首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 131 毫秒
1.
二次风口的合理布设是实现炉膛内气体混合均匀、反应完全的有效措施之一,运用CFD技术进行二段往复炉排焚烧炉二次风口的辅助设计,借助PHOENICS软件模拟二次风口对炉内流场的影响.通过模拟发现,二次风口的布设可明显提高烟气的湍流程度,前后墙各设一排直径为0.04 m的二次风口可以实现最佳的炉膛流场工况.  相似文献   

2.
针对城市生活垃圾焚烧发电的排放问题,以重庆市某垃圾焚烧炉为原始模型,在炉膛两侧炉壁的适当位置设置二次配风口,并采用CFD(计算流体动力学)方法对炉膛内气体的二次燃烧过程进行数值模拟。通过观察对比有无二次配风以及二次配风口位置不同时炉膛内气体的温度场、气体在炉膛内的停留时间分布以及炉膛内气体的混合程度和湍动能等,重点分析了二次风在气体燃烧过程中所起的作用,并对2种不同二次配风口位置时抑制二恶英产生的效果进行了评价。通过对垃圾焚烧炉二次风的优化数值模拟,获得了适合本焚烧炉的比较合理的二次配风条件,可为焚烧炉的设计和改进提供一些有价值的参考。  相似文献   

3.
利用CFD技术,对某城市处理量为750 t·d~(-1)的垃圾焚烧炉内燃烧与选择性非催化还原脱硝(SNCR)过程进行建模分析,重点研究了二次风喷嘴角度的改变对焚烧炉内燃烧温度场的影响及其对提高SNCR脱硝效率的作用。模拟结果表明,焚烧炉二次风喷嘴角度调整为相互交叉45°,可以改善炉内燃烧状况,促进炉膛内烟气与空气的混合,使炉膛内温度场分布均匀,有利于SNCR还原反应;二次风喷嘴角度改变后,在一定程度上保证了SNCR系统喷入的尿素液滴在炉膛内的停留时间。与平行二次风相比,使用交叉二次风送风方案,前墙喷嘴脱硝效率提高4.8%,后墙喷嘴脱硝效率提高了19.7%。  相似文献   

4.
对一台所设计的DZL1.0-0.7-AⅢ煤无烟燃烧锅炉炉内燃烧特性进行了数值模拟。对床层反应,采用了基于热力学平衡法的“黑箱模型”,而对于床层上方炉膛空间内的气相湍流燃烧则采用了标准κ-ε模型、旋涡消散模型和离散坐标模型。采用非结构化四面体网格生成技术处理复杂炉膛几何空间的网格生成。通过数值模拟,得到炉内速度场,温度场,浓度场等参数的分布特性。结果表明:“多孔分层错列撞击流式”二次风的引入对于改变炉内流动和燃烧特性,加强炉内烟气和空气的混合,强化燃烧及实现炉内消烟除尘具有重要的作用。  相似文献   

5.
对一台所设计的DZL1.0-0.7-AⅢ煤无烟燃烧锅炉炉内燃烧特性进行了数值模拟.对床层反应,采用了基于热力学平衡法的"黑箱模型",而对于床层上方炉膛空间内的气相湍流燃烧则采用了标准k-ε模型、旋涡消散模型和离散坐标模型.采用非结构化四面体网格生成技术处理复杂炉膛几何空间的网格生成.通过数值模拟,得到炉内速度场,温度场,浓度场等参数的分布特性.结果表明:"多孔分层错列撞击流式"二次风的引入对于改变炉内流动和燃烧特性,加强炉内烟气和空气的混合,强化燃烧及实现炉内消烟除尘具有重要的作用.  相似文献   

6.
对于冲天炉的结构及其消烟除尘,国内外都已作过不少的研究,创造了各具特色的炉型结构和消烟除尘办法。如三节炉、普通三排小风口冲天炉、密筋炉胆热风冲天炉、多排小风口曲线炉膛热风冲天炉等。但由于这些炉型的使用,从铁水质量、温度到元素烧损等方面都不够理想,因而烟尘污染很难净化处理。针对这些问题,本文拟在阐明3T/h 双层分离送风  相似文献   

7.
针对一种新型两段式生活垃圾分区气化燃烧装置,提出了基于分区气化模型的垃圾热转化过程数值模拟方法。该方法耦合化学反应动力学和流体动力学软件预测移动床层垃圾的气化以及炉内气相空间的燃烧过程。通过对组分及热值差异较大的2种生活垃圾在炉内的反应过程进行模拟,得到了炉内的气相组分、温度及流场的分布。结果表明,该方法能够很好地适用于复杂组分的垃圾热转化过程模拟研究。高水分、低热值的生活垃圾气化后再燃炉膛出口温度处于973~1 073 K,不利于二恶英的生成控制。前拱二次风的增加不仅加强了炉内的湍流扰动,而且加强了炉内主反应区的温度。经过对流场和温度场进行优化,烟气的停留时间延长,炉膛出口烟气中的可燃气体组分大大降低,而且NO的浓度降低了近一个数量级。  相似文献   

8.
本文介绍了二甘醇单甲醚和二甘醇双甲醚对昆明种小鼠和Wistar大鼠的急性毒性。二甘醇单甲醚口服LD50值昆明种小鼠为8.5ml/kg,Wistar大鼠为8.2ml/kg;二甘醇双甲醚口服LD50值昆明种小鼠为5.8ml/kg。二甘醇单甲醚和二甘醇双甲醚昆明种小鼠吸入急性毒性,在过饱和蒸气浓度下,染毒4小时,两周内动物未出现死亡。二甘醇单甲醚和二甘醇双甲醚对兔皮肤均有轻度刺激性,对兔眼粘膜刺激性均呈  相似文献   

9.
垃圾焚烧过程的不稳定会导致大量有害物质的生成,为确保垃圾的清洁燃烧需要将炉膛温度控制在850℃以上,为此测试了焚烧炉运行的主要可控参数对炉膛温度的影响。结果表明,垃圾堆放位置在垃圾池深3~8 m处,并经过6 d以上发酵脱水后适合焚烧;炉膛温度随给料量、一次风率和一次风温增加而增大,随过量空气系数增加而降低,其中给料量宜控制在95%~110%之间;当过量空气系数为1.6、一次风率为90%、一次风温为260℃、给料量为100%时炉膛温度达901℃。  相似文献   

10.
二沉池动态仿真模型研究   总被引:5,自引:1,他引:5  
建立了二沉池的一维动态模型,同时定义偏差函数作为模型参数校核的目标函数,并对某污水厂二沉池进行动态仿真的模拟.通过对模拟数据和实际运行数据的对比,验证了二沉池模拟的合理性以及参数校核方法的有效性.  相似文献   

11.
This work summarizes the results of numerical investigations and in situ measurements for turbulent combustion in a full-scale rotary kiln incinerator (RKI). The three-dimensional (3D) governing equations for mass, momentum, energy, and species, together with the kappa - epsilon turbulence model, are formulated and solved using a finite volume method. Volatile gases from solid waste were simulated by gaseous CH4 distributed nonuniformly along the kiln bed. The combustion process was considered to be a two-step stoichiometric reaction for primary air mixed with CH4 gas in the combustion chamber. The mixing-controlled eddy-dissipation model (EDM) was employed to predict the conversion rates of CH4, O2, CO2, and CO. The results of the prediction show that reverse flows occur near the entrance of the first combustion chamber (FCC) and the turning point at the entrance to the second combustion chamber (SCC). Temperature and species are nonuniform and are vertically stratified. Meanwhile, additional mixing in the SCC enhances postflame oxidation. A combustion efficiency of up to 99.96% can be achieved at approximately 150% excess air and 20-30% secondary air. Reasonable agreement is achieved between numerical predictions and in situ measurements.  相似文献   

12.
A wind tunnel study was conducted to determine the optimal design features of a large, open-top chamber, as needed for pollution exposure studies on mature trees. An optimally-designed, open-top chamber must minimize the incursion of ambient air through its opening and maintain a uniform treatment concentration throughout the chamber. The design features of interest are the diameter and height of the chamber and the deflection angle and opening size of any frustum that may be mounted on top of a model chamber.

Design specifications depend on the turbulence regime about the chamber, which is influenced by the nature of the surrounding vegetation. Consequently, our investigation was performed on scale-model, open-top chambers in a wind tunnel populated with a model coniferous forest. Turbulence measurements demonstrated the similarity between the turbulence regime of the model and a natural forest. A hydrocarbon tracer was injected into the wind tunnel flow to characterize chamber performance.

The main design features of open-top chambers are the velocity of air exiting through the top and the relationship between the length scale of the turbulence and the diameter of the chamber opening. As exit velocities increase, the proportion of eddies with sufficient force to penetrate into the chamber decrease. Therefore, for equal volumetric air flows, smaller opening sizes increase the exit velocities and reduce the number and extent of ambient air incursions. Almost total exclusion of ambient air is achieved as the exit velocity of the air exceeds the magnitude of one standard deviation of the vertical wind velocity measured at the chamber top. The incursion of ambient air is also reduced when the diameter of the chamber opening is smaller than the characteristic length scale of the turbulence, a measure of mean eddy size.

Frusta deflect air flow over the chamber. Three prototypes, with 30?, 45? and 60-degree angles were tested. A 30-degree frustum slightly improves the performance of the chamber and is more effective in preventing ambient air from entraining into the chamber opening than frusta with either a 45? or 60-degree angle. A flatter frustum allows for a smoother transition in the wind velocity streamline and is less apt to cause wake turbulence, as is the case with steeper frusta.

Knowledge of the turbulence characteristics of plant canopies are readily available in the literature and can aid scientists and engineers in designing the optimal chamber and frusta dimensions for their particular application. Therefore, the empirical approach to chamber design can be avoided, and substantial savings can be realized.  相似文献   

13.
For aerosol measurements, especially those concerned with the aerosol particle size distribution, it is important to sample in isokinetic conditions. Most available instrumentation for aerosol measurements is intended for use on the ground under light wind conditions; intake air speeds rarely exceed a few meters per second. If the same instrumentation is used onboard an aircraft, the air must be decelerated 60 or more m/sec before It is sampled by individual instruments.

On The Pennsylvania State University Meteorology research aircraft, the air for all aerosol instruments is decelerated in a single isokinetic sampler located above the roof of the cabin outside the aircraft boundary layer. The air enters the sampler through a carefully designed circular intake. Its velocity is reduced as the cross section increases along a 7° conical diffuser. The expansion cone terminates in a cylindrical chamber in which the air velocity is 1/16 the aircraft speed. Behind the sampling chamber the air is accelerated in a second conical section to an end exhaust port. Exhaust porf "pumping" is used to compensate internal losses and, thus, helps preserve the isokinetic nature of the sampler.

Tubes leading to individual instruments are located in the sampling chamber and may be individually adapted to match the air sampling velocity with the local air speed inside the sampling chamber. The level of turbulence (urms/û) in the sampling section is =^0.05.

The sampler has been thoroughly wind tunnel and flight tested and successfully used in August and November, 1974, for field programs in the St. Louis and Tucson metropolitan areas, respectively.  相似文献   

14.
Ionization-based air cleaners can emit high concentrations of ozone. With the aim to limit the ozone concentration below the standard value in actual use conditions, we propose a standard procedure for testing and ranking the ozone emission of air cleaners. It is demonstrated by testing 27 samples of air cleaners that ozone emission rate can be measured in an airtight environmental chamber, by applying a generation-decay model to the concentration increase curve. The results indicate that deposition velocities vd on chamber wall surfaces need to be better characterized so that the ozone emission of a tested product could be characterized by a three-parameter model. The model takes into account actual room sizes and surface material deposition effects to predict ozone concentrations in indoor applications. This procedure accounts for ozone decay effect in an explicit manner and allows using alternative testing chamber sizes other than as specified in the current Underwriters Laboratory standard.  相似文献   

15.
Recent investigations of ambient aerosol behavior over urban areas have pointed out the need for controlled experimental data to link together field investigation results and computer simulation studies. This paper describes the design considerations, construction details and operating parameters of a large (8000 ft3) outside reaction chamber constructed in rural North Carolina. The chamber is triangular in cross-section, 20 ft wide, 20 ft high and 40 ft long, and is covered with clear 5 ml Teflon film. The outdoor location of the chamber permits the reaction volume to be exposed to the natural conditions of temperature and solar radiation. A recirculating air system allows the air in the chamber to be passed through an “absolute” fiberglas filter for adjustment of condensation nuclei concentration and also through driers for humidity adjustment. Internal fans are provided for mixing of the chamber contents without use of the recirculating system so that various degrees of turbulence can be approximated. A sampling line from the chamber passes directly to an instrument room, located directly under the chamber, where direct analyses for particle composition, concentration, and size, and gas composition and concentration are carried out. Parameters which can be varied in this system include number, size, distribution, and chemical composition of pre-existing nuclei, as well as humidity, solar radiation, temperature, and trace gas concentration and composition.  相似文献   

16.
The emissions from five commonly used building products were studied in small-scale test chambers over a period of 50 days. The odor intensity was assessed by a sensory panel and the concentrations of selected volatile organic compounds (VOCs) of concern for the indoor air quality were measured. The building products were three floor coverings: PVC, floor varnish on beechwood parquet and nylon carpet on a latex foam backing; an acrylic sealant, and a waterborne wall paint on gypsum board. The impacts of the VOC concentration in the air and the air velocity over the building products on the odor intensity and on the emission rate of VOCs were studied. The emission from each building product was studied under two or three different area-specific ventilation rates, i.e. different ratios of ventilation rate of the test chamber and building product area in the test chamber. The air velocity over the building product samples was adjusted to different levels between 0.1 and 0.3 m s-1. The origin of the emitted VOCs was assessed in order to distinguish between primary and secondary emissions. The results show that it is reasonable after an initial period of up to 14 days to consider the emission rate of VOCs of primary origin from most building products as being independent of the concentration and of the air velocity. However, if the building product surface is sensitive to oxidative degradation, increased air velocity may result in increased secondary emissions. The odor intensity of the emissions from the building products only decayed modestly over time. Consequently, it is recommended to use building products which have a low impact on the perceived air quality from the moment they are applied. The odor indices (i.e. concentration divided by odor threshold) of primary VOCs decayed markedly faster than the corresponding odor intensities. This indicates that the secondary emissions rather than the primary emissions, are likely to affect the perceived air quality in the long run. Some of the building products continued to affect the perceived air quality despite the concentrations of the selected VOCs resulted in odor indices less than 0.1. Therefore, odor indices less than 0.1 as an accept criterion cannot guarantee that a building product has no impact on the perceived air quality.  相似文献   

17.
Design of a compact dilution sampler for stationary combustion sources   总被引:2,自引:0,他引:2  
The dilution sampling method simulates the rapid cooling and dilution processes after hot flue gas have left the stack. This allows gases or vapors to nucleate both homogeneously and heterogeneously, and to condense on preexisting particles in processes analogous to those that occur in the ambient environment. Using this method the authors can collect filterable particulate matter (PM) and condensible PM, that is, primary PM, simultaneously. In order to make this method more suitable for field investigation, a compact dilution sampler was developed. The sampler enhances mixing of dilution air with the stack gas, and thus shortens the length of the mixing section. The design decreases the nominal flow rate through the aging section, and accordingly reduces the size of the residence chamber. The decreased size of the sampler is suitable for field test. Sampling gas is pressured into the residence chamber, and air pressure in the chamber is micro-positive. Uncollected redundant gas is automatically discharged through unused sampling ports, which keeps the unit stable. Performance evaluation tests demonstrate that the design is reasonable. The sampler has been applied to characterize PM emissions from various combustion sources in China.  相似文献   

18.
Organic vapors are emitted to the indoor air from a variety of consumer products and building materials. The U.S. EPA Is evaluating the emission characteristics from such sources using small environmental test chambers. Emission rate data are presented, and the effect of temperature and air exchange rate are discussed. Models are used to account for the Impact of chamber concentration and “wall effects” on emission rates. Indoor concentrations of specific organlcs emitted from a silicone caulk are estimated from the chamber test data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号