首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Individuals of the pit crabs Cryptochirus coralliodytes Heller inhabit massive corals of the family Faviidae. Their pit walls were observed to be covered by blue-green algae and fungi. We suggest that the crabs enhance the growth of these algae and fungi with their metabolic excretions, which contain ammonium. The endolithic algae and the fungi may facilitate the abrasion of the coral skeleton by the crabs, by perforating it and thus weakening the skeletal structure. Computerized tomography analysis revealed dense skeletal material around the pits. Transverse sections showed that the calcification around the pit was similar to other parts of the colony, whereas the macro-architecture was different. Such a difference is the result of the crabs' influence on the corals' living tissue, possibly on the calicoblast which deposits the coenosteum. Crabs, which were exposed to carbon-labeled corals for 1, 7 and 18 d, accumulated labeled carbon, indicating transfer of carbon from the coral tissue to the crabs. Histochemical examination of the stomach and gut of crabs revealed the presence of mucopolysaccharids in the gut, supporting the hypothesis that the crabs eat coral products. The findings of this study provide additional evidence that C. coralliodytes are parasites and support the general hypothesis that a nutritional relationship may have served as a basis for selection. Received: 20 October 1998 / Accepted: 29 April 1999  相似文献   

2.
We used microscopy, reflectance spectroscopy, pigment analysis, and photosynthesis-irradiance curves measured with variable fluorescence techniques to characterise the endolithic communities of phototrophic microorganisms in the skeleton of three massive corals from a shallow reef flat. Microscopic observations and reflectance spectra showed the presence of up to four distinct bands of photosynthetic microorganisms at different depths within the coral skeleton. Endolithic communities closer to the coral surface exhibited higher photosynthetic electron transport rates and a green zone dominated by Ostreobium quekettii nearest the surface had the greatest chlorophyll pigment concentration. However, Ostreobium was also present and photosynthetically active in the colourless band between the coral tissue and the green band. The spectral properties and pigment density of the endolithic bands were also found to closely correlate to photosynthetic rates as assessed by fluorometry. All endolithic communities were extremely shade-adapted, and photosynthesis was saturated at irradiances <7 μmol photons m−2s−1.  相似文献   

3.
Endolithic fungi bore through the extracellular calcium carbonate skeleton of reef-building scleractinian corals, both healthy and dead, and effect net erosion of coral reefs. Potential fungal interactions with coral tissue were investigated using an in vitro approach suggested by earlier observations of skeletal repair cones at the site of fungal perforation in Porites sp. A fungal strain was isolated from the skeleton of a long-term culture of healthy, tissue-covered, Pocillopora damicornis Linnaeus colonies maintained in a recirculating system in Monaco. As coral soft tissue spontaneously dissociated in vitro, the skeleton became exposed and hyaline hyphae emerged radially from 15% of the total clipped branches. In this study, which was performed between January 2001 and March 2003, 35 skeleton–hypha explants were embedded in agar-based solid medium, yielding 60% hyphal growth. A fungal strain (F19-3-1) of the dominant (80%) morphology was isolated and propagated in agar-based solid medium. The strain was identified by 18S and 26S rDNA gene sequence analysis as a basidiomycete in the genus Cryptococcus. Co-cultures were used to provide experimental exposure of coral soft tissue to the fungus. The fungus extended the survival of coral cells by 2 days, selectively maintaining skeletogenic cell types. This effect may be interpreted as stimulation by the fungus of a short-term coral defense response.Communicated by J.P. Grassle, New Brunswick  相似文献   

4.
Monthly skeletal extension rates were measured in colonies of Montastraea annularis and M. faveolata growing at Mahahual and Chinchorro Bank, in the Mexican Caribbean. Temperature, light extinction coefficient (kd), sedimentation rate, dissolved nutrients and wave energy were used as indicators of environmental conditions for coral growth. Zooxanthella density and mitotic index, nitrogen, phosphorous and protein in coral tissue, and living tissue thickness were measured during periods of high-density-band (HDB) and low-density-band (LDB) formation. To test their value as indirect measures of competition between zooxanthellae and host, as well as coral health and performance in both species, these biological parameters were also measured, during the HDB-formation period, in corals collected at La Blanquilla. This reef is located in the Gulf of Mexico, in an area of suboptimal environmental conditions for coral growth. M. faveolata had a significantly higher skeletal extension rate than M. annularis. Corals growing in Mahahual had significantly higher skeletal extension rate than those living in Chinchorro Bank. This is consistent with inshore–offshore gradients in growth rates observed by other authors in the same and other coral species. This is probably due to less favorable environmental conditions for coral growth in near shore Mahahual, where there is high hydraulic energy and high sedimentation rate. Contrary to observations of other authors, skeletal extension rate did not differ significantly between HDB- and LDB-formation periods for both species of Montastraea. Both species produced their HDB between July and September, when the seawater temperatures are seasonally higher in the Mexican Caribbean. Tissue thickness indicated that environmental conditions are more favorable for coral health and performance during the HDB-formation period. Mitotic index data support the idea that zooxanthellae have competitive advantages for carbon over the host during the LDB-formation period. So, corals, during the LDB-formation period, with less favorable environmental conditions for coral performance and at a disadvantage for carbon with zooxanthellae, add new skeleton with little or no opportunity for thickening the existing one. This results in an equally extended skeleton with lower density, and the stretching response of skeletal growth, proposed for M. annularis growing under harsher environmental conditions, also occurs during the LDB-formation period.Communicated by P.W. Sammarco, Chauvin  相似文献   

5.
The composition, distribution and infestation sequence of organisms that destroy the commercially valuable shells of the black oyster Pinctada margaritifera var. cumingii Jameson, 1901 were studied. Three ecologically different groups of boring (euendolithic) organisms were identified: (1) phototrophic boring microorganisms (cyanobacteria, Hyella caespitosa, Hyella sp., Mastigocoleus testarum, Plectonema terebrans, and green algae, Phaeophila dendroides, Ostreobium quekettii); (2) heterotrophic boring microorganisms (fungi, Ostracoblabe implexa); (3) filter-feeding boring organisms (sponges, Cliona margaritiferae, C. vastifica). The phototrophic endoliths dominate the external pristmatic region of the shell, whereas the valuable interior nacreous region is attacked mainly by heterotrophs. Boring patterns reflect in part the shape and behaviour of the organisms and in part the structural properties of the shell, and inflict different types of damage. Infestation starts with microbial borers, which prepare the conditions for later invasion by more damaging clionid sponges. The infestation begins always at the apex, the oldest part of the shells, from which the periostracum is often removed by natural attrition or by cleaning procedure. The rate of bioerosion in 1 yr-old hatchery shells is 36 times higher than in natural populations.  相似文献   

6.
The growth and development of the tissues and skeleton of settled larvae of the reef coral Pocillopora damicornis (Linnaeus), collected in December 1983 from Ko Phuket, Thailand, were investigated using light microscopy, scanning electron microscopy and transmission electron microscopy. The rate of development of larval skeletons was very variable, preventing the chronological sequencing of skeletal growth. However, four growth stages in the development of a complete larval skeleton from first settlement were identificd: Stage 1, deposition of the first elements of the basal plate upon settlement; Stage 2, completion of basal plate, and deposition of skeletal spines and ridges in positions corresponding to the septal cycles; Stage 3, formation of the corallite wall and septal and costal cycles; Stage 4, the complete larval skeleton which represented the maximum growth attained eight days after settlement. The configuration of the larval tissues, particularly the aboral ectoderm, mirrored the four developmental stages. The deposition of the larval skeleton was correlated with the metamorphosis of the aboral ectoderm from a columnar to a squamous morphology. The basal plate of the larval skeleton had two layers of crystals orientated perpendicular to each other. The architecture of the complete larval skeleton is described and compared to that of the adult skeleton of P. damicornis. The results are discussed with respect to previous concepts of the formation of the larval skeleton of scleractinian corals and coral calcification.  相似文献   

7.
In summer 1998, shallow water corals at Sesoko Island, Japan (26°38′N, 127°52′E) were damaged by bleaching. In August 2003, partially damaged colonies of the massive Porites lutea and the branching P. cylindrica were collected at depths of 1.0–2.5 m. The species composition of epilithic algal communities on dead skeletal surfaces of the colonies (‘red turfs’, ‘green turfs’, ‘red crusts’) and the endolithic algae (living in coral skeletons) growing close to and away from living coral polyps was determined. Carbon and nitrogen stable isotope values of organic matter (δ13C and δ15N) from all six of these biological entities were determined. There were no significant differences in the isotope composition of coral tissues of the two corals, with P. lutea having δ13C of −15.3 to −9.6‰ and δ15N of 4.7–6.1‰ and P. cylindrica having similar values. Polyps in both species living close to an interface with epilithic algae had similar isotope values to polyps distant from such an interface. Despite differences in the relative abundance of the algal species in red turfs and crusts, their δ13C and δ15N values were not significantly different from each other (−18.2 to −13.9, −20.6 to −16.2, 1.1–4.3, and 3.3 to 4.9‰, respectively). The green algal turf had significantly higher δ13C values (−14.9 to −9.3‰) than that of red turfs and crusts but similar δ15N (1.2–4.1‰) to the red algae. The data do not suggest that adjoining associations of epilithic algae and coral polyps exchange carbon- and nitrogen-containing metabolites to a significant extent. The endolithic algae in the coral skeletons had δ13C values of −14.8 to −12.3‰ and δ15N of 4.0–5.4‰. Thus they did not differ significantly from the coral polyps in their carbon and nitrogen isotope values. The similarity in carbon isotope values between the coral polyps and endolithic algae may be attributed to a common source of CO2 for zooxanthellae and endolithic algae, namely, from respiration by the coral host. While it is difficult to fully interpret similarity in the nitrogen isotope composition of coral tissue and of green endolithic algae and the difference in δ15N between green epilithic and endolithic algae, the data are consistent with nitrogen-containing metabolites from the scleractinian coral serving as a significant source of nitrogen for the endolithic algae.  相似文献   

8.
Ostreobium sp. (Chlorophyta: Siphonales) can be found as green bands within the skeletal material of a number of stony corals in the Indo-Pacific and Caribbean regions. Many of these corals also contain symbiotic dinoflagellates in the overlaying coral polyps that effectively screen out all the typical photosynthetically active radiation from the algae in the green bands below. Ostreobium sp., nevertheless, grows photosynthetically. Its action spectrum and absorption spectrum have been shown to extend much further into the near infra-red compared to other green algae. In the present study, carried out in 1987, fluorescence excitation and emission spectra were measured in Ostreobium sp. and compared to spectra obtained from the green alga Ulva sp. and the brown alga Endarachne sp. Xanthophylls, probably siphonein and an unidentified xanthophyll probably related to siphonaxanthin, are photosynthetically active in Ostreobium sp., and can sensitize Photosystem II fluorescence at 688 nm and Photosystem I (PS I) fluorescence at 718 nm. The fluorescence emission spectra of Ostreobium sp. measured at 25° C and 77 K were not remarkably different from those of the green alga Ulva sp. Absorbance changes induced by light were measured in Ostreobium sp. from 670 to 750 nm and were like those normally seen in green plants except that, in addition to the minimum expected for the reaction-center chlorophyll of PS I (P700) at 703 nm, another minimum was seen at 730 nm. It is possible that this spectrumreflects the functioning of a reaction center of Photosystem I that has adapted to function in light highly enriched in far-red wavelengths.CIW-DPB Publication No. 1021  相似文献   

9.
Cladopsammia gracilis (Dendrophylliidae), an ahermatypic coral inhabits the northern Red Sea. Two color morphs (pink and orange) are found aggregated in caves devoid of hermatypic corals, associated with crustose coralline algae (CCA). Sequencing the rDNA ITS region revealed a separate clustering of members of each color morph. Both morphs grow in shallow waters, with orange corals limited to the upper 4 m, while some pink coral aggregates thrive deeper than 30 m. Planulae were released between June and December. Pink planulae treated with antibiotics and exposed at different intervals to CCA, were competent and metamorphosed even 110 days after release. Maximal competency period for orange planulae was 70 days. All planulae were enhanced to metamorphose in presence of CCA. The mean age at metamorphosis of pink and orange planulae treated with CCA differed significantly. Most orange planulae settled directly on the CCA while most pink planulae settled on the wall of the experiment vial. The morphs differed significantly in the calyx cross-section area of primary polyps. Despite being considered a single species according to skeletal based taxonomy, the significant ecological and molecular differences between pink and orange C. gracilis specimens suggest that they may belong to separate species.  相似文献   

10.
Porites and Montastraea are the major reef-building massive coral genera in the Indo-Pacific and Atlantic oceans, respectively. They are also the most commonly used genera in sclerochronological studies. Despite the marked differences in the way these genera use calcareous material to construct their skeletons (growth strategies) and in their skeletal architectural structure, they form annual high and low density bands in their skeletons, that result from the positive relationship of coral calcification rate with sea surface temperature and seasonal changes of the latter. Evidence in the literature suggests that the different growth strategies allow these organisms to construct denser skeletons far from terrigenous inputs, on reefs where microborers’ activity is high. It seems quite probable that this has consequences for the evolution, diversity, distribution and abundance of reef corals.  相似文献   

11.
Understanding critical habitats of threatened and endemic animals is essential for mitigating extinction risks, developing recovery plans, and siting reserves, but assessment methods are generally lacking. We evaluated critical habitats of 8 threatened or endemic fish species on coral and rocky reefs of subtropical eastern Australia, by measuring physical and substratum‐type variables of habitats at fish sightings. We used nonmetric and metric multidimensional scaling (nMDS, mMDS), Analysis of similarities (ANOSIM), similarity percentages analysis (SIMPER), permutational analysis of multivariate dispersions (PERMDISP), and other multivariate tools to distinguish critical habitats. Niche breadth was widest for 2 endemic wrasses, and reef inclination was important for several species, often found in relatively deep microhabitats. Critical habitats of mainland reef species included small caves or habitat‐forming hosts such as gorgonian corals and black coral trees. Hard corals appeared important for reef fishes at Lord Howe Island, and red algae for mainland reef fishes. A wide range of habitat variables are required to assess critical habitats owing to varied affinities of species to different habitat features. We advocate assessments of critical habitats matched to the spatial scale used by the animals and a combination of multivariate methods. Our multivariate approach furnishes a general template for assessing the critical habitats of species, understanding how these vary among species, and determining differences in the degree of habitat specificity. Definición de Hábitats Críticos para Peces Arrecifales Amenazados y Endémicos Mediante un Método Multivariado  相似文献   

12.
Paired flat plates of the hermatypic coral Montipora verrucosa from Kaneohe Bay, Oahu, Hawaii, were acclimated to photosynthetically active radiation (PAR) only and to full sunlight (PAR+UV) for several weeks in the summer of 1990. After the acclimation period, photosynthesis, both in PAR-only and PAR+UV as well as dark respiration were measured. Levels of the UV-absorbing compounds, S320, density of zooxanthellae, and chlorophyll a concentration were determined. Corals acclimated in PAR+UV had higher levels of the UV-protective compounds and lower areal zooxanthellae densities than corals acclimated in PAR-only. Chlorophyll a per unit volume of coral host and per algal cell did not differ between corals from the two acclimation treatments. Corals acclimated to PAR+UV displayed higher photosynthesis in full sunlight than corals acclimated to PAR-only, but when photosynthesis was measured in the light regime to which the corals had been acclimated, there were no differences in photosynthesis. Dark respiration was the same for corals from the two acclimation treatments regardless of the light quality immediately preceding the dark period.Contribution No. 902 HIMB  相似文献   

13.
Abstract: Marine protected areas (MPAs) have been highlighted as a means toward effective conservation of coral reefs. New strategies are required to more effectively select MPA locations and increase the pace of their implementation. Many criteria exist to design MPA networks, but generally, it is recommended that networks conserve a diversity of species selected for, among other attributes, their representativeness, rarity, or endemicity. Because knowledge of species’ spatial distribution remains scarce, efficient surrogates are urgently needed. We used five different levels of habitat maps and six spatial scales of analysis to identify under which circumstances habitat data used to design MPA networks for Wallis Island provided better representation of species than random choice alone. Protected‐area site selections were derived from a rarity–complementarity algorithm. Habitat surrogacy was tested for commercial fish species, all fish species, commercially harvested invertebrates, corals, and algae species. Efficiency of habitat surrogacy varied by species group, type of habitat map, and spatial scale of analysis. Maps with the highest habitat thematic complexity provided better surrogates than simpler maps and were more robust to changes in spatial scales. Surrogates were most efficient for commercial fishes, corals, and algae but not for commercial invertebrates. Conversely, other measurements of species‐habitat associations, such as richness congruence and composition similarities provided weak results. We provide, in part, a habitat‐mapping methodology for designation of MPAs for Pacific Ocean islands that are characterized by habitat zonations similar to Wallis. Given the increasing availability and affordability of space‐borne imagery to map habitats, our approach could appreciably facilitate and improve current approaches to coral reef conservation and enhance MPA implementation.  相似文献   

14.
We studied the diel variation of in situ coral temperature, irradiance and photosynthetic performance of hemispherical colonies of Porites lobata and branching colonies of Porites cylindrica during different bulk water temperature and tidal scenarios on the shallow reef flat of Heron Island, Great Barrier Reef, Australia. Our study presents in situ evidence that coral tissue surface temperatures can exceed that of the surrounding water under environmental conditions typically occurring during low tide in shallow reef or lagoon environments. Such heating may be a regular occurrence on shallow reef flats, triggered by the combined effects of high irradiance and low water flow characteristic of low Spring tides. At these times, solar heating of corals coincides with times of maximum water temperature and high irradiance, where the slow flow and consequent thick boundary layers impede heat exchange between corals and the surrounding water. Despite similar light-absorbing properties, the heating effect was more pronounced for the hemispherical P. lobata than for the branching P. cylindrica. This is consistent with previous laboratory experiments showing the evidence of interspecific variation in coral thermal environment and may result from morphologically influenced variation in convective heat transfer and/or thermal properties of the skeleton. Maximum coral surface warming did not coincide with maximum irradiance, but with maximum water temperature, well into the low-tide period with extremely low water flow in the partially drained reef flat, just prior to flushing by the rising tide. The timing of low tide thus influences the thermal exposure and photophysiological performance of corals, and the timing of tidally driven coral surface warming could potentially have different physiological impacts in the morning or in the afternoon.  相似文献   

15.
An accurate method for determining the growth rates of the skeleton of isolated branch tips (nubbins) of corals over intervals of less than 24 h is described. The skeletal weight of the coral was estimated from its buoyant weight in seawater whose density had been accurately determined. The coral tissues accounted for between 1 and 5% of the total buoyant weight in Pocillopora verrucosa and Acropora humilis with differing relative tissue biomass. After correcting for tissue buoyant weight, predictions of skeletal weight were accurate to within 1%. The method was used to estimate the growth of sample nubbins of Porites porites of similar diameter, in 2 m of water at Discovery Bay, Jamaica. Since growth of these branch tips is apical, growth rate could be expressed without correction for the size. The mean 24 h skeletal growth rate ranged between 40 and 47 mg. Differences could be measured between day-time and night-time growth, the day: night ratio being 3.7. The method also showed that P. porites virtually ceases calcification during the 4 to 5 d periods that it becomes enclosed in a mucus tunic. Nubbins of P. porites attached to the reef at different locations showed clear differences in growth rate with depth, and between clear and turbid water sites. The growth rate of nubbins was compared with that of branch tips of whole corals by measuring the linear extension after staining with Alizarin Red S. After 3 1/2 mo, the mean linear extension was 4.1 mm in each case, indicating that the growth rate of nubbins is the same as that of branch tips of the whole colony. It is suggested that this buoyant weighing technique will find applications in laboratory experiments with calcification mechanisms and as a bioassay on reefs exposed to environmental stress.Contribution No. 464 of the Discovery Bay Marine Laboratory  相似文献   

16.
Adaptation of solitary corals, Fungia repanda and F. echinata, and their zooxanthellae to low light and ultraviolet light B (UV-B) was studied with respect to changes in their protein contents, photosynthetic pigment contents and the photosynthesis-irradiance (P-I) curves. The corals were collected from 1 to 50 m depths in the Republic of Belau (Paulau) in 1990 and 1991. The chlorophyll a content in a unit surface area of the coral did not change significantly with the depth of the habitat, whereas cellular chlorophyll a in the algae increased with the depth. Zooxanthellae density and protein content in a unit surface area of Fungia spp. decreased with the depth. Photosynthetic parameters normalized by a unit surface area of the Fungia spp., maximum gross photosynthetic rate (P gmax area-1) and dark respiration rate (R area-1), were negatively correlated with the depth, while initial slope of the P-I curve () did not show significant correlation with the depth. Compensation light intensity (Ic) decreased with the depth. In isolated zooxanthellae, P max chl a -1, and R chl a -1 decreased with the depth, while chl a was constant. P gmax cell-1 and R cell-1 did not change significantly but cell increased with the depth. Ic decreased with the depth as in the intact corals. Reduction of protein content in a unit area of the coral from deeper habitat implies decrease of host animal tissues. Reduction of Ic can be explained by decrease of R area-1, which may be due to the diminution of animal tissues. The photoadaptational response to low light intensity of intact Fungia spp. was found to be a combination of the photoadaptation of symbiotic algae and the decrease of host animal tissue. In order to study their adaptation to ultraviolet (UV) radiation, P-I curves of Fungia spp. and isolated zooxanthellae were analyzed before and after UV-B irradiation. 1 h UV-B irradiation showed no effect on the photosynthetic rate of the shallow water (1 m) corals, while it inhibited the photosynthesis of the deep water (30 m) corals and zooxanthellae isolated from both shallow and deep water corals. These results indicate that the host, Fungia spp., in shallow water have protective mechanism for intense UV-B in their habitat. These photoadaptational mechanisms seem to allow the Fungia spp. to have wide vertical distribution where light intensity spans more than two orders of magnitude.  相似文献   

17.
Temperature tolerance in the reef coral Montipora verrucosa (Lamarck) is affected by salinity and light. Low salinity reduces ability of the coral to survive shortterm exposure to elevated temperature. High natural light intensity aggravates damage sustained by corals at high temperature. In long-term growth experiments, high light intensity caused substantial loss of zooxanthellar pigment, higher mortality rates, reduced carbon fixation and lowered growth rate at both upper and lower sublethal temperatures Effects of light at optimal temperature were less dramatic. Interactions between physical environmental factors appear to be most important near the limits of tolerance for a given factor. Acclimation capability was indicated, and was influenced by both thermal history and pigmentation state of stressed corals.Contribution No. 543 of the Hawaii Institute of Marine Biology.  相似文献   

18.
Although coral dwelling fishes are common on coral reefs, the nature of their effect on the host corals is poorly understood. The present study, conducted in the Gulf of Eilat (Red Sea) between July 1989 and August 1990, demonstrated that the branching coral Stylophora pistillata (Esper) benefits, in two components of coral fitness, from the presence of the damselfish Dascyllus marginatus (Rüppell), an obligate coral dweller. The growth rate of damselfish-inhabited corals was significantly higher than that of corals without damselfish. This was observed, using two growth assessment methods, in long-term (>7 mo) comparisons between: (1) corals where the damselfish were experimentally removed versus corals with unaltered fish groups; and (2) naturally inhabited versus non-inhabited corals. The presence of damselfish did not affect the coral's specific (per surface area) reproductive output, whether it was assessed by the number of female gonads per polyp or by the number of planulae released cm-2 surface area d-1. However, the more rapid increase in branch size in damselfish-inhabited corals resulted in an apparent increase in the total reproductive output, with age, in growing corals. These findings demonstrate that the association between the damselfish D. marginatus and its host coral, S. pistillata, is mutualistic.  相似文献   

19.
Pocillopora damicornis (Linnaeus) is a ubiquitous branching coral found throughout the Indo-Pacific region. Like many other species of coral, P. damicornis displays a large range of morphologies. At One Tree Island, it occurs as two distinct morphs that are easily distinguished by the presence or absence of pink pigmentation. The two colour morphs of P. damicornis were found to differ in their distribution and abundance in the One Tree Island Lagoon. The brown morph was more abudant than the pink morph in the shallows (<1 m),whereas the pink morph was more abundant at deeper sites (>3 m). The two morphs also differed physiologically. The brown morph tended to have a greater calcification rate than the pink morph, regardless of environmental conditions. However, the difference in the calcification rate between the two morphs became non-significant under shaded conditions (5% full sunlight), indicating some degree of physiological plasticity of the morphs. The pink colour in P. damicornis was due to a hydrophilic pigment with a major peak absorbance at 560 nm. The expression of pink pigment had both genetic and phenotypic components. The brown morph has a reduced genetic capacity to express the pigment relative to the pink morph. On the other hand, pigment expression could be induced by light in the pink morph. Although genetic differences ultimately determine the differences between the two morphs of P. damicornis, the extent of pigment expression is under some degree of environmental influence.  相似文献   

20.
Spatiotemporal recruitment patterns of scleractinian corals were investigated around Iriomote Island, Ryukyu Archipelago, Japan, in relation to adult coral cover in 2005 and 2006. Although almost all corals were broadcasting spawners, the relationship between recruitment and adult coral cover differed among coral families (Acroporidae, Poritidae, and Pocilloporidae), likely due to differences in embryonic development time. For spawning pocilloporid corals, whose larvae develop relatively more rapidly, recruitment was higher at sites where adult coral cover was higher. In contrast, recruitment was not related to adult coral cover in acroporid and poritid corals, whose embryonic development times were relatively slow. Moreover, recruitment of acroporid corals varied between years, and recruitment was greater at leeward compared to windward reefs for a few days after spawning. These results suggest that embryonic development time and wind-driven surface currents affect larval dispersal and subsequent recruitment patterns at a local scale. Based on embryonic development time, some spawning corals are more likely to have higher rates of self-seeding than others. Our results predict that among spawning corals, local populations of acroporid and poritid corals, whose larvae potentially disperse over long distances and recruit in neighboring reefs, are more resilient to local disturbances than those of pocilloporid corals, whose recruitment relies upon local stock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号