首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Cui H  Hwang HM  Cook S  Zeng K 《Chemosphere》2001,44(4):621-625
The effect of riboflavin (1 microM) on the fate of TNT (20 mg/l) in a natural water environment was studied. The relative contribution of photolysis, microbial assemblages and freshwater matrix to TNT degradation was examined. The rates, extent and products of TNT and riboflavin transformation were compared under different experimental conditions. It was found that riboflavin significantly enhanced the degradation of TNT in natural water environment. Thus it is a potentially useful photosensitizing agent for the treatment of TNT-contaminated surface water. Furthermore, in the presence of riboflavin, two new intermediates with max. absorption wavelength of 230 nm were found, demonstrating that transformation of TNT in the presence of riboflavin undergoes different pathways.  相似文献   

2.
Effects of riboflavin on the phototransformation of benzo[a]pyrene   总被引:3,自引:0,他引:3  
Zhao X  Hu X  Hwang HM 《Chemosphere》2006,63(7):1116-1123
Riboflavin (Vitamin B2) is a natural dye-sensitizer habitually present in natural waters. Effects of riboflavin as photosensitizer on the transformation of benzo[a]pyrene (BaP) (10 microM) in the aqueous-organic solvent (water/acetonitrile/methanol 50/40/10) were investigated in this study. The photolysis half life of BaP in solution containing 50 microM riboflavin was 5 min, compared to 98 min in the absence of riboflavin. The rate of phototransformation of BaP increased as the concentration of riboflavin was raised from 10 microM to 100 microM under both natural sunlight and UVA irradiation. The half life of BaP in the presence of 50 microM riboflavin was 10.6 min and 43.1 min when exposed to visible range of natural sunlight and UVA irradiation respectively. Riboflavin decomposes under natural sunlight. Lumichrome, a principal photoproduct of riboflavin, was shown to photosensitize BaP under natural sunlight after photolysis of riboflavin. Our study indicated that other photoproducts from riboflavin, such as lumiflavin, were also involved in the phototransformation of BaP under sunlight when riboflavin diminished. The major photoproducts in the photolysis of BaP were identified as 1,6-benzo[a]pyrene-dione, 3,6-benzo[a]pyrene-dione, 6,12-benzo[a]pyrene-dione by using high performance liquid chromatography (HPLC). All these products were detected in the samples which were irradiated under different light sources and in the presence or absence of riboflavin. The possible phototransformation mechanism was discussed.  相似文献   

3.
Atrazine is a persistent organic pollutant in the environment which affects not only terrestrial and aquatic biota but also human health. Since its removal from the environment is needed, atrazine biodegradation is achieved in the present study using the bacterium Rhodococcus sp. BCH2 isolated from soil, long-term treated with atrazine. The bacterium was capable of degrading about 75 % atrazine in liquid medium having pH 7 under aerobic and dark condition within 7 days. The degradation ability of the bacterium at various temperatures (20–60 °C), pH (range 3–11), carbon (glucose, fructose, sucrose, starch, lactose, and maltose), and nitrogen (ammonium molybdate, sodium nitrate, potassium nitrate, and urea) sources were studied for triumph optimum atrazine degradation. The results indicate that atrazine degradation at higher concentrations (100 ppm) was pH and temperature dependent. However, glucose and potassium nitrate were optimum carbon and nitrogen source, respectively. Atrazine biodegradation analysis was carried out by using high-performance thin-layer chromatography (HPTLC), Fourier transform infrared spectroscopy (FTIR), and liquid chromatography quadrupole time-of-flight (LC/Q-TOF-MS) techniques. LC/Q-TOF-MS analysis revealed formation of various intermediate metabolites including hydroxyatrazine, N-isopropylammelide, deisopropylhydroxyatrazine, deethylatrazine, deisopropylatrazine, and deisopropyldeethylatrazine which was helpful to propose biochemical degradation pathway of atrazine. Furthermore, the toxicological studies of atrazine and its biodegraded metabolites were executed on earthworm Eisenia foetida as a model organism with respect to enzymatic (SOD and Catalase) antioxidant defense mechanism and lipid peroxidation studies. These results suggest innocuous degradation of atrazine by Rhodococcus sp. BCH2 in nontoxic form. Therefore the Rhodococcus sp.BCH2 could prove a valuable source for the eco-friendly biodegradation of atrazine pesticide.  相似文献   

4.
Bench-scale sand column breakthrough experiments were conducted to examine atrazine removal in agricultural infiltrate by Agrobacterium radiobacter J14a (J14a) immobilized in phosphorylated-polyvinyl alcohol compared to free J14a cells. The effects of cell loading and infiltration rate on atrazine degradation and the loss of J14a were investigated. Four sets of experiments, (i) tracers, (ii) immobilized dead cells, (iii) immobilized cells, and (iv) free cells, were performed. The atrazine biodegradation at the cell loadings of 300, 600, and 900 mg dry cells L(-1) and the infiltration rates of 1, 3, and 6 cm d(-1) were tested for 5 column pore volumes (PV). The atrazine breakthrough results indicated that the immobilized dead cells significantly retarded atrazine transport. The atrazine removal efficiencies at the infiltration rates of 1, 3, and 6 cm d(-1) were 100%, 80-97%, and 50-70%, respectively. Atrazine degradation capacity for the immobilized cells was not significantly different from the free cells. Both infiltration rate and cell loading significantly affected atrazine removal for both cell systems. The bacterial loss from the immobilized cell system was 10-100 times less than that from the free cell system. For long-term tests at 50 PV, the immobilized cell system provided consistent atrazine removal efficiency while the atrazine removal by the free cells declined gradually because of the cell loss.  相似文献   

5.
An atrazine degrading enrichment culture, a consortium of bacteria of genus Bacillus along with Pseudomonas and Burkholderia, was immobilized in sodium alginate and was used to study atrazine degradation in mineral salts medium (MSM), soil and wastewater effluent. Sodium alginate immobilized consortium, when stored at room temperature (24 ± 5°C), was effective in degrading atrazine in MSM up to 90 days of storage. The survival of bacteria in alginate beads, based on colony formation unit (CFU) counts, suggested survival up to 90 days and population counts decreased to 1/5th on 120 days. Comparison of atrazine degrading ability of the freely suspended enrichment culture and immobilized culture suggested that the immobilized culture took longer time for complete degradation of atrazine as a lag phase of 2 days was observed in the MSM inoculated with alginate immobilized culture. The free cells resulted in complete degradation of atrazine within 6 days, while immobilized cells took 10 days for 100% atrazine degradation. Further, immobilized cultures were able to degrade atrazine in soil and wastewater effluent. Alginate beads were stable and effective in degrading atrazine till 3rd transfer and disintegrated thereafter. The study suggested that immobilized enrichment culture, due to its better storage and application, can be used to degrade atrazine in soil water system.  相似文献   

6.
The possibility to improve atrazine degradation in soils by bioaugmentation was studied. The atrazine-mineralizing strain, Chelatobacter heintzii Cit1, was inoculated in four sterile and four non-sterile soils, at varying inoculum densities. Two soils, which had shown enhanced atrazine mineralization, were used to determine which inoculum density was capable of restoring their original mineralizing capacity after sterilization. The two other soils, with intermediate and low capacity to mineralize atrazine, were used in order to demonstrate that atrazine mineralization in such soils could be improved by inoculation. Mineralization kinetics were fitted using the Gompertz model. In the case of soils adapted to atrazine mineralization, inoculation of C. heintzii did not accelerate the rate of atrazine mineralization, which was essentially performed by the indigenous microflora. However, with soils that did not mineralize atrazine, the introduction of 10(4) cfug(-1) resulted in a 3-fold increase of atrazine mineralization capacity.  相似文献   

7.
The effect of low levels of atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) on in vitro oocyte maturation, in vitro capacitation of sperm, or in vitro fertilization of bovine oocytes and on the quality of blastocyst formation was studied. Bovine oocytes collected from abattoir ovaries were matured, fertilized, and developed to the blastocyst stage in vitro. Embryos that reached a morula or blastocyst stage were stained with Hoechst 33258 stain to determine the number of blastomeres per embryo. Three bulls whose fertilization rates were proven consistent among straws were used for this study. Atrazine was tested at concentrations of 0.01, 0.1, 1, and 10 microM in either the maturation medium, sperm capacitation medium, or the fertilization medium. Because atrazine was dissolved in ethanol, an ethanol control was used to determine any possible effects of ethanol on the in vitro process. The addition of atrazine to both the maturation and fertilization media did not result in any significant difference in fertilization rates between the controls and the treatments. In the capacitation medium, a significant difference between the controls and the atrazine levels of 0.1, 1, and 10 microM was noted for one bull. Atrazine did not affect the number of blastomeres per embryo. There was not a significant difference (p>0.05) in the number of blastomeres per embryo between the controls and the different levels of atrazine in each medium. This study indicates that low levels of atrazine do not have an effect on in vitro fertilization rates or the number of blastomeres per embryo produced in vitro.  相似文献   

8.
The present study reports the effect of surfactants (rhamnolipids and triton X-100) on biodegradation of atrazine herbicide by strain A6, belonging to the genus Acinetobacter. The strain A6 was able to degrade nearly 80 % of the 250-ppm atrazine after 6 days of growth. The bacterium degraded atrazine by de-alkylation process. Bacterial cell surface hydrophobicity as well as atrazine solubility increased in the presence of surfactant. However, addition of surfactant to the mineral salt media reduced the rate and extent of atrazine degradation by decreasing the bioavailability of herbicide. On the contrary, addition of surfactant to atrazine-contaminated soil increased the rate and extent of biodegradation by increasing the bioavailability of herbicide. As compared to triton X-100, rhamnolipids were more efficient in enhancing microbial degradation of atrazine as a significant amount of atrazine was removed from the soil by rhamnolipids. Surfactants added for the purpose of hastening microbial degradation may have an unintended inhibitory effect on herbicide degradation depending upon contiguous condition, thus highlighting the fact that surfactant must be judiciously used in bioremediation of herbicides.  相似文献   

9.
Lin T  Wen Y  Jiang L  Li J  Yang S  Zhou Q 《Chemosphere》2008,72(1):122-128
To evaluate the treatment capability of subsurface flow constructed wetland (SFCW) and the effect of salinity on the degradation of atrazine, the degradation of atrazine in SFCW was studied. Under the static condition, the degradation of atrazine in SFCW followed first-order kinetics: c=0.09679 exp(-0.0396t) (c, residue concentration, mg l(-1); t, retention time, d), with a half-life of approximately 17.5 days. The atrazine degradation kinetic functions were established for salinities of 1.5, 3.0, 5.0, 10.0 and 15.0 g l(-1), respectively, which appeared to approach first-order kinetics. The effect of salinity on the atrazine treatment efficiency showed an exponential inhibition: lnk=3.204+0.04991 C (k, degradation constant; C, NaCl concentration, mg l(-1)). The attenuation of atrazine in SFCW cannot be a result of hydrolysis or sorption process. It was considered that some bacteria in the wetland system degraded atrazine into deethylatrazine (DEA) and deisopropylatrazine (DIA) and sequentially into CO(2) and H(2)O. Salinity impacted on the growth of bacteria resulting in a switch of the microbial community. With the increase of salinity, Shannon-Wiener Diversity Index in the SFCW system declined. The relationship between atrazine degradation constant (k) and Shannon Index was established as shown in linear phase, y=-0.07286+0.0363x. The positive correlation between them indicated that microbial community played an important role in the atrazine degradation process.  相似文献   

10.
腐殖酸和铁对阿特拉津光降解影响的研究   总被引:2,自引:0,他引:2  
为考察除草剂在水体中的自净性能,对模拟太阳光(λ> 290 nm)下腐殖酸和铁元素对阿特拉津的光化学降解进行了研究。结果表明,单独辐照阿特拉津几乎不降解。在分别加入3、5和10 mg/L的腐殖酸时,阿特拉津的降解率分别为34.36 %、40.74%和15.66 %;在Fe(Ⅲ)投加量从0.01 mmol/L增加到0.2 mmol/L时,阿特拉津的降解率从24.36 %增加到34.97 %。而在当腐殖酸与铁共存时,阿特拉津降解率则进一步提高。紫外可见光谱和荧光光谱均表明,腐殖酸-铁络合物的形成及其光化学作用,促进了阿特拉津的降解。  相似文献   

11.
Zero-valent iron nanoparticles (nZVI, diameter < 90 nm, specific surface area = 25 m2 g?1) have been used under anoxic conditions for the remediation of pesticides alachlor and atrazine in water. While alachlor (10, 20, 40 mg L?1) was reduced by 92–96% within 72 h, no degradation of atrazine was observed. The alachlor degradation reaction was found to obey first-order kinetics very closely. The reaction rate (35.5 × 10?3–43.0 × 10?3 h?1) increased with increasing alachlor concentration. The results are in conformity with other researchers who worked on these pesticides but mostly with micro ZVI and iron filings. This is for the first time that alachlor has been degraded under reductive environment using nZVI. The authors contend that nZVI may prove to be a simple method for on-site treatment of high concentration pesticide rinse water (100 mg L?1) and for use in flooring materials in pesticide filling and storage stations.  相似文献   

12.
从长期施用阿特拉津的寒地黑土耕层(0~10cm)土壤中筛选到一株能以除草剂阿特拉津为氮源生长的降解菌株,结合16SrRNA序列分析结果,将该菌株命名为Arthrobacter sp.DNSl0。在接种量为10。CFU/mL的条件下,菌株DNSl0在24h内对100mg/L阿特拉津的降解率为99.41%。单因子实验结果表明,菌株DNSl0适宜生长和降解的条件范围是:温度25~35'12,pH值5.0~8.0,培养液盐度0.1%~2%,对阿特拉津最大耐受浓度可达1200mg/L。正交实验法进一步表明,该菌株保持较好生长及降解能力的最优方案是温度30℃,pH值7.5,培养液盐度0.5%。影响其降解能力的环境因素的主次顺序依次是:温度〉盐度〉pH值。  相似文献   

13.
Atrazine impact on human health and the environment have been extensively studied. Phytoremediation emerged as a low cost, environmental friendly biotechnological solution for atrazine pollution in soil and water. In vitro atrazine tolerance assays were performed and Lolium multiflorum was found as a novel tolerant species, able to germinate and grow in the presence of 1 mg kg−1 of the herbicide. L. multiflorum presented 20% higher atrazine removal capacity than the natural attenuation, with high initial degradation rate in microcosms. The mechanisms involved in atrazine tolerance such as mutation in psbA gene, enzymatic detoxification via P450 or chemical hydrolysis through benzoxazinones were evaluated. It was demonstrated that atrazine tolerance is conferred by enhanced enzymatic detoxification via P450. Due to its atrazine degradation capacity in soil and its agronomical properties, L. multiflorum is a candidate for designing phytoremediation strategies for atrazine contaminated agricultural soils, especially those involving run-off avoiding.  相似文献   

14.
The dechlorination of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) via reaction with metallic iron under low-oxygen conditions was studied using reaction mixture pH values of 2.0, 3.0, and 3.8. The pH control was achieved through addition of sulfuric acid throughout the duration of the reaction. The lower the pH of the reaction mixture, the faster the degradation of atrazine. The surface area of the sulfuric acid-treated iron particles was 0.31 (+/- 0.01) m2 g-1 and the surface area normalized initial pseudo-first order rate constants (kSA, where rate = kSA x (surface area/l) x [Atrazine]) at pH values of 2.0, 3.0, and 3.8 were equal to, respectively, 3.0 (+/- 0.4) x 10(-3) min-1 m-2 l, 5 (+/- 3) x 10(-4) min-1 m-2 l, and 1 (+/- 1) x 10(-4) min-1 m-2 l. The observed products of the degradation reaction were dechlorinated atrazine (2-ethylamino-4-isopropylamino-1,3,5-triazine) and possibly hydroxyatrazine (2-ethylamino-4-isopropylamino-6-hydroxy-s-triazine). Triazine ring protonation may account, at least in part, for the observed effect of pH on atrazine dechlorination via metallic iron.  相似文献   

15.
This study evaluated the mobility and persistence of atrazine and ametryn in red–yellow latosols using polyvinyl chloride columns with a diameter of 100 mm and a height of 15 cm. The assays simulated 60-mm rainfall events at 10-day intervals for 70 days. The persistence and leaching were evaluated for these two herbicides. The analytes obtained from the samples were quantified by gas chromatography using flame ionization detection. Compared with ametryn, atrazine showed a greater potential to reach depths below 15 cm over 30 days of simulated rain. Ametryn, however, showed greater persistence in soil at 70 days after application. The persistence of atrazine and ametryn in soil under sunlight was 10 and 144 days respectively. Atrazine was more susceptible to sunlight than ametryn because sunlight favored atrazine degradation in hydroxyatrazine. The results indicate that in red–yellow latosol, atrazine has a high leaching potential in short term, but that ametryn is more persistent and has a high leaching potential in long term.  相似文献   

16.
Atrazine degrading enrichment culture was prepared by its repeated addition to an alluvial soil and its ability to degrade atrazine in mineral salts medium and soil was studied. Enrichment culture utilized atrazine as a sole source of carbon and nitrogen in mineral salts medium and degradation slowed down when sucrose and/or ammonium hydrogen phosphate were supplemented as additional source of carbon and nitrogen, respectively. Biuret was detected as the only metabolite of atrazine while deethylatrazine, deisopropyatrazine, hydroxyatrazine and cyanuric acid were never detected at any stage of degradation. Enrichment culture degraded atrazine in an alkaline alluvial soil while no degradation was observed in the acidic laterite soil. Enrichment culture was able to withstand high concentrations of atrazine (110 μg/g) in the alluvial soil as atrazine was completely degraded. Developed mixed culture has the ability to degrade atrazine and has potential application in decontamination of contaminated water and soil.  相似文献   

17.
The degradation of atrazine in aqueous solution by UV or UV/H2O2 processes, and the toxic effects of the degradation products were explored. The mineralization of atrazine was not observed in the UV irradiation process, resulting in the production of hydroxyatrazine (OIET) as the final product. In the UV/H2O2 process, the final product was ammeline (OAAT), which was obtained by two different pathways of reaction: dechlorination followed by hydroxylation, and the de-alkylation of atrazine. The by-products of the reaction of dechlorination followed by hydroxylation were OIET and hydroxydeethyl atrazine (OIAT), and those of de-alkylation were deisopropyl atrazine (CEAT), deethyl atrazine (CIAT), and deethyldeisopropyl atrazine (CAAT). OIAT and OAAT appeared to be quite stable in the degradation of atrazine by the UV/H2O2 process. In a toxicity test using Daphnia magna, the acute toxic unit (TUa) was less than 1 of TUa (100/EC50, %) in the UV/H2O2 process after 30 min of reaction time, while 1.2 to 1.3 of TUa was observed in the UV process. The TUa values of atrazine and the degradation products have the following decreasing order: OIET> Atrazine> CEAT≈CIAT> CAAT. OIAT and OAAT did not show any toxic effects.  相似文献   

18.
The aim of this study was to investigate the behavior of the association between atrazine and glyphosate in the soil through mineralization and degradation tests. Soil treatments consisted of the combination of a field dose of glyphosate (2.88 kg ha?1) with 0, ?, 1 and 2 times a field dose of atrazine (3.00 kg ha?1) and a field dose of atrazine with 0, ?, 1 and 2 times a field dose of glyphosate. The herbicide mineralization rates were measured after 0, 3, 7, 14, 21, 28, 35, 42, 49, 56 and 63 days of soil application, and degradation rates after 0, 7, 28 and 63 days. Although glyphosate mineralization rate was higher in the presence of 1 (one) dose of atrazine when compared with glyphosate alone, no significant differences were found when half or twice the atrazine dose was applied, meaning that differences in glyphosate mineralization rates cannot be attributed to the presence of atrazine. On the other hand, the influence of glyphosate on atrazine mineralization was evident, since increasing doses of glyphosate increased the atrazine mineralization rate and the lowest dose of glyphosate accelerated atrazine degradation.  相似文献   

19.
Gallard H  De Laat J 《Chemosphere》2001,42(4):405-413
The rates of degradation of 1,2,4-trichlorobenzene (TCB), 2,5-dichloronitrobenzene (DCNB), diuron and isoproturon by Fe(II)/H2O2 and Fe(III)/H2O2 have been investigated in dilute aqueous solution ([Organic compound]0 approximately 1 microM, at 25.0 +/- 0.2 degrees C and pH < or = 3). Using the relative rate method with atrazine as the reference compound, and the Fe(II)/H2O2 (with an excess of Fe(II)) and Fe(III)/H2O2 systems as sources of OH radicals, the rate constants for the reaction of OH* with TCB and DCNB were determined as (6.0 +/- 0.3)10(9) and (1.1 +/- 0.2)10(9) M(-1) s(-1). Relative rates of degradation of diuron and isoproturon by Fe(II)/H2O2 were about two times smaller in the absence of dissolved oxygen than in the presence of oxygen. These data indicate that radical intermediates are reduced back to the parent compound by Fe(II) in the absence of oxygen. Oxidation experiments with Fe(III)/H2O2 showed that the rate of decomposition of atrazine markedly increased in the presence of TCB and this increase has been attributed to a regeneration of Fe(II) by oxidation reactions of intermediates (radical species and dihydroxybenzenes) by Fe(III).  相似文献   

20.
A contamination of off-site aquatic environments with pesticides has been observed in the tropics, yet only sparse information exists about pesticide fate in such ecosystems. The objective of our semi-field study was to elucidate the fate of alachlor, atrazine, chlorpyrifos, endosulfan, metolachlor, profenofos, simazine, and trifluralin in the aqueous environment of the Pantanal wetland (MT, Brazil). To this aim, water and water/sediment microcosms of two sizes (0.78 and 202 l) were installed in the outskirts of this freshwater lagoon environment and pesticide dissipation was monitored for up to 50 d after application. The physical-chemical water conditions that developed in the microcosms were reproducible among field replicates for both system sizes. Pesticide dissipation was substantially enhanced for most pesticides in small microcosms relative to the large ones (reduced DT(50) by a factor of up to 5.3). The presence of sediment in microcosms led to increased persistence of chlorpyrifos, endosulfan, and trifluralin in the test systems, while for polar pesticides (alachlor, atrazine, metolachlor, profenofos, and simazine) a lesser persistence was observed. Atrazine, simazine, metolachlor, and alachlor were identified as the most persistent pesticides in large water microcosms (DT(50) > or = 47 d); in large water/sediment systems endosulfan beta, atrazine, metolachlor, and simazine showed the slowest dissipation (DT(50) > or = 44 d). A medium-term accumulation in the sediment of tropical ecosystems can be expected for chlorpyrifos and endosulfan isomers (11-35% of applied amount still extractable at 50 d after application). We conclude that the persistence of the studied pesticides in aquatic ecosystems of the tropics is not substantially lower than during summer in temperate regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号