首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Although widely used for the treatment of endo- and ectoparasites in livestock and pets, very few data on chronic effects on aquatic organisms are available for the parasiticide ivermectin. In the present study, toxicity of ivermectin to two freshwater organisms, the cladoceran Daphnia magna and the green alga Pseudokirchneriella subcapitata was investigated. For D. magna, a mean LC(50) 48 h of 5.7 ngl(-1) was derived from 10 acute tests. Chronic toxicity of ivermectin to D. magna was extremely high: with 0.001 and 0.0003 ngl(-1), respectively, nominal LOEC and NOEC based on growth and reproduction were far below the analytical limit of detection for this compound. P. subcapitata was considerably less sensitive to ivermectin than D. magna. For both growth rate and yield, EC(50) was >4,000 microgl(-1), LOEC was 1,250 microgl(-1) and NOEC 391microgl(-1). In view of the high toxicity to D. magna, the use of ivermectin might pose a risk to local aquatic ecosystems. Further studies should be carried out to investigate the effects of ivermectin and its degradation products on pelagic and benthic freshwater invertebrates.  相似文献   

2.
Soil and topical tests were employed to investigate the effect of two N-nitroso metabolites of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) on earthworm reproduction. The lowest observed effect concentration (LOEC) for cocoon production and hatching was 50mg/kg for both hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) in soil. MNX and TNX also significantly affected cocoon hatching in soil (p<0.001) and in topical tests (p=0.001). The LOECs for cocoon hatching were 1 and 10mg/kg for MNX and TNX in soil, respectively, and 10mg/L in the topical test. Greater than 100mg/kg MNX and TNX completely inhibited cocoon hatching. In soil, the EC20 values for MNX were 8.7 and 8.8mg/kg for cocoon and juvenile production, respectively, compared to 9.2 and 9.1mg/kg for TNX, respectively. The EC20 values for the total number of cocoon hatchlings were 3.1 and 4.7mg/kg for MNX and TNX, respectively, in soil and 4.5 and 3.1mg/L in the topical test. Both MNX and TNX inhibited cocoon production and hatching, suggesting that they may have a negative affect on soil ecosystems at contaminated sites.  相似文献   

3.
Smith JN  Liu J  Espino MA  Cobb GP 《Chemosphere》2007,67(11):2267-2273
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) transforms anaerobically into N-nitroso compounds: hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX). Exposure to these N-nitroso metabolites may occur in areas contaminated with explosives, as anaerobic degradation occurs via some bacteria and is one remediation strategy used for RDX. Few papers report acute oral toxicity and none have evaluated age dependent toxicity of RDX or its N-nitroso metabolites. Median lethal dose (LD50) was determined in deer mice (Peromyscus maniculatus) of three age classifications 21 d, 50 d, and 200 d for RDX, MNX, and TNX using the US EPA up-and-down procedure (UDP). Hexahydro-1,3,5-trinitro-1,3,5-triazine and N-nitroso metabolites caused similar overt signs of toxicity. Median lethal dose for 21 d deer mice were 136, 181, and 338 mg/kg for RDX, MNX, and TNX, respectively. Median lethal dose for 50 d deer mice were 319, 575, and 338 mg/kg for RDX, MNX, and TNX, respectively. Median lethal dose for 200 d deer mice were 158, 542, and 999 mg/kg for RDX, MNX, and TNX, respectively. These data suggest that RDX is the most potent compound tested, and age dependent toxicity may exist for all compounds and could play a role in RDX and RDX N-nitroso metabolite ecological risk evaluation of terrestrial wildlife at RDX contaminated sites.  相似文献   

4.
To determine the toxicity of the anti-rheumatic drug diclofenac to Daphnia magna, acute toxicity tests according to the OECD guideline 202 were combined with biochemical investigations of the hsp70 level as a biomarker for proteotoxicity. Particular attention was paid to the impact of the solvent DMSO as a confounding factor to diclofenac toxicity by means of testing different variations of producing stock solutions. In the acute immobilisation tests, diclofenac was most toxic as a singular test substance, with indication of a slight antagonistic interaction between the two substances. The highest EC(50) values were obtained in those approaches using diclofenac pre-dissolved in DMSO. Thus, the observed antagonism seems to be intensified by pre-dissolution. Hsp70 levels of 12- to 19-days-old D. magna were determined after 48h exposure using a highly reproducible immunological protocol. Hsp70 induction occurred at a LOEC of 30mgl(-1) diclofenac plus 0.6mll(-1) DMSO, and at a LOEC of 40mgl(-1) for diclofenac alone. In summary, DMSO showed only slight confounding effects on diclofenac action in the applied range of concentrations.  相似文献   

5.
The effect of two major hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) metabolites, hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX), on cricket (Acheta domesticus) survival and reproduction was studied. RDX metabolites did not have adverse effects on cricket survival, growth, and egg production. However, MNX and TNX did affect egg hatching. MNX and TNX were more toxic in spiked-sand than in topical tests. TNX was more toxic to egg than MNX. Developmental stage and exposure time affected hatching. After 30 days exposure to MNX or TNX, the EC20, EC50, and EC95 were 47, 128, and 247 microg/g for TNX, and 65, 140, and 253 microg/g for MNX in topical tests. The ECs for 20, 50, and 95 were 21, 52, and 99 microg/g for MNX, and 12, 48, and 97 microg/g for TNX in sand. No gross abnormalities in cricket nypmhs were observed in all experiments indicating that neither TNX or MNX is teratogenic in this assay.  相似文献   

6.
Mukhi S  Patiño R 《Chemosphere》2008,72(5):726-732
Mixed-sex populations of young adult zebrafish (~2-month-old) were exposed to measured RDX concentrations of 0, 1 or 9.6 ppm for up to 12 weeks followed by a 15-day rearing period in untreated water. RDX caused high mortality at 9.6 ppm, with most deaths occurring within the first 8 weeks of exposure. RDX at 9.6 ppm caused lower body weights at 4 and 8 weeks of exposure; and at 1 ppm, lower body weight was observed only at 4 weeks. Fish length was not affected by treatment at any time during the exposure period. The bioconcentration factor for RDX seemed to be influenced by time of exposure but not by water RDX concentration; its overall values were 1.01+/-0.13, 0.91+/-0.06 and 2.23+/-0.04 at 4, 8 weeks and 12 weeks, respectively. RDX was not detected in fish collected after the 15-day recovery period. In a separate experiment, adult females and males were separately exposed to RDX at measured concentrations of 0, 0.5 and 3.2 ppm for a period of 6 weeks. Reproductive performance was evaluated by biweekly breeding of the fish and measuring packed-egg volume (PEV) as index of fecundity. At 0.5 ppm, RDX caused elevated PEV levels relative to the control value at 2 weeks but not at 4 or 6 weeks, whereas no significant effects were noted at 3.2 ppm. Egg fertilization and embryo hatching rates were not affected by RDX at any of the concentrations tested. In conclusion, RDX at sublethal concentrations causes short-term negative effects on growth and, at 0.5 ppm, positive effects on fecundity.  相似文献   

7.
Liu H  Yu H  Giesy JP  Sun Y  Wang X 《Chemosphere》2007,66(11):2159-2165
HC Orange No. 1 (HCO1; 2-nitro-4′-hydroxydiphenylamine) (CAS No. 54381-08-7) is used as a color additive in hair dyes and can be released into aquatic environments in wastewater. In this paper, the effects of HCO1 on aquatic organisms were studied using a battery of toxicological tests. These included measuring immobilization of Daphnia magna, inhibition of zebrafish embryo development, and acute lethality in zebrafish and goldfish, which are different species belonging to different trophic levels. HCO1 was toxic to all of the organisms studied. In our experiments, HCO1 remarkably restrained the mobility of D. magna, which may cause subsequent death. The EC50 value for restrained the mobility of D. magna at 48 h was 1.54 mg HCO1 l−1. In addition, HCO1 showed toxicity in zebrafish and goldfish, where LC50values at 96 h were 4.04 and 5.37 mg l−1, respectively. The results also indicated that HCO1 remarkably retarded the development of zebrafish embryos, which may cause embryo abnormality and even lethality. The most sensitive toxicological endpoint in the development of the embryos was failure to hatch, which had an EC50 of 0.19 mg HCO1 l−1. These results indicated that HCO1 is a potential teratogen to zebrafish embryos. In addition, as HCO1 concentrations increased, the outcomes of each of these toxicity tests changed in a concentration-dependent manner. Together, the results revealed that HCO1 appears to be toxic to multiple different species of aquatic organisms. The EC50 (LC50) values contain sufficient discriminatory power for risk assessment of HCO1 in aquatic environments. Based on the present results, more efficient risk assessment procedures for HCO1 will be designed in the future, integrating more flexible testing methods into the testing schemes that employ only the necessary tools for each case.  相似文献   

8.
Population-level effects of the neem insecticide, Neemix, on Daphnia pulex   总被引:1,自引:0,他引:1  
Although natural insecticides from the neem tree are generally perceived as less harmful to the environment than synthetic insecticides, new evidence indicates that these products may pose a risk to certain nontarget organisms. In this paper, acute and chronic effects of commercial neem insecticides on the aquatic invertebrate, Daphnia pulex were examined. The acute toxicity of two commercial neem insecticides, Neemix, Azatin and the experimental insecticide, RH-9999 to D. pulex was investigated using traditional 48 hr concentration-mortality estimates. Neemix and Azatin were equitoxic with LC50's of 0.68 and 0.57 ppm; RH-9999 was significantly less toxic with an LC50 of 13 ppm. A 10 d population growth study was conducted for Neemix and a Neemix formulation blank (Neemix devoid of the active ingredients) to determine whether the active ingredients of Neemix and/or components of the formulation were responsible for toxicity. D. pulex populations went to extinction after exposure to a Neemix concentration of 0.45 ppm azadirachtin (equivalent to the acute LC7). Neemix No Observable Effect Concentration (NOEC) and Lowest Observable Effect Concentration (LOEC) values for population growth were 0.045 and 0.15 ppm azadirachtin, respectively. The mean number of offspring per surviving female (Ro) declined in a concentration-dependent manner after exposure to Neemix with no offspring being produced after exposure to 0.45 ppm. Neemix NOEC and LOEC values for reproduction were 0.045 and 0.15 ppm, respectively. The formulation blank caused no mortality in the individuals used to start the population growth study but reduced reproduction and population growth accounting for 47% of the toxicity caused by Neemix at a concentration of 0.15 ppm. Thus, the formulation contributes substantially to the toxicity of Neemix but neem components are also toxic to D. pulex. Because the NOEC for population growth and reproduction were higher than the estimated environmental concentration of 0.035 ppm (a measure developed for forest pest mananagement), Neemix should pose little risk to populations of D. pulex.  相似文献   

9.
Sulfonamides (SAs), the oldest chemotherapeutic agents used for antimicrobial therapy, still play an important role in veterinary mass treatments. Consequently, traces of these compounds, alone or in combinations, have been repeatedly detected in the environment. Sulfamethazine (SMZ) deserves particular attention not only because it is the most used veterinary SA, but also due to its proven effects on fertility in mice and on thyroid hormone homeostasis in rats. In this study, after evaluating the acute toxicity to Daphnia magna of six veterinary SAs and trimethoprim (TMP), the additivity of SMZ to each other compound was tested using the isobologram method. Two reproduction tests on the same biological model were also performed in order to derive LOEC and NOEC of SMZ. The acute EC50 was in the range 131–270 mg L−1 for all the compounds tested with the exception of sulfaguanidine (EC50 = 3.86 mg L−1). In acute binary tests SMZ showed a complex interaction with sulfaquinoxaline (superadditivity, additivity or subadditivity) at the three different combination ratios tested, simple additivity to TMP and less than additive interaction when paired to the other SAs. LOEC and NOEC of SMZ obtained from reproduction tests were 3.125 and 1.563 mg L−1, respectively. In conclusion, SMZ should not harm the crustacean population at environmentally realistic concentrations. Its toxicity is comparable to that of other systemic SAs, and their binary interactions are less than additive. The same can not be entirely said for enteric SAs, and considering that these compounds are administered at high doses and mostly excreted in unmetabolised form, further evaluation of their impact to the aquatic environment seems advisable.  相似文献   

10.
Toxicity of hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) to earthworm was evaluated. Both MNX and TNX had lethal and sublethal effects on earthworms. Exposure to MNX- or TNX-contaminated soil caused a significant concentration-dependent decrease in earthworm survival and growth. The lowest observed lethal concentration (LOLC) for both MNX and TNX was 100 and 200 mgkg(-1) soil dry weight in the sandy loam soil and in the silt loam soil, respectively. No earthworms survived for 14 days in MNX- or TNX-spiked soil at 500 mgkg(-1) soil dry weight. After 7 days exposure, the lowest observed effect concentration (LOEC) for earthworm growth was 50 mgkg(-1) soil dry weight for TNX and 100 mgkg(-1) soil dry weight for MNX in both soil types. The LC20 and LC50 for MNX in sandy loam soil were 114 and 262 mgkg(-1) and for TNX, they were 114 and 254 mgkg(-1) soil dry weight, respectively. The corresponding values for MNX and TNX in silt loam soil were 234 and 390 mgkg(-1) soil dry weight, respectively, and 200 and 362 mgkg(-1) soil dry weight, respectively. After 35 days exposure, earthworm growth was reduced 8-39% by TNX in sandy loam soil, whereas TNX only inhibited earthworm growth 5-18% at the same concentration range in silt loam soil. LC20 and LC50 for TNX were slightly lower than for MNX; this indicates that TNX was more toxic than MNX. No significant morphological or developmental abnormalities were observed in earthworms surviving exposure.  相似文献   

11.
Li MH 《Chemosphere》2008,70(10):1796-1803
Eight widely used surfactants (cetyltrimethylammonium bromide; CTAB, benzethonium chloride; Hyamine 1622, 4-nonylphenol; NP, octylphenol ethoxylate; Triton X-100, dodecylbenzene sulfonate; LAS, lauryl sulfate; SDS, pentadecafluorooctanoic acid; PFOA, and perfluorooctane sulfonate; PFOS) were selected to examine their acute toxicities and effects on oxidative stress and cholinesterase (ChE) activities in Dugesia japonica. The differences in acute toxicity among eight surfactants to planarians were at least in the range of three orders of magnitudes. The toxicity rank of surfactants according to estimated 48-h LC(50) was SDS>NP>LAS>Hyamine 1622>CTAB>Triton X-100>PFOS>PFOA. The toxicity rank of surfactants according to 96-h LC(50) was as follows: SDS>CTAB>NP>LAS>Hyamine 1622>Triton X-100>PFOS>PFOA. There were significant increases in catalase activities in planarians exposed to LAS at nominal concentrations of 0.5 or 1 mgl(-1) and to PFOS at nominal concentrations of 5 or 10 mgl(-1) after 48-h exposure. Inhibitions of ChE activities were found in planarians exposed to Hyamine 1622 at all concentrations tested, to PFOS at nominal concentration of 10 mgl(-1), to PFOA at nominal concentrations of 50 or 100 mgl(-1) and to NP at nominal concentration of 0.5 mgl(-1). A significant increase in ChE activities was also observed in planarian exposed to Triton X-100 at nominal concentration of 5 mgl(-1). The implication of ChE inhibition by NP, PFOS and PFOA on neurological and behavioral effects in aquatic animals requires further investigation.  相似文献   

12.
Best EP  Geter KN  Tatem HE  Lane BK 《Chemosphere》2006,62(4):616-625
The objectives of this study were to provide data that can be used to predict exposure-based effects of RDX in aged soil on multiple endpoint organisms representing two trophic levels. These data can be used for defining criteria or reference values for environmental management and conducting specific risk assessment. Dose-response experiments formed the basis for the evaluation of toxic effects and transfer of contaminants from soil into two trophic levels. Long-term exposure tests were conducted to evaluate chronic, sublethal, toxicity and transfer of aged soil-based explosives, with RDX as main contaminant. In these tests, plants were exposed for 55 days in the greenhouse, biomass was determined and residues of explosives parent compounds and RDX metabolites were analyzed using HPLC techniques. Worms were exposed for 28 days (Eisenia fetida) and 42 days (Enchytraeus crypticus) in the laboratory, biomass and number were determined, and tissues were analyzed for explosives compounds. The plants tolerated concentrations up to 1,540 mg RDX kg(-1) soil-DW. Biomass of Lolium perenne was not significantly related to soil-RDX concentration, while biomass of Medicago sativa significantly increased. No screening benchmark for RDX in soil for plants was calculated, since concentrations up to 1,540 mg kg(-1) soil failed to reduce biomass by 20% as required for a LOEC. RDX, RDX-metabolite MNX, and accompanying HMX concentrations in plants were significantly related to concentrations in soil after 55 days of exposure (RDX: R(2) = 0.77-0.89; MNX R(2) = 0.53-0.77; HMX: R(2) = 0.67-0.71). The average bioconcentration factors (BCF) were for RDX 17 in L. perenne and 37 in M. sativa, and for HMX 2 in L. perenne and 44 in M. sativa. The worms also tolerated concentrations up to 1,540 mg RDX kg(-1) soil-DW. Biomass of E. fetida adults decreased with soil-RDX concentration, and a LOEC of 1,253 mg kg(-1) soil-DW was estimated. RDX concentrations in E. fetida were significantly related to concentrations in soil after 28-day exposure (R(2) = 0.88). The average BCF in E. fetida for RDX was 1. Because in response to exposure to RDX-contaminated soil the RDX concentrations in plants increased initially and decreased subsequently, while those in worms increased continuously, RDX in worm tissues may accumulate to higher concentrations than in plant tissues, regardless of the low average BCF for worms.  相似文献   

13.
Zhang C  Hughes JB 《Chemosphere》2003,50(5):665-671
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a military high explosive, is becoming an increasingly important pollutant in the US. The cleanup of RDX-contaminated soil and groundwater has been a serious challenge due to its recalcitrance in the environment. This study was conducted to determine the biodegradation kinetics of RDX by crude cell extract of Clostridium acetobutylicum (ATCC 824), and to examine whether this bacterium will carry out reductive transformation pathways similar to the transformation of 2,4,6-trinitrotoluene (TNT), 2,4- and 2,6-dinitrotoluenes (DNTs) we have reported previously. Batch studies on the anaerobic transformation of RDX were conducted in serum bottles with U-ring-14C-RDX. RDX and its transformation products were quantified by HPLC and qualified by LC/ MS interfaced to two soft ionization techniques--an atmospheric pressure ionization and an electron spray ionization (API-ES). Results demonstrated that C. acetobutylicum is capable of transforming RDX with H2 as the electron donor. The transformation followed a zero-order kinetics and the rates increased with increasing H2. RDX was transformed into several polar intermediates that could not be separated by reverse-phase HPLC and its molecular ions were unstable under the condition of commonly used electron impact detector. Using a polar and water immiscible solvent (ethyl acetate) and the softer MS ionization techniques, mass spectroscopy detected the presence of several RDX derivatives including mononitroso-, monohydroxylamino-, mononitrosomonohydroxylamino-, monoamino-, diamino-, and triamino-compounds. The presence of hydroxylamino compounds is analogous to the transformation of TNT and DNTs we elucidated previously.  相似文献   

14.
The acute and sub-chronic effects of four cytostatic drugs—5-fluorouracil (5-FU), cisplatin (CisPt), etoposide (ET) and imatinib mesylate (IM)—on zebrafish (Danio rerio) were investigated. Acute tests were carried out in a static system in accordance with the OECD guideline 203 for adult fish and the draft guideline for fish embryos (FET test) in order to find the LC50 values of the four cytostatic drugs. Early-life stage toxicity test on zebrafish was conducted according the OECD guideline 210 using the cytostatic drugs 5-FU and IM in a semistatic system with the objective of investigating the sub-chronic effects of the cytostatic drugs on fish. In adult fish, the cytostatic drugs 5-FU and ET did not pass the limit test, thus, are considered non-toxic. In case of cisplatin, LC50 was calculated at 64.5 mg L?1, whereas in case of IM, LC50 was at 70.8 mg L?1. In the FET test, LC50 of 5-FU at 72-h post fertilization (hpf) was 2441.6 mg L?1. In case of CisPt, LC50 was 349.9 mg L?1 at 48 hpf and it progressively decreased to 81.3 mg L?1 at 120 hpf. In addition, CisPt caused a significant delay in the hatch of larvae. In case of ET, LC50 values were not calculable as they were higher than 300 mg L?1 at which concentration the substance crystallized in the solution. LC50 values of IM were 48 hpf; 158.3 mg L?1 , 72 hpf; 141.6 mg L?1, 96 hpf; 118.0 mg L?1, and 120 hpf; 65.9 mg L?1. In the Early-life Stage Test with 5-FU, embryonic deformities were not detected during the tests. Regarding mortalities, the 10 mg L?1 concentration can be considered as LOEC, as statistically significant difference in mortalities was detected in this group alone. Concerning dry body weight and standard length, 1 mg L?1 is the LOEC. In case of IM, the highest tested concentration (10 mg L?1) can be considered LOEC for mortalities, however, the treatment did not have an effect on the other investigated parameters (dry and wet weight, standard length). All four cytostatic drugs were characterized by low toxicity in zebrafish in acute and sub-chronic tests.  相似文献   

15.
镉对泥鳅幼鱼的急性和亚急性毒性研究   总被引:13,自引:0,他引:13  
在实验条件下研究了镉对泥鳅幼鱼的急性和亚急性毒性。试验从刚孵出的幼鱼开始,采用静水换水法。亚急性试验历时20d。镉对泥鳅幼鱼24、48h的LC50值分别为1.22、0.85mg/L。亚急性试验中,镉对泥鳅幼鱼存活有明显影响的可观察效应浓度(LOEC)最低是O.16mg/L;根据对幼鱼现存量的影响,镉对泥鳅的最低可观察效应浓度为0.08mg/L,而无可观察效应浓度(NOEC)为0.04mg/L。  相似文献   

16.
Static bioassays were made to determine acute toxicity of chlorpyrifos-methyl, a wide spectrum organophosphorus insecticide and potential toxic pollutant of aquatic ecosystem, Guppy fish (Poecilia reticulata). Bioassays were made at a regulated temperature of 22+/-1 degrees C and were repeated three times. Lethal doses of the insecticides were determined using LC50 software programme of U.S. EPA based on Finney's Probit Analysis statistical method. The 96 h LC50 value and 95% confidence limit of chlorpyrifos-methyl for Guppy was estimated as 1.79 (1.47-2.10) mg/l. The fish exposed to chlorpyrifos-methyl exhibited behavioral changes in the form of neurotoxin toxicity: less general activity than control group, loss of equilibrium, erratic swimming and staying motionless at a certain location generally at mid-water level for prolonged periods. The 1 mg/l (lowest) concentration had similar behavior (NOEC) with the control group.  相似文献   

17.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a potential human carcinogen, and its contamination of subsurface environments is a significant threat to public health. This study investigated abiotic and biological degradation of RDX in contaminated aquifer material. Anoxic batch systems were started with and without pre-aeration of aquifer material to distinguish initial biological RDX reduction from abiotic RDX reduction. Aerating the sediment eliminated chemical reductants in the native aquifer sediment, primarily Fe(II) sorbed to mineral surfaces. RDX (50 μM) was completely reduced and transformed to ring cleavage products when excess concentrations (2 mM) of acetate or lactate were provided as the electron donor for aerated sediment. RDX was reduced concurrently with Fe(III) when acetate was provided, while RDX, Fe(III), and sulfate were reduced simultaneously with lactate amendment. Betaproteobacteria were the dominant microorganisms associated with RDX and Fe(III)/sulfate reduction. In particular, Rhodoferax spp. increased from 21% to 35% and from 28% to 60% after biostimulation by acetate and lactate, respectively. Rarefaction analyses demonstrated that microbial diversity decreased in electron-donor-amended systems with active RDX degradation. Although significant amounts of Fe(III) and/or sulfate were reduced after biostimulation, solid-phase reactive minerals such as magnetite or ferrous sulfides were not observed, suggesting that RDX reduction in the aquifer sediment is due to Fe(II) adsorbed to solid surfaces as a result of Fe(III)-reducing microbial activity. These results suggest that both biotic and abiotic processes play an important role in RDX reduction under in situ conditions.  相似文献   

18.
Ronen Z  Yanovich Y  Goldin R  Adar E 《Chemosphere》2008,73(9):1492-1498
The aim of this study was to explore biodegradation potential of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in a deep contaminated unsaturated zone over Israel's coastal aquifer. While anaerobic biodegradation potential was observed throughout the profile down to the water table at a depth of 45 m, aerobic biodegradation was limited to the surface of the unsaturated zone. Traces of nitroso-RDX intermediates were detected in the soil samples, indicating possible in situ activity. Polymerase chain reaction and denaturing gradient gel electrophoresis analysis revealed that the microbial population in the soil consisted of protobacteria, but no known RDX degraders were detected. However, a 16S rRNA gene sequence most similar to Sphingomonas sp. was detected at all depths. Biodegradation rates were faster in the surface (0 and 1m) versus deeper soil samples (22 and 45 m) and were not affected under anaerobic conditions by the presence of nitrate, indicating a concurrent reduction of both compounds. RDX half-life in the surface soil was mostly dependent on carbon content and to lesser extent on soil moisture. Biomineralization of RDX to CO(2) was confirmed by incubating surface soil with (14)C-labeled RDX. An aerobic RDX-degrading bacterium, identified as Gordonia sp., was isolated from the soil: it degraded RDX aerobically and produced 4-nitro-2,4-diazabutanal. This study, the first to explore RDX biodegradation in the deep vadoze zone, indicates biodegradation potential throughout the profile, which is likely to support natural attenuation.  相似文献   

19.
Given the potent carcinogenic effects of most N-nitroso compounds, the reductive transformation of the common explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to a group of N-nitroso derivatives, hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) in the environment have caused concerns among the general public. Questions are arising about whether the same transformations also occur in mammals, and if true, to what extent. This study investigated the N-nitroso derivatives production in the deer mouse GI tract following RDX administration. Findings verified that such transformations do occur in the mammalian GI tract at notable levels: the average MNX concentrations in deer mice stomach were 85 microg/kg and 1318 microg/kg for exposure to 10mg/kg and 100mg/kg diet, respectively. DNX in stomach were 217 microg/kg for the 10mg/kg dose group and 498 microg/kg for the 100mg/kg dose group. Changes in other toxic endpoints including body weight gain, food consumption, organ weight, and behavior were also reported.  相似文献   

20.
Aqueous 7-d germination and growth experiments were performed to compare responses of T. latifolia to exposures of atrazine (2-chloro-4-ethylamino-6-isopropylamine-s-atrazine) and paraquat dichloride (1,1′-dimethyl-4,4′-bipyridinium dichloride). T. latifolia seed germination was < 50 % in concentrations ≥ 1.0 mg/L of paraquat dichloride. No observed effect concentration (NOEC) and lowest observed effect concentration (LOEC) for paraquat and root growth were 0.001 and 0.01 mg/L, respectively, while NOEC and LOEC for paraquat and shoot growth were 0.01 and 0.1 mg/L, respectively following 7-d exposures. Greater than 72 % of seeds germinated in each concentration up to 30 mg/L atrazine. After 7-d exposure, NOEC and LOEC for atrazine and root growth were 0.1 and 1.0 mg/L, while atrazine and shoot growth NOEC and LOEC values were 15 and 30 mg/L, respectively. This research provides data concerning relative sensitivity of T. latifolia seedlings to the herbicides atrazine and paraquat, as well as the potential use of T. latifolia as a representative plant test species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号