32.41%,高有机质条件下降低了48.16%~58.05%.研究显示,低环PAHs易向下迁移,高环PAHs则较难向下迁移,有机质会抑制土壤中PAHs的纵向迁移,有机质含量越高,对PAHs纵向迁移的抑制作用越强. 相似文献
8.
为探讨多环芳烃(PAHs)在不同有机质梯度土壤中的纵向迁移机理,以山东省广泛分布的潮土、褐土和棕壤为研究对象,配成低有机质含量(17 g/kg)、中有机质含量(30 g/kg)、高有机质含量(45 g/kg)三种梯度的较清洁土,以柴油原液配成污染土壤,采用室内土柱淋滤试验,模拟自然条件下土壤中PAHs的纵向迁移,分析淋滤后较清洁土和污染土中PAHs的含量及组成.结果表明:PAHs在潮土中更易向下迁移,褐土和棕壤无显著性差异(P>0.05). PAHs主要富集于较清洁土柱表层(69.10%~73.68%),随土柱深度增加,PAHs含量逐渐降低;在去离子水条件下淋滤,较清洁土中低环PAHs的迁移能力大于高环PAHs.与低有机质条件相比,中有机质条件下PAHs的淋滤率降低了20.43%~32.41%,高有机质条件下降低了48.16%~58.05%.研究显示,低环PAHs易向下迁移,高环PAHs则较难向下迁移,有机质会抑制土壤中PAHs的纵向迁移,有机质含量越高,对PAHs纵向迁移的抑制作用越强. 相似文献
9.
采用Eijkelkamp土壤采样器对北京东南郊污灌区进行了3个钻孔剖面采样,分析了土壤样品的理化参数,并且采用气相色谱-质谱联用仪对土壤样品的多环芳烃(PAHs)进行了定量分析,研究了土壤理化参数和16种PAHs从表层到5.5 m深的范围内垂向变化规律.结果表明,污灌区表层土壤中有14种PAHs检出,检出浓度在4~428 μg/kg之间,表层以下PAHs的检出种类显著减少,主要以2环和3环的萘、菲、芴、苊烯、二氢苊、荧蒽6种为主.粘粒含量、粘土矿物总量、阳离子交换容量以及总有机碳4个理化参数相互之间在垂向变化上具有一致性,均在0.05水平上显著相关.表层以下粘粒含量与低环PAHs在垂向含量变化也有较好的一致性,粘粒含量高的层位,PAHs含量也较高.从剖面PAHs含量变化可以判断,低环PAHs较易迁移,它们的迁移性强弱顺序为:二氢苊>芴>萘>菲>苊烯>荧蒽,其它高环PAHs难以迁移,仅在表层土壤中检出,说明在长期污灌条件下,迁移性较好的低环PAHs能够迁移到较深的土层中,有可能导致浅层地下水的污染. 相似文献
10.
以焦作电厂为例,研究了燃煤电厂附近农田土壤中多环芳烃(PAHs)的分布特征.采集了焦作电厂附近农田的土壤,用索氏提取法进行样品处理后,采用气相色谱法对样品中16种PAHs进行了分析测试,初步探索了燃煤电厂附近农田土壤中PAHs污染的特征及分布规律.结果表明,在该研究区域内共检测出10种PAHs,总残留量范围为30.6~740.8μg·kg-1,属轻微污染水平;但具有致癌作用的组分Fla、Chr和Baa含量约占总量的42%,说明该区域农田土壤存在一定的生态风险.通过对PAHs组成成分分析认为,PAHs污染主要来源于燃烧源.PAHs总量及单污染因子随污染源距离的增加呈现抛物线分布趋势,在距电厂1000~1500m达到最大值;土壤剖面中其峰值出现在0~5cm,且随着深度的增加而呈递减趋势.PAHs组分中含量相对较高的Fla、Phe和Pyr3种化合物与各组分及总量间显著相关,Pearson相关系数在0.625~0.999(α=0.05);可以认为,Fla、Phe和Pyr是研究区燃煤电厂附近农田土壤中PAHs的特征性化合物类型. 相似文献
11.
12.
长江武汉段不同粒径沉积物中多环芳烃(PAHs)分布特征 总被引:3,自引:1,他引:3
将采自长江武汉段的沉积物湿筛分成5个粒径的组分(>200 μm,200~125 μm,125~63 μm,63~25 μm,<25 μm),分别测定其中多环芳烃(PAHs)的含量.结果表明,不同粒径沉积物中PAHs组成基本相同,均以3环以上PAHs为主,但是∑PAHs浓度相差很大,范围为26.1~7 135.9 ng/g.其中,>200 μm沉积物中∑PAHs浓度最高,为7 135.9 ng/g;63~25 μm沉积物中∑PAHs浓度最低,为26.1 ng/g.占沉积物38.6%质量分数的<25 μm沉积物富集了沉积物中约75%的∑PAHs.总有机碳是影响PAHs在不同粒径沉积物中分布的主要因素,不同粒径沉积物中PAHs与总有机碳呈显著正相关(p<0.01).此外,有机质类型、结构也是影响PAHs在不同粒径沉积物中分布的重要因素. 相似文献
13.
南京和宜兴市土壤中多环芳烃(PAHs)的纵向分布 总被引:3,自引:1,他引:3
采集了江苏省南京和宜兴市的土壤剖面样品,用高效液相色谱分析了16种PAHs在土壤样品中的含量,研究了PAHs在土壤剖面中的纵向分布特征和影响因素。结果表明,在采样点土壤0~10cm的表土中16种PAHs总量最高,为280.8~717.1μg/kg,随着土壤剖面的加深PAHs总量减少,在70~80cm土层中为8.7~97.5μg/kg。不同PAHs组分在土壤中分布的特点不同,低环的PAHs(≤3环)含量在0~80cm土层中都有分布且随土壤深度加深而减少,而高环的PAHs(≥4环)主要分布在0~30cm土层中,30cm以下土层中含量较少甚至检测不到。相关分析表明,在每个土壤剖面中PAHs总量与其土壤有机碳含量显著相关,PAHs在农田土壤剖面中的纵向分布与土壤有机碳含量、PAHs的理化性质有很大的关系。 相似文献
14.
多环芳烃在珠江口表层水体中的分布与分配 总被引:14,自引:9,他引:14
为了解河口海岸带水体中多环芳烃(PAHs)的时空分布及其在水体及颗粒相中的分配及其控制因素,于2003年4月(春季)和2002年7月(夏季)采集了珠江河口及近海表层水体,采用GC-MS分析了水体中PAHs.结果表明,珠江河口及近海表层水体中多环芳烃浓度春季(颗粒相:4.0~39.1 ng/L;溶解相:15.9~182.4 ng/L)高于夏季(颗粒相:2.6~26.6 ng/L,溶解相:13.0~28.3 ng/L).河流径流、悬浮颗粒物含量及光降解程度是控制水体PAHs浓度的主要因素.水体中以3环PAHs为主,伶仃洋内样品比珠江口外样品相对富集5,6环PAHs,夏季样品较春季样品相对富集3环PAHs.颗粒物的来源和组成是造成这种差别的主要原因.PAHs在颗粒相及水相中的分配系数(Kp)随颗粒有机碳含量、水体盐度增加而增加,随悬浮颗粒物含量增加而减少.有机碳归一化分配系数(1gKdc)与辛醇/水分配系数(1gKow)间存在明显的线性关系,但高于线性自由能关系模拟值. 相似文献
15.
16.
利用液液萃取法和气相色谱-质谱方法对佛山境内高明河水环境多环芳烃(PAHs)进行了测定,并对PAHs的分布特征与通量进行了初步研究.结果表明高明河水环境中16种优控PAHs的浓度范围在41.6~375.6 ng/l之间,从上游到下游总体呈递增的趋势,其下游浓度偏高可能与荷城街道较为密集的工业和人口分布有关.高明河水环境PAHs的总含量高于欧美一些低污染水域,但低于国内一些主要河流.高明河PAHs年通量约为333.8 kg. 相似文献
17.
土壤中16种多环芳烃测定的准确度控制指标研究 总被引:1,自引:0,他引:1
多环芳烃是我国优先控制的环境污染物之一。组织全国22个省的49家实验室在现有仪器条件下分别完成土壤标准样品和实际样品中16种多环芳烃的6次平行测定,以人工筛查和格拉布斯检验统计监测数据,计算土壤标准样品测定的相对误差和实际样品的加标回收率,统计其分布范围,提出准确度控制指标的建议值,并与EPA8270D中自动索氏提取土壤实际样品和微波萃取土壤标准样品的准确度控制指标进行了比较,旨在为环境监测工作提供质量控制依据和质量控制指标。结果表明,标准样品中16种多环芳烃测定的相对误差建议质量控制范围为18.1%~77.6%之间不等,实际样品中16种多环芳烃加标回收率测定的建议控制范围为43.2%~130%之间不等。总体上与EPA8270D自动索氏提取方法所列质控指标基本处于同一水平。 相似文献
18.
19.
用常规荧光法分析了土壤中多环芳烃总体特征光谱,同时以多环芳烃蒽作参比,定量估测了多环芳烃在土壤中的含量。蒽的线性范围0-2.0μg/mL,相关系数0.9996,检测限0.61ng/mL;测得土壤中的多环芳烃的测量浓度均〉1.01μg/g。 相似文献