首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this research, the influence of thermo-mechanical degradation of polypropylene (PP) on water absorption and thickness swelling of beech wood flour–PP composites were studied. For this purpose, a virgin PP was thermo-mechanically degraded by two times extrusion under controlled conditions. The results showed that the melt flow index, water absorption and thickness swelling of PP significantly increase by extrusion and re-extrusion. The virgin PP and degraded polypropylene were compounded with wood flour (at 60% by weight wood flour loading) in a counter-rotating twin-screw extruder in presence or absence of MAPP to produce wood flour–PP composites. From the results, the composites containing recycled PP exhibited higher water absorption and thickness swelling. The use of MAPP decreased water absorption and thickness swelling in composites made of virgin or recycled PP.  相似文献   

2.
Injection Molded Wheat Straw and Corn Stem Filled Polypropylene Composites   总被引:2,自引:0,他引:2  
Environmentally friendly composite materials can be prepared using wood fibers and/or various types of agro-derived fibers as reinforcements. In this study, agro-residues such as wheat straw and corn stem filled polypropylene were prepared and their suitability was investigated as a reinforcing filler in thermoplastics and as an alternative to the wood flour filled plastics. Effect of compounding techniques, compatibilizer and fungal treatment of agro-residues on the mechanical properties of the composites were evaluated. It was found that high shear compounding of wheat straw fibers exhibited similar properties to that produced by the milled wheat straw. This may be due to the extensive fiber breakage occurred during the high shear compounding that results in a similar aspect ratio to that of milled straw. Compatibilizer is needed for improving the strength properties of the agro-residue filled PP composites. Fungal treatment of milled wheat straw did not show much improvement in the strength properties of the composites. Comparison of mechanical properties of the agro-residue filled PP with that of the wood flour and the old newsprint filled PP showed the suitability of the agro-residues as alternative filler for thermoplastics.  相似文献   

3.
Hybrid composites of thermoplastic biofiber reinforced with waste newspaper fiber (NF) and poplar wood flour (WF) were prepared. The weight ratio of the lignocellulosic materials to polymer was 30:70 (w:w). Polypropylene (PP) and maleic anhydride grafted polypropylene (MAPP) were also used as the polymer matrix and coupling agent, respectively. The mechanical properties, morphology and thermal properties were investigated. The obtained results showed that tensile and flexural modulus of the composites were significantly enhanced with addition of biofibers in both types (fiber and flour), as compared with pure PP. However, the increasing in WF content substantially reduced the tensile, flexural and impact modulus, but improved the thermal stability. This effect is explained by variations in fiber morphological properties and thermal degradation. Increasing fiber aspect ratio improved mechanical properties. The effect of fiber size on impact was minimal compared to the effects of fiber content. Scanning electron microscopy has shown that the composite, with coupling agent, promotes better fiber–matrix interaction. The largest improvement on the thermal stability of hybrid composites was achieved when WF was added more. In all cases, the degradation temperatures shifted to higher values after addition of MAPP. This work clearly showed that biofiber materials in both forms of fiber and flour could be effectively used as reinforcing elements in thermoplastic PP matrix.  相似文献   

4.
This paper aims to evaluate the potential for the use of recycled expanded polystyrene and wood flour as materials for the development of wood plastic composites. The effects of wood flour loading and coupling agent addition on the mechanical properties and morphology of wood thermoplastic composites were examined. In addition, a methodology for the thermo-mechanical recycling of expanded polystyrene waste was developed. The results show that the mechanical properties decreased as the wood flour loading increased. On the other hand, the use of poly(styrene-co-maleic anhydride), SMA, as a coupling agent improved the compatibility between the wood flour and polystyrene matrix and the mechanical properties subsequently improved. A morphological study revealed the positive effect of the coupling agent on the interfacial bonding. The density values obtained for the composites were compared with the theoretical values and showed agreement with the rule of mixtures. Based on the findings of this work, it appears that both recycled materials can be used to manufacture composites with high mechanical properties and low density.  相似文献   

5.
In the first part of this work, composites based on polypropylene (PP) and maple wood flour (MF) were prepared by melt compounding using twin-screw extrusion followed by compression molding. The morphological and mechanical properties of the composites were analyzed for three samples: PP, MF/PP and MF/PP containing maleic anhydride grafted polypropylene (MAPP) as coupling agent. The results showed that MF/PP composites have improved mechanical properties, especially tensile modulus (+33 %), with only 8 % increase in density. The addition of MAPP further improved the mechanical properties, in particular tensile modulus (up to 51 %), which could be related to better fiber/matrix adhesion. In the second step, nano crystalline cellulose (NCC) was added to all samples to produce NCC-MF/PP hybrid composites. From the mechanical analysis performed, the hybrid composites with MAPP have improved properties, especially tensile (+53 %) and flexural (+40 %) moduli. These results confirmed that multi-scale hybrid NCC-MF composites can substantially improve the mechanical properties of polyolefins with limited increase in density (14 %) leading to high specific properties.  相似文献   

6.
The study was carried out to investigate the effects of filler content and two different compatibilizing agents (Eastman G-3003 and G-3216) on the mechanical properties of polypropylene reinforced with corn stalk and wood flour. In the sample preparation, three levels of filler loading (30, 40 and 50 wt%) and one level of compatibilizing agent content (2.5 wt%) were used. For overall trend, with addition of both grades of the compatibilizing agents, tensile and flexural properties of the composites significantly improved, as compared with the pure PP. Tensile and flexural properties reach a maximum at 40 wt% filler content and gradually decrease with a further increase in wood particle content. The composites treated with G-3003 gave better results in comparison with G-3216. This could be caused by the high melt viscosity of G-3003. In general, corn stalk flour filled composites showed superior mechanical properties.  相似文献   

7.
This study is conducted to look at the modification of mechanical properties of recycled polypropylene (PP) from post-consumer containers with the addition of stabilizers, elastomer (ethylene-octene rubber, EOR) and calcium carbonate (CaCO(3)). The mechanical and thermal properties of the blends were evaluated. The results showed limited changes with the addition of elastomer and calcium carbonate on the mechanical properties of the recycled polypropylene. Some differences were observed, but the trends were not reproducible over the different compositions. DSC analysis confirmed the presence of polyethylene (PE) in the recycled polypropylene. The polyethylene impurity and the presence of many different qualities of polypropylene in the recycled material may have prevented any possible improvement in the mechanical properties by the addition of EOR and CaCO(3), improvements seen in previous studies on virgin polypropylene. The compatibility of the different homopolymers and copolymers of PP used in consumer packaging is not known, while polyethylene and polypropylene are known not to be miscible with each other. The mixture of qualities and materials may explain such a poor blending. Reusing and upgrading of recycled PP from post-consumer containers would therefore first require a better sorting of the post-consumer waste. The use of an adequate compatibilizer that would allow a uniform and homogeneous blending of the raw material mixture might enhance the mechanical properties.  相似文献   

8.
This study investigates the feasibility of using recycled high density polyethylene (rHDPE), polypropylene (rPP) and old newspaper (rONP) fiber to manufacture experimental composite panels. The panels were made through air-forming and hot press. The effects of the fiber and coupling agent concentration on tensile, flexural, internal bond properties and water absorption and thickness swelling of wood–fiber plastic composites were studied. The use of maleated polypropylene as coupling agent improved the compatibility between the fiber and both plastic matrices and mechanical properties of the resultant composites compared well with those of non-coupled ones. Based on the findings in this work, it appears that recycled materials can be used to manufacture value-added panels without having any significant adverse influence on board properties. It was also found that composites with rHDPE provided moderately superior properties, compared with rPP samples.  相似文献   

9.
Detailed analysis of the effects of recycling process on long-term water absorption, thickness swelling and water desorption behavior of natural fiber polypropylene composites is reported. Composite materials containing polypropylene and wood flour, rice hulls or bagasse fibers were produced at constant fiber loading and were exposed to a simulated recycling process consisting of up to five times grinding and reprocessing under controlled conditions. A wide range of analytical methods including water absorption/desorption tests, thickness swelling tests, density measurement, scanning electron microscopy, image analysis, contact angle, fiber length analysis and Fourier transform infrared spectroscopy was employed to understand the hygroscopic behavior of the recycled composites. Water absorption and thickness swelling behaviors were modeled using existing predictive models. Results indicated that generally the recycled composites had considerably lower water absorption and thickness swellings as compared with the original composites which were attributed to changes in physical and chemical properties of the composites induced by the recycling process.  相似文献   

10.
Dimensional stability and mechanical performance of polypropylene thermoplastic composites filled with sunflower stalk (SS) flour at 30, 40, 50, and 60 wt% contents of the SS flour were investigated. The thickness swelling and water absorption of the specimens increased with increasing SS flour content. The modulus in the flexural and tensile improved with increasing SS flour content while the tensile and flexural strengths of the specimens decreased. The use of maleic anhydride polypropylene (3 wt%) had a positive effect on the dimensional stability and mechanical properties of the polypropylene thermoplastic composites filled with SS flour. The melting temperature of polypropylene decreased with increasing content of the SS flour. The degree of crystallinity of filled polypropylene composites between fibre loading of 0–30 % by weight was higher than that of unfilled polypropylene composites. However, further increment in the filler content decreased the degree of crystallinity. The obtained results showed that SS flour could be potentially suitable raw material in the manufacture of polypropylene composites.  相似文献   

11.
The use of composites made from non-biodegradable conventional plastic materials (e.g., polypropylene, PP) is creating global environmental concern. Biodegradable plastics such as poly(butylene succinate) (PBS) are sought after to reduce plastic waste accumulation. Unfortunately, these types of plastics are very costly; therefore, natural lignocellulosic fibers are incorporated to reduce the cost. Kenaf fibers are also incorporated into PP and PBS for reinforcing purposes and they have low densities, high specific properties and renewable sourcing. However without good compatibilization, the interfacial adhesion between the matrix and the fibers is poor due to differences in polarity between the two materials. Maleic anhydride-grafted compatibilizers may be introduced into the system to improve the matrix-fiber interactions. The overall mechanical, thermal and water absorption properties of PP and PBS composites prepared with 30 vol.% short kenaf fibers (KFs) using a twin-screw extruder were being investigated in this study. The flexural properties for both types of composites were enhanced by the addition of compatibilizer, with improvements of 56 and 16 % in flexural strength for the PP/KF and PBS/KF composites, respectively. Good matrix-fiber adhesion was also observed by scanning electron microscopy. However, the thermal stability of the PBS/KF composites was lower than that of the PP/KF composites. This result was confirmed by both DSC and TGA thermal analysis tests. The water absorption at equilibrium of a PBS composite filled with KFs is inherently lower than of a PP/KF composite because the water molecules more readily penetrate the PP composites through existing voids between the fibers and the matrix. Based on this research, it can be concluded that PBS/KF composites are good candidates for replacing PP/KF composites in applications whereby biodegradability is essential and no extreme thermal and moisture exposures are required.  相似文献   

12.
Compositions of wood-polypropylene composites (WPCs) are prepared through melt compounding followed by injection moulding. WPCs are formulated for eight compositions with a different weight ratio of wood, virgin or recycled polypropylene and coupling agent. WPCs compositions are compared in terms of Melt Flow Index, Tensile, FESEM images, Flexural and crystallinity index for same operating variable conditions. From the results, recycled polypropylene based WPCs are superior in comparison to virgin polypropylene based WPCs. With the addition of 5 % coupling agent in recycled polypropylene-based composites for 45:50 composition, tensile and flexural values of WPCs are higher in comparison to all composition and neat virgin or recycled polypropylene. This work stands for the utilization of waste wood with recycled plastic for replacement of wood and virgin plastic.  相似文献   

13.
In this research work, the rheological properties of Wood-Plastic Composites (WPC) with some selected compositions are investigated. WPC is being recognized as a green composite that, in the past 20?years, has emerged to a commercial product. A study on rheological properties of these materials can give insight into the proper selection of composition and processing condition. Two grades of polypropylene (PP) with two different melt flow indexes (MFI) were selected to prepare WPCs with three different wood contents (50, 60 and 70?% wt.). Four types of rheological experiments were performed utilizing a rotational plate rheometer: (1) strain sweep, (2) frequency sweep, (3) temperature sweep and (4) steady shear rate sweep. The independent variables were chosen as wood content, MFI of polymer (two types), melt temperature, frequency or shear rate, the gap between the plates, and strain percentage. The strain sweep tests specified the linear and non-linear viscoelastic zones of each experiment. The results of frequency sweep experiments indicated that increasing the wood content and frequency and also decreasing the strain percentage and the gap distance, lead to an increase in the storage modulus. Regarding the loss modulus, wood percentage and the gap distance presented positive effects and strain percentage showed a negative effect. The behavior of complex viscosity was almost similar to that of the storage modulus but increasing the frequency caused a decrease in the complex viscosity. In case of temperature sweep experiments, it was observed that the rheological properties exhibit a rapid change near to a temperature of 160?°C. The results also showed that beyond this point, increasing the wood content and also MFI of polypropylene caused an increase in the storage modulus. The results of steady shear rate sweep experiments specified that increasing wood content and also decreasing the MFI of PP, the gap distance and shear rate lead to an increase in both viscosity and shear stress.  相似文献   

14.
Currently, the growing consumption of polymer products creates the large quantities of waste materials resulting in public concern in the environment and people life. Nanotechnology is assumed the important technology in the current century. Recently, many researchers have tried to develop this new science for polymer recycling. In this article, the application of different nanofillers in the recycled polymers such as PET, PP, HDPE, PVC, etc. and the attributed composites and blends is studied. The morphological, mechanical, rheological and thermal properties of prepared nanocomposites as well as the future challenges are extensively discussed. The present article determines the current status of nanotechnology in the polymer recycling which guide the future studies in this attractive field.  相似文献   

15.
The objective of this work was to determine some physical and mechanical properties of the high density polyethylene (HDPE) composites reinforced with various mixtures of the paper sludge and the wood flour, and to evaluate the coupling agent performance. The waste sludge materials originating from two different sources including paper making waste water treatment sludge (PS) and ink-eliminated sludge (IES) were characterized in terms of physico-chemical properties. In the experiment, four levels of paper sludge (20, 30, 40 and 60 wt%), three levels of wood flour (20, 40 and 60 wt%), and two levels of coupling agent (MAPE) content (2 and 3 wt%) were used. The flexural properties of the composites were positively affected by the addition of the sludge. Especially, tensile modulus improved with the increase of paper sludge content. With the addition of MAPE, flexural properties improved considerably compared with control specimens (without any coupling agent). The results showed that the water absorption (WA) and thickness swelling (TS) values of the samples decreased considerably with increasing sludge content in the composite, while they increased with increasing wood flour content. It is to be noted that with incorporation of MAPE in the composite formulation, the compatibility between the wood flour and HDPE was enhanced through esterification, which reduced the WA and TS and improved the mechanical properties. Composites made with IES exhibited superior physico-mechanical properties compared with the PS filled composites. Overall results suggest that the waste paper sludge materials were capable of serving as feasible reinforcing fillers for thermoplastic polymer composites.  相似文献   

16.
In the present work, sawdust reinforced polypropylene composites were fabricated using an extruder and an injection molding machine. Raw sawdust was chemically treated with benzene diazonium salt in order to improve the mechanical properties of the composites. The effect of the chemically treated sawdust reinforced PP composites was evaluated from their mechanical and surface morphological properties. The values of the mechanical properties of the chemically treated sawdust–PP composites were found to be significantly higher than those of the raw ones. Water uptake tests revealed that composites prepared from the chemically treated sawdust absorb lower amount of water compared to the ones prepared from raw sawdust, suggesting that hydrophilic nature of the cellulose in the sawdust has significantly decreased upon chemical treatment. The surface morphology obtained from scanning electron microscopy (SEM) showed that raw sawdust–PP composites possess surface roughness with extruded filler moieties, and weak interfacial adhesion between the matrix and the filler while the chemically treated one showed improved filler–matrix interaction. This indicates that better dispersion of the filler with the PP matrix has occurred upon chemical treatment of the filler.  相似文献   

17.
Novel lightweight composite foams based on recycled polypropylene reinforced with cellulosic fibres obtained from agricultural residues were prepared and characterized. These composites, initially prepared by melt-mixing recycled polypropylene with variable fibre concentrations (10-25 wt.%), were foamed by high-pressure CO2 dissolution, a clean process which avoids the use of chemical blowing agents. With the aim of studying the influence of the fibre characteristics on the resultant foams, two chemical treatments were applied to the barley straw in order to increase the α-cellulose content of the fibres. The chemical composition, morphology and thermal stability of the fibres and composites were analyzed. Results indicate that fibre chemical treatment and later foaming of the composites resulted in foams with characteristic closed-cell microcellular structures, their specific storage modulus significantly increasing due to the higher stiffness of the fibres. The addition of the fibres also resulted in an increase in the glass transition temperature of PP in both the solid composites and more significantly in the foams.  相似文献   

18.
聚丙烯以其优异的机械性能、高的性价比和多重改性方式成为重要的通用树脂之一,这些产品废弃后产生了种类繁多和数量巨大的再生聚丙烯.通过将再生聚丙烯根据性能和来源进行分类,然后分类阐述各再生聚丙烯物料特点,结合再生聚丙烯改性方式,为高质化应用提出方向.  相似文献   

19.
The aim of this research was to recycle waste rubber tires by using powdering technology and treating the waste rubber tire powder with bitumen. It has been proven that the elongation at break, thermal stability and processing flowability of composites of polypropylene (PP), waste rubber tire powder (WRT) and bitumen composites are better than those of PP/WRT composite. A comparative study has been made to evaluate the influence of bitumen content and different compatibilizers on the properties of PP/WRT/bitumen composites, using a universal testing machine (UTM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and a capillary rheometer. The results suggested that the properties of PP/WRT/bitumen composites were dependent on the bitumen content and the kind of compatibilizer used.  相似文献   

20.
To explore the commercial viability of Polyhydroxybutyrate (PHB)/wood flour (WF) composites, systems were produced at industry-standard levels of fiber loading. Further, four interfacial modifiers were selected to improve the mechanical properties of PHB/WF composites, including maleated PHB (PHB-g-MA), a low molecular weight epoxy, a low molecular weight polyester, and polymethylene-diphenyl-diisocyante (pMDI). Results showed that all modifiers resulted in improvements in tensile strength and modulus, however, pMDI showed the highest improvements. The pMDI modifier also improved water uptake of the composites. Study of the fracture surfaces showed signs of improved fiber bonding, as did morphological studies by dynamic mechanical analysis (DMA), and differential scanning calorimetry (DSC). Interpretation of the DSC and DMA results indicate possible reactions with lubricant, and interactions between PHB and wood fibers with the addition of pMDI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号