首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mixtures of poly-β-(hydroxybutyrate-co-valerate) PHB-V with virgin and post-consumer low density polyethylene (LDPE) were prepared by melt mixing in proportions of 100/0, 90/10, 80/20, 70/30 and 0/100 (wt/wt%). The mixtures were analysed by infrared spectroscopy, differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), melting flow index (MFI), tensile tests, scanning electron microscopy (SEM) and biodegradation in simulated soil. The DMTA and DSC curves of post-consumer LDPE suggested that this polymer was a mixture of LDPE and linear low density polyethylene (LLDPE). Virgin and post-consumer LDPE had lower MFI than PHB-V, but the blends showed higher index as the content of LDPE increased. The addition of LDPE reduced the tensile strength and Young’s modulus of the mixtures compared with PHB-V. SEM indicated poor interfacial adhesion between PHB-V and LDPE. PHB-V degraded slow and gradually, while both LDPE showed virtually no degradation under the conditions studied. The biodegradability of the blends depended on their composition and of the type of LDPE. LDPE improved the biodegradability of the mixtures.  相似文献   

2.
Low-density polyethylene (LDPE) was employed to improve the thermal and rheological properties as well as the supercritical CO2 foaming behavior of poly(lactic acid) (PLA) through melt mixing and batch foaming method, due to its long branched chain structure, moderate crystallization capacity and good foamability. The differential scanning calorimetry and polarized optical microscope results showed that the introduction of LDPE had a slight effect for promoting the crystallization of PLA. An important synergistic effect on the rheological properties of PLA/LDPE blends was found through rotational rheometer. With the content of LDPE, the size of spherical LDPE dispersion phase became bigger gradually, which was observed by scanning electron microscope (SEM). A very interesting cellular morphology evolution from flower-like cellular structure to complex cellular structure and then to mono-porous cell structure was found in the SEM images of the PLA/LDPE blending foams with the foaming temperature at 95 °C. The effect of blending ratio and foaming temperature on the cellular morphology and foaming parameters was investigated.  相似文献   

3.
Biodegradable film blends of chitosan with poly(lactic acid) (PLA) were prepared by solution mixing and film casting. The main goal of these blends is to improve the water vapor barrier of chitosan by blending it with a hydrophobic biodegradable polymer from renewable resources. Mechanical properties of obtained films were assessed by tensile test. Thermal properties, water barrier properties, and water sensitivity were studied by differential scanning calorimeter analysis, water vapor permeability measurements, and surface-angle contact tests, respectively. The incorporation of PLA to chitosan improved the water barrier properties and decreased the water sensitivity of chitosan film. However, the tensile strength and elastic modulus of chitosan decreased with the addition of PLA. Mechanical and thermal properties revealed that chitosan and PLA blends are incompatible, consistent with the results of Fourier transform infrared (FTIR) analysis that showed the absence of specific interaction between chitosan and PLA.  相似文献   

4.
The use of proteins in blending with traditional polymers in the formation of thermoplastics can produce plastics with properties that are superior to traditional petroleum-based plastics. We investigated the physical and thermal properties of albumin and zein thermoplastic blends plasticized with glycerol and mixed with varying amounts of low-density polyethylene (LDPE). Several mechanical models were utilized to determine how tensile properties will be altered when varying amounts of protein/LDPE were added into the thermoplastic blend. When analyzed for thermal properties, we found that as the amount of LDPE in the thermoplastic blend increased, the resulting plastic possessed thermal properties that were more similar to pure LDPE plastics. In terms of mechanical properties, comparison between the experimental data and model predictions points to a synergistic effect between albumin and LDPE that leads to higher modulus, while a potential lack of compatibility between zein and LDPE leads to a plastic with lower modulus. Based on our results, the use of albumin and zein proteins when blended with LDPE in the production of thermoplastics has potential use in the areas of medical and food packaging applications.  相似文献   

5.
In this work, morphology, rheological and tensile properties of low-density polyethylene/linear low-density polyethylene/thermoplastic oxidized starch (LDPE/LLDPE/TPOS) blends are studied. The blends of LDPE/LLDPE (70/30, w/w) containing 0–20 wt% TPOS in the presence of 3 wt% of PE-grafted maleic anhydride (PE-g-MA) as a compatibilizer are prepared by a twin screw extruder and then converted to appropriate thin films using an extrusion film blowing machine. Scanning electron microscopic images show that there is a relative good dispersion of oxidized starch particles in PE matrices. However, as TPOS content in the blends increases, the starch particle size increases too. The rheological analyses indicate that TPOS can decrease the elasticity and viscosity of the blends. The LDPE/LLDPE/TPOS blends show power-law behavior and as the TPOS content increases the power-law exponent (n) and consistency index (K) decrease. The ultimate tensile strength and elongation at break of the final blend films reduce, when TPOS content increases from 5 to 20 wt%. However, the required mechanical properties for packaging applications are achieved when 10 wt% oxidized starch is added, according to ASTM D4635.  相似文献   

6.
In attempt to enhance the compatibility of NR in PLA matrix, and furthermore to enhance mechanical properties of PLA, PLA/NR blends with strong interaction were prepared in Haake internal mixer, using dicumyl peroxide (DCP) as cross-linker. The effects of dicumyl peroxide on morphology, thermal properties, mechanical properties and rheological properties of PLA and PLA/NR blends were studied. The results indicated that dicumyl peroxide could increase the compatibility of poly(lactic acid) and natural rubber. With small amount of dicumyl peroxide, the effect on NR toughening PLA was enhanced and the tensile toughness of PLA/NR blends was improved. When the DCP content was up to 0.2 wt%, the PLA/NR blend reached the maximum elongation at break (26.21 %) which was 2.5 times of that of neat PLA (the elongation at break of neat PLA was 10.7 %). Meanwhile, with introducing 2 wt% DCP into PLA/NR blend, the maximum Charpy impact strength (7.36 kJ/m2) could be achieved which was 1.8 times of that of neat PLA (4.18 kJ/m2). Moreover, adding adequate amount of DCP could improve the processing properties of blends: the viscosity of PLA/NR blend decreased significantly and the lowest viscosity of the blends could be achieved when the DCP content was 0.5 wt%.  相似文献   

7.
Two bio-based polymers, cellulose diacetate (CDA) and starch, were used to prepare blends with reasonable properties and low cost. Due to the poor processing properties, starch was modified in the presence of glycerol and epoxidized soybean oil (ESO), and CDA was plasticized by triacetin (TA) and ESO, respectively. The morphologies of the blends with different amounts of modified starch (MST) were studied by scanning electron microscope (SEM), and the physical properties of the blends, including thermal stability, mechanical property, water and moisture resistance, were investigated. The equilibrium moisture absorption rates of the blends containing 30 and 50 wt% MST at 100 % of relative humidity(RH) were 9.4 and 15.0 %, respectively. SEM and DMA results demonstrated that CDA and MST had a certain extent of compatibility. Due to the partial plasticization of starch, the tensile strength of the blends was nearly not affected by the amount of MST. Even if 50 wt% MST was added, the tensile strength of the blend was as high as 24.7 MPa. The obtained blend containing 30 wt% MST can keep good mechanical properties at 50 % RH, and its tensile strength and elongation at break are 30.2 MPa and 3.6 %, respectively. All the results show that the CDA/MST blends have a potential as an environmental friendly material.  相似文献   

8.
“Green”/bio-based blends of poly(lactic acid) (PLA) and cellulolytic enzyme lignin (CEL) were prepared by twin-screw extrusion blending. The mechanical and thermal properties and the morphology of the blends were investigated. It was found that the Young’s modulus of the PLA/CEL blends is significantly higher than that of the neat PLA and the Shore hardness is also somewhat improved. However, the tensile strength, the elongation at break, and the impact strength are slightly decreased. Thermogravimetric analysis (TGA) shows that the thermal stability of the PLA is not significantly affected by the incorporation of the CEL, even with 40 wt% CEL. The results of FT-IR and SEM reveal that the CEL and the PLA are miscible and there are efficient interactions at the interfaces between them. These findings show that the CEL is a kind of feasible filler for the PLA-based blends.  相似文献   

9.
The blends of polylactide (PLA) and poly(ethylene glycol) (PEG) with different contents (0, 5, 10, 15, and 20 wt%) and molecular weights (\( \overline{M}_{w} \) 6000, 10,000 and 20,000, called respectively as PEG 6000, PEG 10,000, and PEG 20,000) were prepared by means of melt blending method. The effects of tensile speed, content and molecular weight of the PEG on the tensile properties of the PLA/PEG blends were investigated using a universal testing machine at 24 °C. With increasing tensile speed, the tensile modulus, strength and stress at break of the PLA/PEG blends marginally increased, while the tensile modulus and stress at break declined non-linearly, and the tensile strength dropped nearly linearly with increasing PEG 10,000 content. When the PEG 10,000 content was 5–15 wt%, the tensile strain at break of the PLA/PEG 10,000 blend markedly increased, and then decreased as the PEG 10,000 content exceeded 15 wt%. With increasing the molecular weight of PEG, tensile modulus and strength increased, whereas the tensile strain at break decreased. This showed that the application of right amount of lower molecular weight PEG was more conducive to improving the tensile toughness of the PLA/PEG blends, which was attributed to its better miscibility with PLA and increased mobility of PLA molecular chains.  相似文献   

10.
In this study water soluble sodium carboxymethyl cellulose (CMC) was blended with high density polyethylene (HDPE) by peroxide-initiated melt compounding technique. The compatibility of the blended polymers were carried out by silane crosslinking agent. A series of blends were prepared by varying the CMC contents up to a maximum of 50 phr. The physical properties of non-crosslinked and crosslinked blends were investigated in detail. FTIR analysis of crosslinked blend confirmed the presence of Si–O–Si and Si–O–C absorption peaks at 1050 and 1159 cm?1. Thermal stability of crosslinked blends improved as compared to its non-crosslinked congener. Rheological study of crosslinked blends illustrated high complex viscosity and dynamic shear storage modulus. The tensile strength of virgin polyethylene was 8.1 MPa whereas the maximum tensile strength of 19.6 MPa was observed in crosslinked blend. Similarly lower deformation was observed in crosslinked blends under static load. Scanning electron microscopy of crosslinked formulations also showed strong adhesion between the polymers interface. The compatibility of HDPE and CMC is attributed to both free radical and condensation reactions.  相似文献   

11.
In this paper the reuse of recycled LDPE in combination with the incorporation of EPDM modifier in the production of greenhouse films has been investigated. A three-layer film (60-100-40 micron thickness) containing recycled LDPE in the middle layer and a high UV-stabilized 40-micron outer layer was developed and proven to be commercially successful. Films with 25% and 50% recycled material content were produced. The effect of natural weathering on the film properties over a period of 15 months has been observed. Changes in physical and mechanical property were determined. The addition of EPDM to the raw resin was found to improve the extrudability of the compound and improve the weather resistivity of the film. The EPDM-modified films containing 25% to 50% recycled material retained approximately 95% and 75%, respectively, of their original extensibility after 9 months' exposure to natural weathering. Optimization of EPDM and UV stabilizer concentration was carried out to develop a balanced film with excellent mechanical and physical properties and resistance to weathering conditions. The use of UV stabilizer concentrations slightly higher than commercial practice in the outer layer of the multilayer film can be justified by the cost reduction by the incorporation of recycled LDPE materials.  相似文献   

12.
Plasticized starch (PLS) is a renewable, degradable, and inexpensive polymer, but it suffers from poor mechanical properties. The mechanical properties can be improved by blending PLS with polyolefins, nonetheless, at high PLS content, the mechanical properties remain poor. Here we show that addition of clay can greatly improve the mechanical properties of PLS/polypropylene blends at high starch content. Unmodified and organically modified montmorillonite clays, MMT and Cloisite 30B respectively, were added to blends of glycerol-plasticized starch and polypropylene, compatibilized using maleated polypropylene. TEM indicates that MMT is well dispersed in the PLS phase of the blends, while Cloisite 30B is located both within the PLS phase as well as at the interface between PLS and PP. At high PLS content, the addition of clay increased the tensile strength and tensile modulus by an order of magnitude, while reducing the ultimate elongation only slightly. Such improvements are attributable to both the addition of clay as a reinforcing component, as well as to the change in the two phase morphology due to addition of clay.  相似文献   

13.
The effects of a polymeric chain extender on the properties of bioplastic film made from blends of plasticized polylactic acid (p-PLA) and thermoplastic starch (TPS) were studied. Joncryl? ADR 4370S, a polymeric chain extender, was blended with TPS and p-PLA at a level of 1% (w/w). A co-rotating twin-screw extrusion process was used to prepare films with various ratios of TPS and p-PLA. Mechanical and physical properties of films, including film tensile properties, surface energy, moisture content, hydrophilicity, moisture sorption behaviour and thermal mechanical properties were determined. During extrusion, films enhanced by 1% Joncryl addition demonstrated more desirable and consistent qualities, such as smoother film edge and surface. Addition of Joncryl significantly improved film tensile strength, 0.2% offset yield strength, and elongation, especially evident with the 250% elongation of 70/30 (TPS/p-PLA) film. Total surface energy of films was not significantly influenced by addition of Joncryl. However, the polar contribution to the total surface energy of 70/30 (TPS/p-PLA) film increased after the addition of Joncryl. The study showed that blending TPS with p-PLA transformed TPS film from being highly hydrophilic to highly hydrophobic. On the other hand, addition of Joncryl had limited effects on moisture content, water solubility, glass transition temperature and moisture sorption behaviour of TPS/p-PLA blend films.  相似文献   

14.
The blends of polylactic acid plasticized with acetyl tributyl citrate (P-PLA) and thermoplastic wheat starch (TPS) were prepared by a co-rotating twin screw extruder and the effect of maleic anhydride grafted PLA (PLA-g-MA) content as reactive compatibilizer on blends compatibility through morphological, rheological and tensile properties of the blends was investigated. Considerable improvement in properties of P-PLA/TPS (70/30 w/w) blend with incorporating the optimum PLA-g-MA content of 4 phr was achieved as this blend exhibited better morphological and rheological properties with an increase by 158 and 276% in tensile strength and elongation at break, respectively, compared to the uncompatibilized blend. Also the thermal stability and moisture sorption properties of the blends as effected by TPS content were studied. Decreasing in thermal stability and increasing in equilibrium moisture content of the blends were observed with progressively increasing of TPS content. For prediction the moisture sorption behaviour of blends with various TPS contents at different relative humidity, the moisture sorption isotherm data were modeled by GAB (Guggenheim–Anderson–de Boer) model.  相似文献   

15.
Blends of poly-3-hydroxybutyrate with an elastomeric medium-chain-length poly-3-hydroxyalkanoate (MCL-PHA), containing 98 mol% 3-hydroxyoctanoate and 2 mol% 3-hydroxyhexanoate (referred to as PHO), were prepared by melt compounding. Coarsening of the droplet-matrix morphology of the blends was noted as the PHO content increased beyond 5 wt%; this was attributed to the significant viscosity mismatch between the components. Addition of PHO improved the thermal stability of the blends, reduced their crystallinity and resulted in shifts in their melting and crystallization temperatures. The blends had improved tensile strain at break. The unnotched impact strength showed a threefold increase at 30 wt% PHO content. Cross-linking of PHO using a peroxide initiator increased its viscosity, thus improving the morphology and mechanical properties of the blends.  相似文献   

16.
Poly(lactide)-graft-glycidyl methacrylate (PLA-g-GMA) copolymer was prepared by grafting GMA onto PLA in a batch mixer using benzoyl peroxide as an initiator. The graft content was determined with the 1H-NMR spectroscopy by calculating the relative area of the characteristic peaks of PLA and GMA. The result shows that the graft content increases from 1.8 to 11.0 wt% as the GMA concentration in the feed varies from 5 to 20 wt%. The PLA/starch blends were prepared by the PLA-g-GMA copolymer as a compatibilizer, and the structure and properties of PLA/starch blends with or without the PLA-g-GMA copolymer were characterized by SEM, DSC, tensile test and medium resistance test. The result shows that the PLA/starch blends without the PLA-g-GMA copolymer show a poor interfacial adhesion and the starch granules are clearly observed, nevertheless the starch granules are better dispersed and covered by PLA when the PLA-g-GMA copolymer as a compatibilizer. The mechanical properties of the PLA/starch blends with the PLA-g-GMA copolymer are obviously improved, such as tensile strength at break increasing from 18.6 ± 3.8 MPa to 29.3 ± 5.8 MPa, tensile modulus from 510 ± 62 MPa to 901 ± 62 MPa and elongation at break from 1.8 ± 0.4 % to 3.4 ± 0.6 %, respectively, for without the PLA-g-GMA copolymer. In addition, the medium resistance of PLA/starch blends with the PLA-g-GMA copolymer was much better than PLA/starch blends.  相似文献   

17.
Chitosan films were prepared from dried prawn shell via chitin and then tensile properties like tensile strength (TS) and elongation at break (Eb) of the films were evaluated. Six formulations were developed using methyl methacylate (MMA) monomer and aliphatic urethane diacrylate oligomer (M-1200) in methanol along with photoinitator (Darocur-1664). Then the films were soaked in the formulations and irradiated under UV radiation at different doses for the improvement of physico-mechanical properties of chitosan films. The cured films were characterized by measuring TS, Eb, polymer loading (PL), water absorption and gel content properties. The formulation containing 43% MMA and 15% oligomer in methanol solution showed the best performance at 20th UV pass for 4 min soaking time.  相似文献   

18.
Blending soy protein with polyesters using a polyvinyllactam as a compatibilizer successfully made soy protein-based plastics. The polyesters used to produce blends included polycaprolactone (PCL) and Biomax (a commercial biodegradable polyester). The blends were processed by compounding extrusion and injection molding. Blends containing soy protein/Biomax-poly(vinyl alcohol) had tensile strengths ranging from 16–22 MPa, with samples containing larger percentages of the synthetic polymer exhibiting greater strengths. Blends made from soy protein, Biomax, and PCL had tensile strengths ranging from 27–33 MPa. All the blends had high Young's moduli but demonstrated brittle characteristics as evident from their low elongations at break, ranging from 1.8–3.1%. Plastics made from soy protein/polyester blends exhibited low water absorption and had good stability under ambient conditions relative to the plastics made from soy protein alone. Blends made from soy protein flour produced plastics with the lowest water absorption.  相似文献   

19.
The increasing use of plastics in packaging materials leads to growing amounts of plastic waste. Recycling material is generally regarded as advantageous. But in fact very few products are made from plastic waste, partly this can be explained by that little is known about the recycling process and the properties of collected materials. There is a need for injection moulding grades of recycled polyethylene, while large amounts of extrusion grades are available from packaging waste. A controlled way of de-branching or partly degrading PE would be desirable. Peroxides are commonly used to crosslink polyolefins, but under certain conditions a chain scission reaction occur. Another problem encountered with recycling of polyethylene are the poor miscibility of low amounts contaminations, i. e. polypropylene. A compatibilizer can improve properties of such polymer blends, in this work EPDM is used as compatibilzer. Studies of mechanical properties and viscosity measurements show that it is possible to partly degrade PE with peroxide exposing it to high temperature and oxygen. The properties of PE/PP blends were improved with EPDM as compatibilizer.  相似文献   

20.
Increasing awareness of environmental and energy problems has promoted greater governmental interest in selected waste collection and consequently has attracted the interest of several research groups to the challenge of converting recovered plastics into useful materials. The reactive blending of postconsumer polyethylene terephthalate (PET) with different polyolefins (PO) was studied in attempts to obtain a new material with enhanced properties with respect to the starting materials. The success of the project depends mainly on the possibility of obtaining a compatibilized blend between two starting polymers that, from chemical and thermomechanical viewpoints, are very different. This was approached by employing polyolefins bearing functional groups capable of specific interaction or chemical reaction with PET end groups. Ternary blends of very low density polyethylene (VLDPE)/PET/functionalized polyolefin (FPO) in a weight composition of 70/20/10 and binary blends of FPO/PET in a weight composition of 90/10 were prepared and studied to obtain reinforced polyolefin thermoplastic materials. Reactive blending was achieved in a Brabender Plastograph with a mixing chamber of 30 or 50cm3, at 250°C, and 40rpm for 10min. Differential scanning calorimetry, scanning electron microscopy, and tensile tests were used to investigate the phase behavior, the efficiency of compatibilization, and the mechanical properties of the blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号