首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The invasive mussel Mytilus galloprovincialis and the indigenous mussel Perna perna coexist intertidally on the south coast of South Africa through partial vertical habitat segregation: M. galloprovincialis dominates the upper shore and P. perna the lower shore. Recruitment patterns can explain the zonation of P. perna, but not the invasive species. We examined the role of post-recruitment interactions by measuring spatial and temporal differences in adult growth and mortality rates of the two species. Specifically, we tested the hypothesis that interspecific differences in growth and mortality reflect adult distribution patterns. The two study locations, Plettenberg Bay and Tsitsikamma, are 70 km apart with two sites (separated by 300–400 m) per location, each divided into three vertical zones. Growth was measured seasonally using different marking methods in 2001 and 2003. Cumulative adult mortality was measured through summer in 2003/2004. Both species generally grew more slowly upshore, but they showed different effects of season. For P. perna, growth was significantly reduced in winter in the low zone, but unaffected by season in the high zone. For M. galloprovincialis, growth was either unaffected by season or increased in winter, even in the high zone. Thus, growth of P. perna and M. galloprovincialis was reduced under cool winter and warm summer temperatures, respectively; and while growth was more similar between species in summer, M. galloprovincialis grew much faster than P. perna in winter. Mortality of P. perna increased upshore. For M. galloprovincialis, mortality was not zone-dependent and was significantly greater than for P. perna on the low-shore and (generally) across the shore in Tsitsikamma. Both species had higher growth and mortality rates in Plettenberg Bay than in Tsitsikamma. Thus, P. perna seems able to maintain spatial dominance on the low-shore and at certain sites because of higher mortality of M. galloprovincialis. We conclude that seasonality in growth of the two species reflects their biogeographic affinities and that coexistence is possible through pre-recruitment effects that limit the vertical distribution of P. perna and post-recruitment effects that limit M. galloprovincialis.  相似文献   

2.
The ability of a mussel to withstand wave-generated hydrodynamic stress depends mainly on its byssal attachment strength. This study investigated causes and consequences of different attachment strengths of the two dominant mussels species on the South African south coast, the invasive Mytilus galloprovincialis and the indigenous Perna perna, which dominate the upper and the lower areas of the lower balanoid zone, respectively and co-exist in the middle area. Attachment strength of P. perna was significantly higher than that of M. galloprovincialis. Likewise solitary mussels were more strongly attached than mussels living within mussel beds (bed mussels), and in both cases this can be explained by more and thicker byssal threads. Having a wider shell, M. galloprovincialis is also subjected to higher hydrodynamic loads than P. perna. Attachment strength of both species increased from higher to lower shore, in response to a gradient of stronger wave action. The morphological features of the invasive species and its higher mortality rates during winter storms help to explain the exclusion of M. galloprovincialis from the low shore. The results are discussed in the context of the evolutionary strategy of the alien mussel, which directs most of its energy to fast growth and high reproductive output, apparently at the cost of reduced attachment strength. This raises the prediction that its invasive impact will be more pronounced at sites subject to strong but not extreme wave action.  相似文献   

3.
Settlement is a major determinant of intertidal populations. However, the energy costs of lost larvae are very high. Accordingly, arrival and attachment on suitable substrata are essential requirements for species’ survival. On the intertidal, the presence of cues left by adult or juvenile conspecifics could be vital for the successful establishment of larvae arriving on the shore. Two mussel species, the indigenous Perna perna and the invasive Mytilus galloprovincialis, co-occur on the lower eulittoral zone on the south coast of South Africa. P. perna dominates the low and M. galloprovincialis the high mussel zones, with co-existence in the mid mussel zone. This study tested the hypothesis of settlement selectivity for conspecifics in these two mussel species, to understand whether the final adult distribution of mussels on the shores is determined by active behavioural and chemical mechanisms. Preferential selection by larvae for conspecifics was tested in the field during the peak settlement period in 2004 in natural mussel beds across zones and through manipulative experiments in the mid-zone where the species co-exist. On natural beds, settlement was determined by counts of settlers attached over 48 h onto artificial collectors. Collectors were placed on beds of P. perna and M. galloprovincialis present at both high- and low-adult densities, as well as in mixed beds. On such natural beds, settlers of both species consistently favored low-zone P. perna beds. Settlement patterns over 24 h onto experimentally created mussel patches consisting of P. perna, M. galloprovincialis or the two species combined beds, set in the mixed zone, did not conform with the results of the natural beds study: settlers of both species settled with no discrimination among different patches. The results indicate that mussels, which are sedentary, lack attraction to conspecifics at settlement. This highlights the importance of tidal height in setting settlement rates, and of post-settlement events in shaping populations of these broadcast spawners.  相似文献   

4.
The mussel Mytilus galloprovincialis is highly invasive worldwide, but displays varying degrees of local and regional coexistence with indigenous mussels through spatial habitat segregation. We investigated the roles of settlement, post-settlement mortality, juvenile growth and recruitment in partial habitat segregation between the invasive M. galloprovincialis and the indigenous mussel Perna perna on the south coast of South Africa. We used two study locations, Plettenberg Bay and Tsitsikamma, 70 km apart, with two sites (separated by 300–400 m) per location, each divided into three vertical zones. There were no significant effects in Tsitsikamma, where daily settlement and monthly recruitment were significantly lower than in Plettenberg Bay. In Plettenberg Bay, settlement (primary and secondary) and recruitment of both species decreased upshore. Post-settlement mortality was measured over two consecutive 6-day periods during a spring tide and a neap tide. For both species mortality was low on the low-shore. High-shore mortality was consistently low for M. galloprovincialis, but increased dramatically for P. perna during spring tide. No data were obtained for growth of P. perna, but juvenile M. galloprovincialis grew more slowly farther upshore. P. perna recruited mainly in spring and summer, with a peak in summer far greater than for M. galloprovincialis. Recruitment of M. galloprovincialis was more protracted, continuing through autumn and winter. Thus local coexistence is due to a combination of pre- and post-recruitment factors differing in importance for each species. P. perna is excluded from the high-shore by recruitment failure (low settlement, high mortality). High survival and slow growth in juveniles may allow large densities of M. galloprovincialis to accumulate there, despite low settlement rates. With no differences between species in settlement or mortality on the low-shore, exclusion of M. galloprovincialis from that zone is likely to be by post-recruitment processes, possibly strengthened by periodic heavy recruitments of P. perna. At larger scales, larval retention and protracted recruitment contribute to the success of M. galloprovincialis at Plettenberg Bay, while recruitment limitation may explain why M. galloprovincialis is less successful at other sites.  相似文献   

5.
Periodical sand inundation influences diversity and distribution of intertidal species throughout the world. This study investigates the effect of sand stress on survival and on habitat segregation of the two dominant mussel species living in South Africa, the invasive Mytilus galloprovincialis and the indigenous Perna perna. P. perna occupies a lower intertidal zone which, monthly surveys over 1.5 years showed, is covered by sand for longer periods than the higher M. galloprovincialis zone. Despite this, when buried under sand, P. perna mortality rates were significantly higher than those of M. galloprovincialis in both laboratory and in field experiments. Under anoxic condition, P. perna mortality rates were still significantly higher than those for M. galloprovincialis, but both species died later than when exposed to sand burial, underlining the importance of the physical action of sand on mussel internal organs. When buried, both species accumulate sediments within the shell valves while still alive, but the quantities are much greater for P. perna. This suggests that P. perna gills are more severely damaged by sand abrasion and could explain its higher mortality rates. M. galloprovincialis has longer labial palps than P. perna, indicating a higher particle sorting ability and consequently explaining its lower mortality rates when exposed to sand in suspension. Habitat segregation is often explained by physiological tolerances, but in this case, such explanations fail. Although sand stress strongly affects the survival of the two species, it does not explain their vertical zonation. Contrary to our expectations, the species that is less well adapted to cope with sand stress maintains dominance in a habitat where such stress is high. GI Zardi, KR Nicastro contributed equally to the work  相似文献   

6.
Recruitment and population structure of Perna perna in low shore mussel beds were investigated over 15 months at six sites along the south coast of South Africa. Initial, subjective classification of sites as wave exposed or wave sheltered (three of each) was confirmed using the dissolution of cement blocks to measure average water flux and dynamometers for maximum wave force. Recruitment occurred throughout the year, but recruit (1–5 mm) densities were significantly higher from January to April 1996 on both shore types. Recruit densities were positively correlated with adult (>15 mm) densities for both shore types (P < 0.05) but the correlations were extremely weak (r 2 < 0.06 in each case). In areas with 100% cover, adult size (mean and maximum lengths) was greater on exposed sites, but density showed the reverse and was negatively correlated with maximum wave strength (r = −0.84). Despite differences in adult densities and sizes, biomass, which is a product of the two, showed no significant difference between the two shore types (ANOVA P > 0.05). Thus wave exposure dramatically affects density, recruitment and mussel size, but not recruitment timing or biomass where there is 100% cover, and mediates a three-way interaction among food supply, larval supply and intraspecific competition for space. In contrast to shores with saturation recruitment, mussel biomass here appears to be limited by recruit supply and constraints of food, especially on sheltered shores, while density is regulated through intraspecific competition for space primarily on exposed shores and at small spatial scales.  相似文献   

7.
The ability of an invasive species to spread in a new locality depends on its interaction with the indigenous community and on variation in time and space in the environment. The Mediterranean mussel Mytilus galloprovincialis invaded the South African coast 30 years ago and it now competes and coexists with the indigenous mussel Perna perna. The two species show different tolerances to wave and sand stress, two of the main environmental factors affecting this intertidal community. P. perna is more resistant to hydrodynamic stress than M. galloprovincialis, while the invasive species is less vulnerable to sand action. Our results show that mortality rates of the two species over a period of 6 months had different timing. The indigenous species had higher mortality than M. galloprovincialis during periods of high sand accumulation in mussel beds, while the pattern reversed during winter, when wave action was high. A negative correlation between sand accumulation and attachment strength of the two mussels showed that sand not only affects mussel mortality through scouring and burial, but also weakens their attachment strength, subjecting them to a higher risk of dislodgement. Here we underline the importance of variations in time and space of environmental stress in regulating the interaction between invasive and indigenous species, and how these variations can create new competitive balances.  相似文献   

8.
In Ireland, mussels on exposed rocky shores constitute an interbreeding mixture of two forms of mussels, the blue mussel, Mytilus edulis, and the Mediterranean mussel, M. galloprovincialis. Results from an Irish study in the 1980s, using partially diagnostic allozyme markers, indicated that mussels higher up the shore were more galloprovincialis-like than those lower down. In this study we set out to test two hypotheses: (a) recruits arriving on the shore are composed of genetically distinct cohorts that settle preferentially at different levels on the shore, and maintain genetic distinctiveness into adulthood; (b) recruits are genetically homogeneous, but once settled they diverge genetically over time, due to within-habitat site specific-selection. The diagnostic Me 15/16 DNA marker was used to analyse the genetic composition of newly-settled spat recruiting to artificial substrates, which were placed at two-week intervals from May–October 2002, on the mid- and low shore areas of two exposed sites in Galway Bay. Adult mussels were also collected on each sampling date. Results did not support the preferential settlement hypothesis, i.e., the genetic composition of primary settlers (≤ 500 μm) was similar between tidal heights and shores. Neither was there evidence of post settlement selective mortality, as adults were genetically similar to settling spat. In spat and adults the frequency of the M. galloprovincialis allele was high (0.56–0.80), due to high frequencies of M. galloprovincialis (> 37%) and hybrid (> 33%) genotypes, and correspondingly low frequencies of the M. edulis genotype (< 11%). Adult mussels from a nearby sheltered estuarine site, while significantly different to exposed shore mussels, still had low frequencies of the M. edulis genotype (< 17%), indicating no apparent advantage for the genotype in this environment. There are indications that the genetic composition of mussels may be changing on the Atlantic coasts of Ireland.  相似文献   

9.
The alien mussel Mytilus galloprovincialis invaded sand banks in Langebaan Lagoon on the west coast of South Africa in the mid-1990s. However, by 2001 these beds had completely died off, with only empty shells and anoxic sand remaining. In an effort to prevent the re-settlement of this aggressive invader, all dead mussel shells were then cleared. This study considered the impacts of the invasion and subsequent die-off on natural benthic communities. Community composition differed significantly between non-invaded and invaded areas (ANOSIM, R = 0.685 and P < 0.01) as the physical presence of mussel beds created a new habitat that promoted invasion by indigenous rocky-shore species. This dramatically increased faunal biomass from 1,132.9 g m−2 ± 3,454.7 SD to 53,262.4 g m−2 ± 23,052.6 SD and species richness from 38 to 49 species. Following the die-off of the mussel beds, communities remained significantly different between non-invaded areas and those in which mussel shells remained (ANOSIM, R = 0.663 and P < 0.01). Species richness was significantly greater in non-invaded areas (18 species) than in uncleared areas with remnant shells (four species) (Kruskal–Wallis ANOVA H 2,36 = 10.8964 and P = 0.032), as the previously dominant rocky-shore species became smothered by sediment and the compacted shells formed an impermeable layer excluding sandy-shore burrowing organisms. After the shells were cleared, 50% of the sandy-shore species associated with non-invaded areas returned within 5 months, but community structure still remained significantly different to non-invaded areas (ANOSIM, R = 0.235 and P > 0.05). Invasion thus dramatically altered natural communities and although the subsequent removal of the dead mussel shells appears to have aided recovery, community composition remained different from the pre-invasion state after 5 months.  相似文献   

10.
The influence of wave exposure and of tidal height on mussel (Perna perna Linnaeus) population structure (size, density, biomass and adult/juvenile correlations) was examined at 18 sites along the south coast of South Africa. Sites were classified as exposed or sheltered prior to sampling, without reference to the biota, on the basis of aspect, topography and wave regime. A single set of samples was collected from each site during three spring tide cycles. Adult mussels on these shores almost always attach directly to the rocks, and layering of mussels is virtually absent. Shore height always had a strong influence on population structure, but exposure had significant effects only lower on the shore, and almost exclusively on mussel sizes. Principal component analysis (PCA), based on size distribution data for each population, revealed a general upshore decrease in the modal size of the adult cohort. The effects of exposure on size distribution, however, varied with tidal height. PCA separated exposed zones, with larger mussels, from sheltered zones on the low-shore. Farther upshore the two shore types were increasingly confounded. The maximum size of mussels showed a similar pattern, with significant differences (ANOVA, p < 0.05) between exposed and sheltered sites only on the low- and mid-shores. Density was calculated from randomly placed quadrats (i.e. not necessarily from areas of 100% cover) and showed a different pattern. Adult (>15 mm) densities decreased up the shore, with low-, mid- and high-shore zones being significantly different from one another (ANOVA, p < 0.0001; followed by multiple range tests). However, exposure had no significant effect on density, nor was there a significant interaction with zone. Recruit (<15 mm) densities were positively correlated with adult (>15 mm) densities in all zones and for both exposure regimes ( p < 0.05 in all cases), but there was considerable variability and extremely low predictability in these relationships (r 2 generally <0.2). Predictability tended to be greater towards the high-shore, where adults were more clumped. As with density, biomass was not affected by exposure, but decreased upshore as mean size and density decreased. A reduction in the influence of exposure farther upshore may be caused by greater emersion overriding the effects of exposure. The presence of free space within mussel beds and significant correlations between recruit and adult densities suggest that these mussel populations are recruit limited. Received: 7 January 2000 / Accepted: 6 July 2000  相似文献   

11.
Many South African populations of the brown mussel Perna perna have been depleted through over-exploitation by subsistence harvesters. This is problematic because recovery after disturbance is very slow, partly because recruits are largely associated with adult mussels. However, unlike large recruits of 3.5–10 mm that exhibit spatial structure related to that of adults, a very high proportion of settlers and small recruits (0–3.5 mm) occur on foliose algae. We tested the hypothesis that recruits on algae move to adult mussel beds after a period of growth, with the null hypothesis that they die at a certain size. We conducted an indirect field study comparing the ratios of large to small recruits in 100% cover mussel patches at locations with high and low algal cover. A second laboratory experiment analysed whether the size of recruits on algae affects their active movement behaviour in response to nearby mussel patches. Large/small recruit ratios were slightly, but not significantly greater in high than low algal cover locations. Both small (2–2.5 mm) and medium (4.5–5.5 mm) recruits remained on algae and moved very short distances throughout the laboratory experiment, while larger recruits (9–10 mm) moved significantly further distances and more often into mussel patches. The results suggest that very large recruits are able to migrate actively to nearby mussel patches, indicating ontogenetic shifts in this behaviour. However, the absence of a significant difference in ratios between field locations with high and low algal cover suggests many large recruits are accidentally dislodged from the algae and presumably die. Thus settlement of P. perna onto algae is likely to be wasted, with consequences for sustainable management of the mussel resource.  相似文献   

12.
The blue mussels Mytilus edulis L. and M. galloprovincialis Lmk. hybridize in western Europe. Within hybrid populations nuclear alleles specific to M. galloprovincialis increase in frequency with age and size. This relationship changes with tidal height; alleles from M. galloprovincialis occur more frequently high in the intertidal zone, while M. edulis alleles predominate in the low intertidal zone. We tested the hypotheses that larvae with M. galloprovincialis alleles tend to settle higher in the intertidal zone, or that mussels redistribute themselves with respect to tidal height after initial larval settlement. We sampled recently metamorphosed mussels every 2 weeks in a hybrid mussel population at Whitsand Bay in southwest England throughout the summer of 1996. We observed four cohorts of newly settled mussels. There was no evidence of differential settlement of mussels with different genotypes in connection with tidal height, or into shaded versus unshaded microsites. Therefore, we rejected the preferential settlement hypothesis. There was substantial movement of juvenile mussels in the first 4 weeks following initial settlement, but this “secondary settlement” did not result in genetic differentiation with respect to tidal height. Further, significant differences in allele frequencies were found between primary and secondary spat. This allele frequency change was in the opposite direction of that seen in the adult population, suggesting newly settled larvae may be experiencing different selective pressures than adults. We propose that the genetic structure of hybrid mussel populations with respect to tidal height is the consequence of differences in selection intensity. Received: 30 April 1999 / Accepted: 5 May 2000  相似文献   

13.
Two species of blue mussel, Mytilus galloprovincialis and M. trossulus, co-occur and hybridize along the Pacific coast of North America. Using a set of polymerase chain-reaction (PCR)-based genetic markers which diagnostically identify these species, we show that they are sympatric from the Cape Mendocino region to the Monterey Peninsula in northern and central California, USA. Mussels with hybrid genotypes were detected in all populations sampled in the region of sympatry, and the frequency of hybrid genotypes in individual hybrid populations ranged from 13 to 44%. Significant frequencies of first-generation backcross genotypes were detected in two individual hybrid zone populations (Berkeley and Monterey Marina) and in the hybrid zone as a whole, indicating that the potential exists for introgression between M. galloprovincialis and M. trossulus. Despite this potential, we found no evidence of advanced introgression beyond first-generation backcrosses, suggesting that gene flow between M. galloprovincialis and M. trossulus has been quite limited. The frequency of mussels with M. trossulus and hybrid genotypes declined abruptly south of Monterey Peninsula, while the frequency of mussels with M. galloprovincialis and hybrid genotypes declined precipitously north of Cape Mendocino. These abrupt genetic discontinuities indicate that this blue mussel hybrid zone is presently positioned between two prominent coastal features and there is little, if any, export of alleles from the hybrid zone into bordering parental populations. Received: 20 August 1997 / Accepted: 26 October 1998  相似文献   

14.
Along the west coast of North America, the invasive mussel Mytilus galloprovincialis and a native congener M. trossulus overlap in range and compete for habitat in an extensive hybrid zone along central California. The two species have been shown to exhibit differential abiotic tolerances in laboratory studies, yet little is known about how such tolerances affect spatial and temporal patterns of geographic distribution, particularly in areas of competition. We examined distributions of the two congeners and their hybrids in neighboring intertidal and subtidal habitats in Bodega Bay, CA over 2 years, and compared shell length and seasonal ubiquitin (Ub) conjugates to estimate protein turnover and physiological stress for the species at each site. The two species were spatially segregated, with M. galloprovincialis dominating the subtidal habitat, and M. trossulus constituting a majority of the intertidal mussel population. Hybrid individuals appeared in low numbers at both sites. For each habitat, there was no statistical difference between shell lengths of M. galloprovincialis and hybrids but M. trossulus mussels were statistically smaller than the other two. In regards to physiological performance, ubiquitin conjugate values showed different seasonal cycles for the two species, suggesting different periods of peak environmental stress. The highest levels of Ub-conjugated proteins were observed in winter for M. galloprovincialis and in summer for M. trossulus, consistent with the respective range edges for their distributions since Bodega Bay is near the northern range edge of the invader and the southern edge of the native species. These findings suggest that future assessments of Mytilus populations along the California coast may need to consider vertical distributions and seasonal cycles as part of monitoring and research activities.  相似文献   

15.
A genetic study carried out on nine natural mussel populations on the French Atlantic coast from 1989–1990 revealed interdigitation between typicallyMytilus edulis and typicallyM. galloprovincialis populations and intermediate populations. The allele components of the populations followed aM. edulis/M. galloprovincialis gradient which does not correspond to a geographical gradient. Strong hybridization was evident in samples with intermediate allele frequencies. The respective importance of gene flow and selection is discussed in the light of the results and the evironmental features of the sampling zone.  相似文献   

16.
Two species of marine mussel, Mytilus edulis and M. galloprovincialis hybridize on the coasts of western Europe. Studies of hybrid mussel populations have shown that natural selection favors M. galloprovincialis-like genotypes within this hybrid zone. Many hypotheses have been proposed to explain differential mortality in these populations. This study tests two hypotheses addressing factors of mortality in a population, and describes yearly energy storage and reproductive cycles of these two species and their hybrids. No evidence was found that the two taxa have different overall levels of reproductive effort or parasite infestation. They do, however, have asynchronous spawning periods and divergent energy storage strategies. In the year of this study, 1993, the M. edulis genotypic class spawned as a group in June and July. After spawning, they built up a high level of mantle energy-storage tissues that are probably used for gametogenesis in the following winter and spring. The M. galloprovincialis genotypic group, however, spawned asynchronously, beginning in June and finishing by August, and did not build up high levels of energy-storage tissues in summer. These results add a temporal component to the interpretation of selective forces acting to shape this hybrid zone. Vulnerability of each species to mortality factors may differ because of their divergent reproductive and energy-storage cycles. Received: 15 January 1999 / Accepted: 26 July 2000  相似文献   

17.
Seafood is a major dietary food worldwide. However, seafood consumption by humans can induce health risk because seafood may be contaminated by various pollutants. The mussel Mytilus galloprovincialis is widely distributed in the coastal waters of Montenegro, SouthEast Adriatic Sea. Here, Zn, Fe, Cu, Ni, Cd, Pb, As, and Hg contents in M. galloprovincialis from ten sites were analyzed to investigate health risks associated with the consumption of wild and cultivated mussels. Since there is a lack of data on the mussel consumption rate in Montenegro, the amount of mussels that can be ingested weekly over a lifetime with no risk of negative health effects was calculated using provisional tolerable weekly intakes (PTWI). We found that Cd concentrations were the limiting factor for mussels as a food. The weekly consumptions of 0.64–1.2 kg of fresh wild and 0.84–1.2 kg of fresh cultivated mussel would be sufficient to reach the PTWICd, which may result in a risky weekly intake of Cd for long-term exposure. Moreover, weekly intake of 125 g mussels was used to calculate the dietary intake of trace elements by mussel consumption and compared with the prescribed PTWIs. Here, we found that there is no risk for human health for all investigated elements. In this case, the highest Cd level obtained in wild and in cultivated mussels represents 19.8 and 14.9% of the PTWICd, respectively. This is the first study in Montenegro giving an assessment of the health risk from trace elements via the consumption of wild and cultivated M. galloprovincialis.  相似文献   

18.
Rocky intertidal habitats often exhibit high levels of environmental heterogeneity, and the ability of organisms to move between microhabitats is likely to have a profound influence on their rates of mortality and overall fitness. Mussels within the Mytilus edulis complex are morphologically very similar, yet at sites where these species hybridize in southwest England, populations repeatedly show evidence of selection against individuals with alleles specific to M. edulis Linnaeus, in favor of those with alleles specific to M. galloprovincialis Lamarck. Differential movement rates of these two species were examined within simulated mussel beds (gravel substrate) in the winter (February) and summer (July) of 2001. M. edulis-like mussels moved more frequently and more quickly to the exterior of gravel beds than did M. galloprovincialis-like mussels. Coupled with measurements of attachment strength in the field conducted in July 2001, we used a wave force model to examine the probability of dislodgement for each species under a range of water velocities. Results suggest that by preferentially moving to the exterior of beds, M. edulis experiences higher dislodgement rates due to exposure to large hydrodynamic forces than do M. galloprovincialis. As a consequence of lower attachment strengths, M. edulis is also predicted to have higher mortality rates than M. galloprovincialis in interior portions of the bed. Thus, differential movement behavior may contribute to the differential genotype-specific mortality rates observed in the Mytilus spp. hybrid zone in southwest England, and is an example of behavior potentially modifying rates of exogenous selection in an intertidal hybrid zone.Communicated by J.P. Grassle, New Brunswick  相似文献   

19.
Marine communities are experiencing unprecedented rates of species homogenization due to the increasing success of invasive species, but little is known about the mechanisms that allow a species to invade and persist in a new habitat. In central California, native (Mytilus trossulus Gould 1850) and invasive (Mytilus galloprovincialis Lamarck 1819) blue mussels and their hybrids co-exist, providing an opportunity to analyze the mechanisms that determine the distributions of these taxa. Spatial and temporal variation in temperature and salinity and the relative frequencies of these mussel taxa were examined between 2000 and 2004 at four sites in San Francisco Bay and four in Monterey Bay, which were chosen for their different positions along inferred estuarine/oceanic gradients in the hybrid zone. Mussels were genetically identified as the parent species or hybrids by amplifying regions of two species-specific loci: the adhesive byssal thread protein (Glu-5′) and the internal transcribed spacer region of ribosomal DNA (ITS 1). The proportion of M. trossulus at the eight hybrid zone sites correlated negatively with average salinity (R 2=0.60) and positively with maximal temperature (R 2≥0.72), a somewhat unexpected result given what is known about the phylogeography of this species. The proportion of M. galloprovincialis showed the opposite pattern. The proportion of hybrids was correlated neither with habitat temperature nor salinity. Genotypes of mussel populations at an additional 13 sites from Coos Bay, Oregon (latitude 43.35°N) to Long Beach, California (latitude 33.72°N), sampled at various intervals between 2000 and 2004, were also determined. This survey confirmed previous reports that the hybrid zone lies between Monterey and the Cape Mendocino region (latitudes 36.63°N–40.5°N). Within Monterey and San Francisco Bays, however, the temporal comparisons (1990s vs. 2000s) revealed abrupt changes in the proportions of the two parent species and their hybrids on annual and decadal time scales. These changes indicate that the blue mussel populations are in a highly dynamic state. The survey also showed that, regardless of habitat, M. trossulus is consistently of smaller average size than either M. galloprovincialis or hybrids.
Caren E. BrabyEmail:
  相似文献   

20.
The microhabitat of Symbion pandora (Cycliophora) was described by recording the prevalence and distribution of two life cycle stages, namely feeding individuals and chordoid cysts on the mouth appendages of 65 Norway lobsters. The commensals infested lobsters with a carapace length >35 mm, while the intensity of the commensals increased with host size up to more than 1,100 feeding individuals and 173 chordoid cysts. Feeding individuals and chordoid cysts were found on all six pairs of mouth appendages, but were rare on Mxp3. A Kruskal–Wallis analysis of variance showed that the distribution of the two stages over individual segments deviated significantly from random expectations (P<0.001). Feeding individuals densely aggregated on a few medial segments, generally those that are pervaded by suspended food particles during host feeding. Chordoid cysts, which arise from non-feeding females occurred in low numbers and were more evenly distributed over the segments, often aggregating on the lateral parts and in the articulations of the segments. Based on these findings we suggest that the feeding activity of S. pandora is synchronized with that of the host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号