首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
某矿区土壤和地下水重金属污染调查与评价   总被引:3,自引:0,他引:3  
为了解湘南某矿区土壤和地下水重金属污染状况,对该矿区东河流域附近重金属污染源进行了调查,同时,对地下水和土壤样品进行了采样分析,结果表明:(1)该矿区东河流域附近的主要污染源有18个,其中有色金属选厂、尾矿库、采矿场和冶炼厂是排放重金属较多的污染源;(2)20个采样点中土壤重金属Pb、Cd、Zn、As和Hg大部分超过国家土壤环境质量标准(GB15618-1995),综合污染指数P综〉1,该矿区主要的重金属污染元素为Cd、As和Hg,且土壤中Cd、Zn和As的含量两两之间存在着极显著的正线性相关关系;(3)重金属元素在土壤中的纵向迁移不明显,该矿区附近20个采样点的地下水并未受到污染,综合污染指数P综〈1。20个采样点地下水Pb、Cd、Zn、As、Hg浓度均能达到地下水质量标准(GB/T14848.9)中的Ⅲ类标准。  相似文献   

2.
This study examined the concentrations of total hydrocarbons (THC), polychlorinated biphenyls (PCB), polyaromatic hydrocarbons (PAH), and trace metals (Cu, Zn, Cd, Pb, Hg and As) in marine sediments off Scott Base (NZ) and compared them with sediments near the highly polluted McMurdo Station (US) as well as less impacted sites including Turtle Rock and Cape Evans. The Antarctic mollusc, Laternula elliptica and three common sponge species were also analysed for trace metals. The mean THC concentration in sediments from Scott Base was 3 fold higher than the pristine site, Turtle Rock, but 10 fold lower than samples from McMurdo Station. McMurdo Station sediments also contained the highest concentrations of PAHs, PCBs and the trace metals, Cu, Zn, Pb, Cd and Hg. Copper was significantly higher in bivalves from McMurdo Station than other sites. Trace metal concentrations in sponges were generally consistent within sites but no spatial patterns were apparent.  相似文献   

3.

Trace metal element contamination in mining areas is always a huge environmental challenge for the global mining industry. In this study, an abandoned sphalerite mine near the Yanshan Mountains was selected as subject to evaluate the soil and water contamination caused by small-scale mining. The results show that (1) Pearson correlation matrix and principal component analysis (PCA) results reveal that Zn, Cu, Cd, and Pb were greatly affected by the operation of mines, especially mineral tailings. The contents of trace metal elements decrease with the increase of the distance from the mining area. Zinc, Pb, and Cd were discovered in almost all soil samples, and Zn accounted for about 80% of pollution of the topsoil. (2) The trace element pollution levels in the topsoil of the three villages were ranked as follows: Cd?>?Cu?>?Pb~Zn. The potential ecological risk of farmland around the mine ranges from lower to higher, with Cd being the most harmful. (3) Human health risk assessment results show that trace elements in the mining area pose obvious non-carcinogenic health risks to children while the risks to adults are not equally obvious. The carcinogenic risk of Cd and Cr is within a safe range and does not pose an obvious cancer risk to the population.

  相似文献   

4.
5.
In the context of biosolids utilisation in forestry, effects of sludge application on mushroom metal concentration were studied in six sites of maritime pine forests in the South-West of France. Municipal sludge were applied at a rate of 6 T dry matter per hectare. Edible mushrooms were collected two years after sludge application. As, Cd, Cu, Hg, Pb, Se and Zn concentrations were determined. Results showed a high variability for trace element concentrations in mushrooms collected from control areas. No significant correlation was found between soil parameters (pH and trace elements concentrations) and mushroom trace element concentrations. Even if the concentration of trace metals increased in the soils, sludge application did not affect As, Cu, Se and Zn concentrations in carpophores but slightly increased Cd, Pb and Hg concentrations on some sites. This effect is dependent on sludge type and sites.  相似文献   

6.
Huang SS  Liao QL  Hua M  Wu XM  Bi KS  Yan CY  Chen B  Zhang XY 《Chemosphere》2007,67(11):2148-2155
We investigated concentrations of Hg, Cd, Pb, Zn, Cu, As, Ni, and Cr in samples of soil, cereal, and vegetables from Yangzhong district, China. Compared to subsoils, the sampled topsoils are enriched in Hg, Cd, Cu, Pb, Zn, and As. High levels of Cd and Hg are observed in most agricultural soils. Concentrations of Cr and Ni show little spatial variation, and high Cu, Pb, and Zn contents correspond well to areas of urban development. High As contents are primarily recorded at the two ends of the sampled alluvion. The contents of Cd, Hg, and total organic carbon (TOC) increase gradually to maximum values in the upper parts of soil profiles, while Cr and Ni occur in low concentrations within sampled profiles. As, Pb, Cu, and Zn show patterns of slight enrichment within the surface layer. Compared to data obtained in 1990, Cd and Hg show increased concentrations in 2005; this is attributed to the long-term use of agrochemicals. Cr and Ni contents remained steady over this interval because they are derived from the weathering of parent material and subsequent pedogenesis. The measured As, Cu, Pb, and Zn contents show slight increases over time due to atmospheric deposition of material sourced from urban anthropogenic activity. Low concentrations of heavy metals are recorded in vegetables and cereals because the subalkaline environment of the soil limits their mobility. Although the heavy metal concentrations measured in this study do not pose a serious health risk, they do affect the quality of agricultural products.  相似文献   

7.
Metal (Cr, Co, Cu, Zn, Cd, Pb, Ni) and metalloid (As) accumulation was studied in roadside soil and wild rat (Rattus sp.) samples from near a Pb-Zn mine (Kabwe, Zambia) and the capital city of Zambia (Lusaka). The concentrations of the seven metals and As in the soil samples and Pb in the rat tissue samples were quantified using atomic absorption spectroscopy. The concentrations of Pb, Zn, Cu, Cd, and As in Kabwe soil were much higher than benchmark values. Geographic Information System analysis indicated the source of metal pollution was mining and smelting activity. Interestingly, the area south of the mine was more highly contaminated even though the prevailing wind flow was westward. Wild rats from Kabwe had much higher tissue concentrations of Pb than those from Lusaka. Their body weight and renal Pb levels were negatively correlated, which suggests that mining activity might affect terrestrial animals in Kabwe.  相似文献   

8.
Liu X  Zhao S  Sun L  Yin X  Xie Z  Honghao L  Wang Y 《Chemosphere》2006,65(4):707-715
Concentrations of P and trace metals Zn, Cu, Cd, Pb and Hg in the faeces, bones, eggshells and feathers of seabirds and in the plants, soils and sediments with and without seabird influence on Dongdao Island, South China Sea, were determined and analyzed. Among the seabird biomaterials, the levels of P, Zn, Cu and Cd are the highest in the droppings and several times those in other materials; the Hg concentration is the highest in the feathers; and the Pb content is comparable among these biomaterials. These marked differences indicate different intake-bioaccumulation-elimination pathways for different trace metals. The levels of P, Zn, Cu, Cd and Hg in the plant, soil and sediment samples with the influence of seabird droppings are significantly higher than those in the samples without, and they are significantly correlated with each other. Thus, P, Zn, Cu, Cd and Hg are very likely to have a common source-predominantly bird guano-and the faeces of red-footed booby is an important vector for the flux of nutrient phosphorus and trace metals Zn, Cu, Cd and Hg from marine to island ecosystems on Dongdao Island.  相似文献   

9.
The modified BCR three-step sequential extraction procedure was used to examine the temporal dynamics of trace elements in soils contaminated by an accidental spill from an opencast mine in south-west Spain. Soils were mainly contaminated with pyritic sludge and acidic wastewater, whereas some soils were affected only by acidic wastewater. The distributions obtained for both some major (Ca, Fe and Mn) and trace elements (As, Cd, Cu, Pb and Zn) in the sludge and soil samples taken at different times after the accident, 1-3 months and 21 months, were compared. Sequential extractions were useful in identifying different sources of contamination, and in obtaining additional information on the solubility of secondary minerals formed by pyrite oxidation. Thus, the effectiveness of the BCR procedure has proved to be a useful tool for predicting short- and long-term mobility of trace elements, even in complex environmental scenarios.  相似文献   

10.

Trace element pollution in rivers by anthropogenic activities is an increasing problem worldwide. In this study, the contamination and ecological risk by several trace elements were evaluated along a 100-km stretch of the San Jorge River in Colombia, impacted by different mining activities. The increase of average concentration levels and range of trace elements in sediments (in μg/g) was as follows: Cu 6656 (454–69,702) > Cd 1159 (0.061–16,227) > Zn 1064 (102–13,483) > Ni 105 (31–686) > Pb 7.2 (5.1–11.7) > As 1.8 (1.0–3.2) > Hg 0.31 (0.12–1.37). Results showed that surface sediments could be classified as very high ecological risk index (RI > 600), associated with high contamination of Hg, Cd, and Cu, in stations close mining activities. Values for pollution load index indicate an environmental deterioration (PLI > 1), and sediment quality guidelines (SQGs) suggested that Cu, Ni, Zn, and Hg caused adverse biological effects. We further used pollution indices such as contamination factor (CF), enrichment factor (EF), and geoaccumulation index (Igeo) to assess the extent of contamination. According to these indices, discharges of hazardous chemicals over many years have resulted in a high degree of pollution for Cu, Pb, and Cd, with critical values in stations receiving wastes from mining activities. Multivariate statistical analysis suggested that Hg, Cd, Cu, and Zn derived from gold and coal mining, Ni and As were related from the mining of ferronickel and coal, respectively, whereas the high Pb load was attributed to diffuse source of pollution. In sum, our study provided the first detailed database on metal concentration and ecological risks to organisms in sediments of the San Jorge River Basin, and the current results also suggested future research for public health action.

  相似文献   

11.
The Yellow River Delta is the most intact estuary wetland in China and suffers from great pressure of metals. Seventy-seven surface sediment samples were collected in the delta, and contents of Cu, Pb, Cd, Cr, Zn, Ni, and Mn were analyzed by inductively coupled plasma spectrometry and those of Hg and As by atomic fluorescence spectrometry. The results showed that means of metal contents (ppm, dry weight) were as follows: Hg, 0.04; Cr, 61.72; Cu, 20.97; Zn, 60.73; As, 9.47; Pb, 21.91; Cd, 0.12; Ni, 27.24; and Mn, 540.48. 43.8% of Hg and 14.3% of Cd were from the allogenic source while others from the authigenic source. The results of the geoaccumulation indexes appeared that 6.5% of sites from the estuarine and the Gudao areas were moderately polluted by Hg. All ecological risk index values of Hg and 37.7% of Cd were more than 40, which were the main factors of strongly and moderately potential ecological risks of 37.7% of sites in the delta. High Cd contents may be due to the alkaline conditions of the delta and the unreasonable management of the farmland, while the abnormal distribution of Hg to the wet or dry deposition and the erosion of the seawater. It was suggested to monitor Hg content in the atmosphere of the Yellow River Delta. The results were expected to update the pollution status of metals in the delta and created awareness of preserving the sound condition of the Yellow River Delta.  相似文献   

12.
In situ benthic flux experiments were conducted at two stations in the Mar Piccolo of Taranto (Italy), one of the most industrialised and contaminated coastal areas of the Mediterranean. Sediments of the two stations are notably different in their trace metal content, with a station closer to a Navy harbour showing higher mean concentrations of almost all investigated metals (Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, V and Zn). Conversely, both stations are characterised by significant Hg contamination, compared to the local baseline. Results of a sequential extraction scheme on surface sediments suggest a relatively scarce mobility of the examined metals (Zn > Ni > Cr > As > Cu > Pb). A Hg-specific extraction procedure showed that most of the element (93.1 %) occurs in a fraction comprising Hg bound to Fe/Mn oxi-hydroxides. Reduction of these oxides may affect Hg remobilisation and redistribution. Porewater profiles of dissolved trace metals were quite similar in the two sites, although significant differences could be observed for Al, Cu, Fe and Hg. The highest diffusive fluxes were observed for As, Fe and Mn. Mobility rates of several trace elements (Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, V and Zn) were directly measured at the sediment–water interface. Results from benthic in situ incubation experiments showed increasing dissolved metal concentrations with time, resulting in higher fluxes for Cu, Fe, Hg, V and Zn in the most contaminated site. Conversely, fluxes of Mn, Ni and Pb were comparable between the two stations. The estimated flux of Hg (97 μg m?2 day?1) was the highest observed among similar experiments conducted in other highly contaminated Mediterranean coastal environments. Benthic fluxes could be partially explained by considering rates of organic matter remineralisation, dissolution of Fe/Mn oxy-hydroxides and metal speciation in sediments. Seasonal and spatial variation of biogeochemical parameters can influence metal remobilisation in the Mar Piccolo area. In particular, metals could be promptly remobilised as a consequence of oxygen depletion, posing a serious concern for the widespread fishing and mussel farming activities in the area.  相似文献   

13.
This study reports the chemical fractionation of several potentially toxic elements (Zn, Pb, Cd, As, and Sb) in contaminated technosoils of two former smelting and mining areas using two sequential extraction schemes. The extraction schemes used in this study were the Tessier’s scheme and a modified BCR scheme. The fractions were rearranged into four equivalent fractions defined as acid soluble, reducible, oxidizable, and residual to compare the results obtained from two sequential extraction schemes. Surface soils were samples from a waste landfill contaminated with Zn, Pb, and Cd located at Mortagne-du-Nord (MDN; North France) and from a settling basin contaminated with PTE such as As, Pb, and Sb located at La Petite Faye (LPF; Limoges, France). The study of the Zn, Pb, Cd, As, and Sb partitioning in the acid soluble, reducible, oxidizable, and residual fractions of the technosoils revealed that Zn, Cd, and Pb were mainly associated with the acid soluble and reducible fractions for MDN site, while As, Sb, and Pb were associated with residual fraction for LPF site. Fractionation results indicate that the percentages of Zn, Pb, Cd, As, and Sb extracted in Fe–Mn oxide bound fraction of Tessier’s scheme were always higher than those extracted by modified BCR scheme. This may be attributed to the stronger Tessier’s scheme conditions used to extract this fraction. In contrast the percentages of Zn, Pb, Cd, As, and Sb extracted in the organic fraction of the modified BCR scheme were always higher than those of the Tessier’s scheme. The order of mobility of PTE was as follows: Cd?>?Zn?>?Pb in MDN site and As?>?Sb?>?Pb in LPF site. PTE were distributed in all soil fractions, with the most relevant enrichments in extractable and residual fractions. A significant amount of Cd, Pb, and Zn were rather mobile, which suggests that these elements can be readily available to plants and soil organisms.  相似文献   

14.

Pollution of water bodies and sediments/soils by trace elements remains a global threat and a serious environmental hazard to biodiversity and human’s health. Globalization and industrialization resulted in the increase and availability of these substances in the environment posing unpredictable adverse effects to living organisms. To determine pollution status and risk contamination by trace elements, data available in the literature of the last 40 years on trace elements occurrence in three environmental matrices (water bodies, sediments/soils, and biota) from Continental Portugal were collected (about 90 studies). Data were compared to water and sediment quality guidelines to assess potential ecological risks. Most environmentally relevant hazardous elements include Zn, Cu, Cd, Pb, and As. Various studies found trace elements at levels higher than those considered safe by environmental guidelines. In surface waters, Al, Zn, Se, and Ag were found above aquatic life limits in about 60% of the reviewed papers, while Cu, Zn, and As exceed those values in more than 60% of mining waters. Hg and Cd in sediments from mining areas exceeded aquatic life limits and potential ecological risk showed extremely high risk for most of the elements. The data compiled in this review is very heterogenous, varying in terms of sampling schemes, trace elements analysed, and spatiotemporal settings. This heterogenicity leads to data differences that make meaningful comparisons difficult. Nevertheless, the compilation of scattered environmental spatial and temporal trace elements data, of either natural sources or human activity as well as the ultimate effect on biological systems, is of the upmost importance to broaden its knowledge, risk assessment, and implementation of mitigation measures.

  相似文献   

15.
Identifying and quantifying the contributions of multiple sources of trace elements to stream sediments in a basin containing several possible inputs presents a unique problem related to the investigation of rivers impacted by industrial activity. A multi-source dilution–mixing model was developed and applied to determine the relative contributions to As, Cu and Pb burdens in the Clark Fork River, Montana, a recipient of historical mine wastes as a result of over a century of mining and milling operations. The results identified the Flint Creek drainage as a major source of anthropogenic As (47%) and Pb (35%) to sediments of the Clark Fork River and the Milltown Reservoir, in addition to the major sources associated with mining operations in Butte, MT. The Little Blackfoot River also contributes anthropogenic As (3%) and Pb (4%) to the Clark Fork River, while minor inputs of Cu (1%) and Pb (2%) emanate from the Blackfoot River. The model allows source quantification, and an understanding of the fate and transport of mine wastes in a basin, allowing identification and eventual prioritization of sites destined for remediation.  相似文献   

16.
Identifying and quantifying the contributions of multiple sources of trace elements to stream sediments in a basin containing several possible inputs presents a unique problem related to the investigation of rivers impacted by industrial activity. A multi-source dilution-mixing model was developed and applied to determine the relative contributions to As, Cu and Pb burdens in the Clark Fork River, Montana, a recipient of historical mine wastes as a result of over a century of mining and milling operations. The results identified the Flint Creek drainage as a major source of anthropogenic As (47%) and Pb (35%) to sediments of the Clark Fork River and the Milltown Reservoir, in addition to the major sources associated with mining operations in Butte, MT. The Little Blackfoot River also contributes anthropogenic As (3%) and Pb (4%) to the Clark Fork River, while minor inputs of Cu (1%) and Pb (2%) emanate from the Blackfoot River. The model allows source quantification, and an understanding of the fate and transport of mine wastes in a basin, allowing identification and eventual prioritization of sites destined for remediation.  相似文献   

17.
2006-2007年采暖季、风沙季和非采暖季分别在抚顺市的6个采样点采集PM10样品,用等离子体原子发射光谱(ICP-AES)法测定样品中Ti、Al、Mn、Mg、Ca、Na、K、Cu、Zn、As、Pb、Cr、Ni、Co、Cd、Fe、V等17种元素的含量,并用地质累积指数对其污染状况进行初步评价。结果表明:(1)从PM10中元素在不同采样点的含量看,抚顺市PM10中Ti、Mn、Mg、Cu、Zn、Pb、Cr、Ni、Co这9种元素在各采样点间的差别较大;Al、Ca、Na、K、As、Cd、Fe、V这8种元素差别较小。(2)从PM10中元素在不同采样季的含量看,抚顺市PM10中Mn、Mg含量的季间差别较大,其余15种元素季间差别较小。(3)Zn、Cd污染较重;Ti、Al、Mg、Ca、Na、K、As、Fe和V污染较轻;其他6种元素在6个采样点和3个采样季污染程度差别较大。(4)水库采样点各元素污染级别均不是最高;新华采样点PM10中Cu、Zn、Pb、Cr、Ni、Co、Cd污染级别均较高。(5)3个采样季PM10中Cd、Zn污染均较重,属于重度或严重污染;在采暖季PM10中Cu、Pb、Cr的地质累积指数较风沙季、非采暖季大;在非采暖季PM10中Mn、Co受到的污染比采暖季和风沙季稍严重。  相似文献   

18.
Phytomanagement employs vegetation and soil amendments to reduce the environmental risk posed by contaminated sites. We investigated the distribution of trace elements in soils and woody plants from a large phytomanaged site, the Guadiamar Valley (SW Spain), 7 years after a mine spill, which contaminated the area in 1998. At spill-affected sites, topsoils (0-25 cm) had elevated concentrations of As (129 mg kg(-1)), Bi (1.64 mg kg(-1)), Cd (1.44 mg kg(-1)), Cu (115 mg kg(-1)), Pb (210 mg kg(-1)), Sb (13.8 mg kg(-1)), Tl (1.17 mg kg(-1)) and Zn (457 mg kg(-1)). Trace element concentrations in the studied species were, on average, within the normal ranges for higher plants. An exception was white poplar (Populus alba), which accumulated Cd and Zn in leaves up to 3 and 410 mg kg(-1) respectively. We discuss the results with regard to the phytomanagement of trace element contaminated sites.  相似文献   

19.
As a result of processing of metal ores, trace metals have contaminated large areas of northern France. Metal migration from the soil to groundwater presents an environmental risk that depends on the physico-chemical properties of each contaminated soil. Soil water samples were obtained over the course of 1 year with zero-tension lysimeters from an acidic, loamy, metal contaminated soil. The average trace metal concentrations in the soil water were high (e.g. for Zn 11 mg l-1 under the surface horizon), but they varied during the sampling period. Zn concentrations were not correlated with pH or total organic carbon in the solutions but were correlated with Cd concentrations. On average, 95% of the Zn and Cd but only 50% of Pb was present in a dissolved form. Analytical transmission electron microscopy was used to identify the Zn or Pb carriers. Colloids containing Pb and Zn were biocolloids, whereas colloids containing only Zn were smectites.  相似文献   

20.
Trace element contamination of Norwegian Lake sediments   总被引:7,自引:0,他引:7  
Rognerud S  Fjeld E 《Ambio》2001,30(1):11-19
Concentrations of Sb, Hg, Bi, Cd, Mo, As, Co, Ni, Cr, Cu, V, Pb and Zn in surface and preindustrial sediments from 210 lakes in Norway were used for studying modern atmospheric depositions of these elements. Surface sediments had considerably higher concentrations of Sb, Hg, Bi, Cd, As, Pb than preindustrial sediments. The differences decreased with latitude and altitude. A multivariate analysis including the trace elements and the major constituents (organic matter, Si, Al, Fe and Mn) of surface sediments suggested the following relationships: Sb, Hg, Bi, As, and Pb formed a group with strong associations to organic matter. Ni, Cr and Cu formed a second group, weakly associated to the inorganic sediment fraction (Si and Al). Zn and Cd formed a third group with weak associations to organic matter. Co was associated to Mn, whereas Mo and V showed no important covariations with any other trace elements or major components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号