首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
利用3S技术和景观生态学原理,以小流域为单元对秦皇岛市土地利用结构和土壤侵蚀等级类型进行空间分析,得出了不同土地利用结构所占面积和不同土壤侵蚀类型所占面积及分布小流域,并详细分析了秦皇岛市土壤侵蚀的主要影响因子和不同土地利用结构侵蚀现状。  相似文献   

2.
世界现代农业已由平面农业向立体农业发展,走集约农业之路。立体农业是指从不同空间来配置衣业,在挖掘土地生产潜力的同时,更多的利用空间的光、热、水、气资源,以获得农业生产更大的综合效益。作物复合群的种植、果菜的棚架栽培、水田的稻  相似文献   

3.
以李子口小流域为例,研究川中丘陵地区的农业生产情况和农业面源污染状况,调查发现该流域农业生产用肥以农家肥为主,耕地类型以早地为主,畜禽养殖以散养为主,该流域水质各项指标状况较好,但是总氮严重超标。分析认为,肥料施用结构和用量的不合理、耕地类型以旱地为主、耕作作物以小麦蔬菜等旱作植物为主、该区域水土流失严重是造成李子口小流域农业面源污染的重要原因。  相似文献   

4.
充分利用平行岭谷区光热资源发展立体农业   总被引:1,自引:0,他引:1  
本文通过对川东平行岭谷区光、热、水分资源的立体特性分析,提出调整农业结构和作物布局,发展立体农业的几点建议。  相似文献   

5.
我国是一个多山国家,山地约占全国土地总面积的2/3,而四川山地面积特别大,占土地面积的49.5%,如果把29%的高原和19%的丘陵面积也划入山地,那么平原仅仅只有2.5%。因此,山地对四川人民的生活有着特别重大的意义。山区不仅对发展立体农业有利,而且从大农业来看,为多种经营开辟了  相似文献   

6.
本文立足于辽东山区微型小流域的地域空间,以经营开发“特色农业”为主线,着眼于山区小流域的特产资源的培育与开发。通过资源培育和对初级产品的深加工,将山区小流域的资源优势转化为产品优势和商品优势,从而实现山区流域经济运行的良性循环。  相似文献   

7.
本文立足于辽东山区微型小流域的地域空间,以经营开发“特色农业”为主线,着眼于山区小流域的特产资源的培育与开发。通过资源培育和初级产品的深加工,将山区小流域的资源转化为产品优势和商品优势,从而实现山区流域经济运行的良性循环。  相似文献   

8.
基于QuickBird遥感影像和GIS技术,以黄土丘陵沟壑区典型小流域———魏沟小流域为研究区,采用通用土壤流失方程和固态污染物负荷方程,进行小流域农业非点源污染负荷的估算与分析。结果表明:魏沟小流域年平均侵蚀模数为7501.88 t/km2,侵蚀级别属强度,年水土流失量2.6×104t;土壤N、P、K养分流失年负荷量分别为18737kg、17454kg和4133kg。  相似文献   

9.
本文概述了吉林省东部长白山区农业气候资源的立体变化规律,分析了如何根据立体气候规律安排农作物品种的垂直布局,确定主要特产植物适宜裁培高度、森林植被类型和立体农业生态经济系统建设等问题,指出了充分利用气候资源搞好山区农业立体开发的有效途径。  相似文献   

10.
文章分析了石河子垦区农业生态环境的主要现状问题:土壤次生盐渍化、耕地板结化肥力下降、土壤侵蚀与土地沙化、草场退化、农业生态系统结构欠优功能弱和农业环境污染加重。针对上述问题,提出了具有操作性的整治对策。  相似文献   

11.
新疆玛纳斯河流域的土地利用与退化问题   总被引:13,自引:1,他引:13  
玛纳斯河流域山地、平原、沙漠、湖泊俱全,土地利用类型有8个一级类型及40个二级类。20世纪50年代以来,在山前水、土、光热组合优良地区开展大规模水土开发建设,使区内的土地资源得以充分利用,土地开发利用率达40%以上。然而,不合理的土地利用已经导致土地退化,其主要类型有土地荒漠化、耕地土壤贫瘠化、土壤次生盐渍化、土地沙漠化、水土流失、土地污染等6种。据区域土地利用特点与退化类型及原因,提出了合理利用土地与防止土地退化的5条措施,以确保玛河流域土地永续利用与持续发展。  相似文献   

12.
Urbanization and the Loss of Resource Lands in the Chesapeake Bay Watershed   总被引:3,自引:0,他引:3  
We made use of land cover maps, and land use change associated with urbanization, to provide estimates of the loss of natural resource lands (forest, agriculture, and wetland areas) across the 168,000 km2 Chesapeake Bay watershed. We conducted extensive accuracy assessments of the satellite-derived maps, most of which were produced by us using widely available multitemporal Landsat imagery. The change in urbanization was derived from impervious surface area maps (the built environment) for 1990 and 2000, from which we estimated the loss of resource lands that occurred during this decade. Within the watershed, we observed a 61% increase in developed land (from 5,177 to 8,363 km2). Most of this new development (64%) occurred on agricultural and grasslands, whereas 33% occurred on forested land. Some smaller municipalities lost as much as 17% of their forest lands and 36% of their agricultural lands to development, although in the outlying counties losses ranged from 0% to 1.4% for forests and 0% to 2.6% for agriculture. Fast-growing urban areas surrounded by forested land experienced the most loss of forest to impervious surfaces. These estimates could be used for the monitoring of the impacts of development across the Chesapeake Bay watershed, and the approach has utility for other regions nationwide. In turn, the results and the approach can help jurisdictions set goals for resource land protection and acquisition that are consistent with regional restoration goals.  相似文献   

13.
Abstract: The spatial scale and location of land whose development has the strongest influence on aquatic ecosystems must be known to support land use decisions that protect water resources in urbanizing watersheds. We explored impacts of urbanization on streams in the West River watershed, New Haven, Connecticut, to identify the spatial scale of watershed imperviousness that was most strongly related to water chemistry, macroinvertebrates, and physical habitat. A multiparameter water quality index was used to characterize regional urban nonpoint source pollution levels. We identified a critical level of 5% impervious cover, above which stream health declined. Conditions declined with increasing imperviousness and leveled off in a constant state of impairment at 10%. Instream variables were most correlated (0.77 ≤ |r| ≤ 0.92, p < 0.0125) to total impervious area (TIA) in the 100‐m buffer of local contributing areas (~5‐km2 drainage area immediately upstream of each study site). Water and habitat quality had a relatively consistent strong relationship with TIA across each of the spatial scales of investigation, whereas macroinvertebrate metrics produced noticeably weaker relationships at the larger scales. Our findings illustrate the need for multiscale watershed management of aquatic ecosystems in small streams flowing through the spatial hierarchies that comprise watersheds with forest‐urban land use gradients.  相似文献   

14.
Historical and recent remote sensing data can be used to address temporal and spatial relationships between upland land cover and downstream vegetation response at the watershed scale. This is demonstrated for sub-watersheds draining into Elkhorn Slough, California, where salt marsh habitat has diminished because of the formation of sediment fans that support woody riparian vegetation. Multiple regression models were used to examine which land cover variables and physical properties of the watershed most influenced sediment fan size within 23 sub-watersheds (1.4 ha to 200 ha). Model explanatory power increased (adjusted R(2) = 0.94 vs. 0.75) among large sub-watersheds (>10 ha) and historical watershed variables, such as average farmland slope, flowpath slope, and flowpath distance between farmland and marsh, were significant. It was also possible to explain the increase in riparian vegetation by historical watershed variables for the larger sub-watersheds. Sub-watershed area is the overriding physical characteristic influencing the extent of sedimentation in a salt marsh, while percent cover of agricultural land use is the most influential land cover variable. The results also reveal that salt marsh recovery depends on relative cover of different land use classes in the watershed, with greater chances of recovery associated with less intensive agriculture. This research reveals a potential delay between watershed impacts and wetland response that can be best revealed when conducting multi-temporal analyses on larger watersheds.  相似文献   

15.
/ We used linear regression to independently and jointly relate specific conductance and pH measured at New Jersey Pinelands stream sites to the percentage of altered land in a watershed. Percentage altered land included developed and agricultural land uses and represented watershed disturbance for a given site. Median values calculated for a 2-year period (September 1992 through August 1994) characterized pH and specific conductance at the study sites. We found the relationships between the median values for both water-quality measures and percentage altered land for a site to be consistent across subregion and dominant altered-land use. Our results also demonstrated that the water-quality/altered-land relationships developed using median values were similar to relationships developed using data from any single-sample period within the entire study period. Individually, pH and specific conductance explained 48% and 56%, respectively, of the variability in watershed disturbance among study sites. The joint use of pH and specific conductance explained 79% of the watershed disturbance variability among sites. The joint use of these easily obtained water-quality measures can provide a quick assessment of instream water-quality impacts from upstream watershed disturbance at any Pinelands stream site. Additionally, a range in pH and specific conductance, and hence a range in ambient water quality, can be predicted for a given altered-land percentage or a change in existing altered-land conditions.  相似文献   

16.
小流域生态经济的实践与探索   总被引:2,自引:0,他引:2  
黄丹  王益谦 《四川环境》2006,25(6):110-112,118
我国的小流域治理工作已经开展了几十年,在治理水土流失方面取得了一定的成效。如何巩固已取得的成绩,实现小流域的可持续发展引起了广泛关注。本文通过阐述生态经济的概念,指出小流域生态经济系统存在的问题,并结合小流域的特点探讨了在小流域建设生态经济的途径。  相似文献   

17.
小流域是实现重点流域精准化治理的基本单元,"三生共赢"是指要把解决环境问题的目标定位于生活、生产与生态的协调发展,是实现小流域环境改善和可持续发展的根本路径。本研究立足于流域水环境质量改善,以"三生共赢"和可持续发展理念为指导,提出了基于"三生共赢"的小流域水环境综合治理理论架构,即立足于水环境质量改善和水资源的优化配置,强化流域水环境约束,以尽可能小的环境代价支撑流域经济结构优化、新型城镇化发展,以资源高效和循环利用为核心,大力发展循环经济体系和循环社会体系,并通过创新流域治理体制机制构建成本共担利益共享格局,最终实现小流域社会经济可持续发展。本研究基于以上理论架构设计了生态环境、绿色经济、优质宜居三大类指标体系24项具体指标,并重点从优化流域空间开发格局、构建产业绿色发展体系、改善城乡居民生活环境、提升流域生态系统功能、健全流域治理体制机制等方面分析了小流域水环境综合治理对策。本研究可为各级政府创新流域治理模式、制定小流域水环境综合治理规划提供较为可行的理论支撑和技术体系。  相似文献   

18.
Abstract: A principal contributor to soil erosion and nonpoint source pollution, agricultural activities have a major influence on the environmental quality of a watershed. Impact of agricultural activities on the quality of water resources can be minimized by implementing suitable agriculture land‐use types. Currently, land uses are designed (location, type, and operational schedule) based on field study results, and do not involve a science‐based approach to ensure their efficiency under particular regional, climatic, geological, and economical conditions. At present, there is a real need for new methodologies that can optimize the selection, design, and operation of agricultural land uses at the watershed scale by taking into account environmental, technical, and economical considerations, based on realistic simulations of watershed response. In this respect, the present study proposes a new approach, which integrates computational modeling of watershed processes, fluvial processes in the drainage network, and modern heuristic optimization techniques to design cost effective land‐use plans. The watershed model AnnAGNPS and the channel network model CCHE1D are linked together to simulate the sediment and pollutant transport processes. Based on the computational results, a multi‐objective function is set up to minimize soil losses, nutrient yields, and total associated costs, while the production profits from agriculture are maximized. The selected iterative optimization algorithm uses adaptive Tabu Search heuristic to flip (switching from one alternative to another) land‐change variables. USDA’s Goodwin Creek experimental watershed, located in Northern Mississippi, is used to demonstrate the capabilities of the proposed approach. The results show that the optimized land‐use design with BMPs using an integrated approach at the watershed level can provide efficient and cost‐effective conservation of the environmental quality by taking into account both productivity and profitability.  相似文献   

19.
ABSTRACT: Bacterial contamination of surface waters is attributed to both urban and agricultural land use practices and is one of the most frequently cited reasons for failure to meet standards established under the Clean Water Act (CWA) (P.L. 92–500). Statewide modeling can be used to determine if bacterial contamination occurs predominantly in urban or agricultural settings. Such information is useful for directing future monitoring and allocating resources for protection and restoration activities. Logistic regression was used to model the likelihood of bacterial contamination using watershed factors for the state of Maryland. Watershed factors included land cover, soils, topography, hydrography, locations of septic systems, and animal feeding operations. Results indicated that bacterial contamination occurred predominantly in urban settings. Likelihood of bacterial contamination was highest for small watersheds with well drained and erodible soils and a high proportion of urban land adjacent to streams. The number of septic systems and animal feeding operations and the amount of agricultural land were not significant explanatory factors. The urban infrastructure tends to “connect” more of the watershed to the stream network through the creation of roads, storm sewers, and wastewater treatment plants. This may partly explain the relationship between urbanization and bacterial contamination found in this study.  相似文献   

20.
In the agricultural Mid-west, riparian corridors are vital for protecting biodiversity and water quality. The cumulative management decisions of hundreds of private landowners have a tremendous impact on this riparian zone. This study of 268 farmers in a typical Mid-western watershed in Michigan looked at farmer's motivations for adopting conservation practices, their current management practices along their rivers and drains as well as their future management plans. The results of the study showed that farmers are intrinsically motivated to practise conservation by such factors as their attachment to their land, rather than by motivations such as receiving economic compensation. Farmers are also likely to engage in conservation practices that make their farm appear well-managed. Furthermore, those farmers with strong intrinsic motivations were likely to adopt conservation practices that protect streams, such as maintaining a woody vegetative buffer or practicing no-till farming. This study shows that protecting riparian resources in agricultural watersheds requires strategies for conservation that respect farmers' attachment to their land and their desire to practise good stewardship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号