首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
采用溶胶-凝胶方法制备光催化性能优良的TiO2纳米膜,应用X射线衍射仪分析了TiO2纳米膜的结构,探讨了铁离子和贵金属Ag、Pt掺杂对TiO2纳米膜光催化降解性能的影响,研究了TiO2纳米膜及掺杂改性TiO2纳米膜对生物二级处理系统出水中有机物光催化去除的性能。贵金属Ag、Pt掺杂提高了TiO2纳米膜光催化性能,而铁离子掺杂则降低了其催化性能。未掺杂的TiO2纳米膜使二级出水的COD下降8.9%,而贵金属Ag、Pt掺杂的TiO2纳米膜则使COD分别下降19.4%和22.3%。实验结果表明TiO2纳米膜有优良的光催化降解性能,TiO2纳米膜有广阔的应用前景。  相似文献   

2.
铁掺杂纳米二氧化钛溶胶的制备及性能研究   总被引:11,自引:0,他引:11  
文章采用一种简单的方法于低温条件下制备出掺铁纳米TiO2溶胶。通过在可见光条件下对吖啶橙的光催化降解,对掺铁纳米TiO2溶胶和纳米TiO2溶胶的光催化活性进行了研究比较,结果表明掺铁纳米TiO2溶胶的光催化活性较高,铁的掺杂量为1%时光降解效果较好。  相似文献   

3.
Fe^3+掺杂TiO2纳米膜的制备及光催化性能的研究   总被引:2,自引:0,他引:2  
采用溶胶-凝胶法制备出掺杂Fe^3+的TiO2纳米膜,并用x射线衍射方法进行表征;探讨了金属离子铁离子掺杂对TiO2纳米膜光催化降解性能的影响;研究了TiO2纳米膜及掺杂改性的TiO2纳米膜对甲基兰的降解作用,同时还尝试不同掺杂的TiO2纳米膜的杀菌功能。实验结果表明通过掺杂Fe的TiO2纳米膜有优良的光催化降解性能。  相似文献   

4.
利用溶胶-凝胶法在700℃制备了纯的和不同Gd3+掺杂量的TiO2纳米粉体,并用XRD技术对样品进行了表征。研究了Gd3+掺杂量对样品相结构、晶粒尺寸和光催化降解亚甲基蓝的活性的影响,利用相结构与纳米TiO2光催化活性关系探讨了Gd3+掺杂对纳米TiO2的光催化活性。结果表明,与纯TiO2相比,适量掺杂Gd3+可以显著提高其光催化活性。当Gd3+掺杂量为0.2%(质量),TiO2复合纳米粉体的光催化活性最佳,降解率为86%,其金红石相含量为15.4%,平均晶粒粒径为15nm;Gd3+掺杂强烈地抑制TiO2由锐钛矿相向金红石相的转变、减小晶粒尺寸和晶格膨胀程度这三方面均有利于提高光催化活性。  相似文献   

5.
利用溶胶-凝胶法在700℃制备了纯的和不同Gd3 叫参杂量的TiO2纳米粉体,并用XRD技术对样品进行了表征.研究了Gd3 掺杂量对样品相结构、晶粒尺寸和光催化降解亚甲基蓝的活性的影响.利用相结构与纳米TiO2光催化活性关系探讨了Gd3 掺杂对纳米TiO2的光催化活性.结果表明,与纯TiO2相比.适量掺杂Gd3 可以显著提高其光催化活性.当Gd3 杂量为0.2%(质量),TiO2复合纳米粉体的光催化活性最佳,降解率为86%,其金红石相含量为15.4%,平均晶粒粒径为15nm;Gd3 掺杂强烈地抑制TiO2由锐钛矿相向金红石相的转变、减小晶粒尺寸和品格膨胀程度这三方面均有利于提高光催化活性.  相似文献   

6.
以磷酸钠为电解液,采用微弧氧化技术在钛片上直接制备TiO2膜,利用溶胶-凝胶法和硝酸铁掺杂方法对该膜表面进行修饰处理,以罗丹明B溶液模拟废水来评价TiO2膜光催化降解水中有机污染物的能力。利用EDX对微弧氧化膜表面成分进行分析。实验结果表明:微弧氧化TiO2膜具有一定的光催化活性。溶胶-凝胶法负载TiO2且硝酸铁掺杂处理后可以使铁离子进入微弧氧化TiO2负载膜,改善膜的光催化性能。溶胶-凝胶法负载TiO2膜对废水的光催化降解效率由13.8%提高到42.5%;铁离子掺杂1%可以使负载TiO2膜对废水的光催化效率由42.5%提高到68.9%。  相似文献   

7.
Zr/TiO2纳米颗粒的制备及其光催化活性   总被引:1,自引:1,他引:1  
以钛酸丁酯,乙醇为原料,用固相合成法制备了Zr/TiO2纳米颗粒,用XRD、TEM对其组成、颗粒大小、形貌进行了表征.通过对罗丹明B的降解反应,考察了Zr/TiO2的光催化活性.结果表明,Zr/TiO2为纳米颗粒,平均粒径为12.7 nm左右,且颗粒均匀;掺杂金属离子Zr提高了TiO2光催化效率,掺杂2.0%Zr的催化剂活性最高.Zr/TiO2的光催化反应,首先是反应物在Zr/TiO2表面发生吸附作用,然后进一步发生光催化降解.  相似文献   

8.
以硫酸钛和尿素为前驱,葡萄糖(C6H12O6)为碳源,采用均匀沉淀-水热法制备了碳掺杂的二氧化钛(TiO2)粉体,通过对甲基橙在汞灯(模拟紫外光)和氙灯(模拟太阳光)下的降解试验,研究了掺碳量对TiO2粉体光催化活性的影响。结果表明:碳掺杂可提高TiO2粉体在可见光范围内降解甲基橙的能力,当碳、钛摩尔比为0.225时,碳掺杂TiO2粉体在可见光范围内的光催化活性最强。  相似文献   

9.
通过溶胶-凝胶法制备纳米TiO2薄膜,在制备过程中分别掺杂一定量的Fe^3 、Zn^2 、Pd^2 等金属离子。以高压汞灯做光源,用制得的纳米TiO2薄膜对苯酚作光催化降解实验,结果表明:掺杂Fe^3 、Zn^2 、Pd^2 的纳米TiO2催化剂光催化性能明显提高。并探讨了金属离子掺杂浓度和氧化剂对光催化的影响。  相似文献   

10.
Zr\TiO2纳米管的制备及其光催化活性的初步研究   总被引:2,自引:2,他引:0  
采用水热合成法以锐钛型Zr/TiO2纳米粒子为原料制备了掺杂锆二氧化钛纳米管,用TEM、EDS、BET对其进行了表征.结果表明,采用水热合成法制备的纳米管,其形貌均一,多层管壁.比表面积达到了291 m2·g-1,远远大于Zr/TiO2纳米颗粒的比表面积(76 m2·g-1).以罗丹明B为目标降解物的光催化实验表明,与Zr/TiO2纳米颗粒相比,Zr/TiO2纳米管的光催化活性有了显著的提高.  相似文献   

11.
金属泡沫镍负载纳米TiO2光催化降解甲醛和VOCs   总被引:2,自引:1,他引:1  
采用溶胶-凝胶法制备了3种掺杂金属离子的纳米TiO2光催化剂,并将其负载于泡沫镍板上,以室内空气典型污染物甲醛和VOCs为模型反应物,研究了对甲醛和VOCs气体的光催化作用并讨论了La3+的最佳掺杂比例以及环境因素对光催化效率的影响.结果表明:该TiO2催化剂具有良好的锐钛矿型结构;负载掺La 1.5%TiO2的泡沫镍板90min对甲醛和VOCs的降解率分别为94%和87%,远高于未掺:83%和72%,掺Fe  相似文献   

12.
钐离子掺杂二氧化钛光催化降解甲基橙研究   总被引:2,自引:0,他引:2  
用溶胶-凝胶法制备了掺杂Sm^3+的纳米TiO2,用XRD测定了其晶型,并以甲基橙为液相有机污染物实例研究了样品的先催化活性,发现Sm^3+不能进入TiO2晶格中引起了TiO2晶格膨胀,而形成氧化物覆盖在其表面,Sm^3+掺杂抑制了TiO2晶相的转变和粒径的增长。活性试验结果表明,Sm^3+掺杂可提高TiO2的光催化活性,并且当掺杂摩尔分数为1.5%时,先催化活性最好。甲基橙的醌式结构比偶氮结构容易降解。  相似文献   

13.
聚苯胺/TiO2-SiO2复合催化剂去除空气中甲醛的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为提高空气净化效果,研究了聚苯胺(PANi)/TiO2-SiO2复合催化剂对甲醛的吸附和协同光催化作用.考察了TiO2-SiO2涂敷层数、PANi浓度和不同酸(有机酸、盐酸)掺杂对紫外光催化氧化甲醛的影响,以及PANi/TiO2-SiO2在可见光下去除甲醛的效果.结果表明,复合聚苯胺的存在使吸光范围拓展到可见光区,提高了对甲醛的吸附.涂敷3层TiO2-SiO2、吸附浓度0.26g/L的PANi溶液所得复合催化剂紫外光催化效果最好,与没有PANi的催化剂相比,使甲醛去除率提高2倍.有机酸掺杂比无机酸掺杂的PANi复合催化剂紫外光催化甲醛的初期反应快,但最终甲醛的去除率相同.PANi/TiO2-SiO2具有显著的可见光催化氧化去除甲醛的活性,对低浓度甲醛氧化去除速率更快.  相似文献   

14.
The binary composite photo-catalysts CeO2/TiO2, ZrO2/TiO2 and the ternary composite photo-catalysts H3PW12O40-CeO2/TiO2,H2PW12O40-ZrO2/TiO2 were prepared by sol-gel method. The catalysts were characterized by thermogravimetric-differential thermal analysis (TG-DTA), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The photocatalyfic elimination of methanol was used as model reaction to evaluate the photocatalytic activity of the composite catalysts under ultraviolet light irradiation. The effects of doped content, activation temperature, time, initial concentration of methanol and gas flow rate on the catalytic activity were investigated. The results showed that after doping a certain amount of CeO2 and ZrO2, crystaniTation process of TiO2 was restrained, particles of catalysts are smaller and more uniform. Doping ZrO2 not only significantly improved the catalytic activity, but also increased thermal stability. Doping H3PW12O40 also enhanced the catalytic activity. The catalytic activities of binary and ternary composite photocatalysts were significantly higher than tin-doped TiO2. The dynamics law of photocatalytic reaction over the binary CeO2/TiO2 and ZrO2/TiO2 catalysts has been studied. The activation energy 15.627 and 15.631 kJ/mol and pre-exponential factors 0.5176 and 0.9899 s-1 over each corresponding catalyst were obtained. This reaction accords to the first order dynamics law.  相似文献   

15.
IntroductionTiO2 nanotubehaswidelydrawnmuchattentionduetoitslargesurfaceareaandhighphotocatalyticactivity ,becausetheyhavegreatpotentialforsuchapplicationsasenvironmentalpurification ,decompositionofcarbonicacidgas,andgenerationofhydrogengas .Titaniananot…  相似文献   

16.
H_3PW_(12)O_(40)/TiO_2可见光下光催化降解孔雀石绿的研究   总被引:5,自引:1,他引:4  
以钛酸四丁酯为原料,采用溶胶-凝胶法制备TiO2光催化剂,然后浸渍法制备出H3PW12O40/TiO2复合型光催化剂,并运用XRD、SEM、FT-IR和DRS对催化剂进行表征和分析.研究了可见光光照下H3PW12O40/TiO2对孔雀石绿降解的光催化活性,考察了浸渍量、催化剂用量、底物浓度、pH值对光催化降解率的影响.实验表明,在pH=5条件下,H3PW12O40/TiO2催化剂用量为0.3g.L-1,浓度为10mg·mL-1的孔雀石绿溶液在2L·min-1曝气、300W可见光下光照4h后光催化降解率为78%,比TiO2光催化活性提高了24%.  相似文献   

17.
Al3+离子掺杂对负载TiO2薄膜光催化活性的影响   总被引:6,自引:0,他引:6  
以钛酸丁酯和Al2(SO4)3·18H2O为原料,采用溶胶凝胶法在钛片、玻璃、釉面瓷砖、陶瓷、不锈钢和铝片六种载体上制备了Al3+掺杂TiO2薄膜,讨论了不同Al3+掺杂浓度下,不同载体表面上制备的TiO2薄膜对甲基橙脱色率的影响。试验结果表明Al3+对TiO2薄膜的掺杂效果与载体的类型密切相关,并且不同载体其Al3+掺杂的最佳浓度也不同。Al3+掺杂后,TiO2薄膜光催化活性提高最大的是玻璃,其次是釉面瓷砖、铝片、钛片、陶瓷,最差的是负载不锈钢。  相似文献   

18.
IntroductionEvery year ,the dyeing processes and dye productionbring large amounts of wastewaters containing highconcentration poisonous organic compounds ( Neppolian,2002 ; An, 2002) . If not being treated properly andbetimes , the wastewaters will serio…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号