首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In order to avoid that contaminated frog farms animals escaping in the environment and become potential vector of emergent diseases, studies with disinfection protocol are strictly necessary. The formaldehyde is one of the compounds tested in fungal disinfection protocols and also used in aquaculture. This study aimed to determine the median lethal concentration (LC50–96h) of formaldehyde in bullfrog tadpoles and to evaluate the possible genotoxic effects in acute exposition. Accordingly, the animals were exposed to formaldehyde in the concentrations of 6, 9, 12, 15, and 18 mg L?1, and after 96 h blood samples were drawn for the micronucleus (MN) test. The LC50–96h was 10.53 mg L?1, and the MN frequency increased in proportion to the formaldehyde concentrations, with an estimated frequency in the negative control being 1.35 MN/individual. We concluded that formaldehyde is genotoxic to tadpoles of bullfrogs in the tested concentrations, and the choice of this chemical should be contemplated before its use in animals in captivity.  相似文献   

2.
The increasing use of nanoparticles (NPs) worldwide has raised some concerns about their impact on the environment. The aim of the study was to assess the toxicity of metal oxide nanoparticles, singly or combined, in a freshwater fish (Carassius auratus). The fish were exposed for 7, 14, and 21 days to different concentrations of NPs (10 μg Al2O3.L?1, 10 μg ZnO.L?1, 10 μg Al2O3.L?1 plus 10 μg ZnO.L?1, 100 μg Al2O3.L?1, 100 μg ZnO.L?1, and 100 μg Al2O3.L?1 plus 100 μg ZnO.L?1). At the end of each exposure period, antioxidant enzyme activity (catalase, glutathione-S-transferase, and superoxide dismutase), lipid peroxidation, and histopathology were assessed in the gills and livers of C. auratus. The results show an increase in catalase (CAT) and superoxide dismutase (SOD) activity in the gills and livers of fish, especially after 14 days of exposure to single and combined NPs, followed by a reduction at 21 days. An increase in glutathione S-transferase (GST) was observed in gills after 7 days for all tested NP concentrations (single and combined); while in livers, a significant increase was determined after 14 days of exposure to 100 μg.L?1 of both single ZnO and Al2O3 NPs. Lipid peroxidation (LPO) significantly increased in gills after 7 days of exposure to 100 μg.L?1 Al2O3 NPs (single or combined). In livers, LPO increased significantly after 7 days of exposure to all tested concentrations of both single ZnO and Al2O3 (except for 10 μg Al2O3.L?1), and after 14 days of exposure to ZnO (10 and 100 μg.L?1) and Al2O3 (100 μg.L?1). The results from histological observations suggest that exposure to metal oxide NPs affected both livers and gills, presenting alterations such as gill hyperplasia and liver degeneration. However, the most pronounced effects were found in gills. In general, this study shows that the tested NPs, single or combined, are capable of causing sub-lethal effects on C. auratus, but when combined, NPs seem to be slightly more toxic than when added alone.  相似文献   

3.
In Aguascalientes, Mexico, there is a special concern about pesticides because of their intensive use on guava production areas, which are located in the vicinity of water reservoirs; thus, non-target organisms could be exposed. Thereafter, the aim of this work was to assess the effect of cypermethrin, Faena® (glyphosate), and malathion, which are the most used pesticides in Aguascalientes’ guava production, on the indigenous freshwater species Alona guttata (cladoceran) and Lecane papuana (rotifer). Acute 48-h toxicity tests were carried out, and LC50 values were calculated. Then, five sublethal concentrations (1/80, 1/40, 1/20, 1/10, and 1/5 of the respective LC50) were selected for the chronic assays: (a) intrinsic growth rate analysis in the rotifer and (b) partial life table analysis in the cladoceran. The results of the acute toxicity tests showed that A. guttata was more sensitive to malathion (LC50 = 5.26 × 10?3 mg/L) at concentrations found in natural environments with continuous application on guava fields, whereas L. papuana was more sensitive to Faena® (LC50 = 19.89 mg/L). The somatic growth of A. guttata was inhibited for the chronic exposure to cypermethrin. In addition, cypermethrin and Faena® seemed to exert endocrine disruptive effects on A. guttata. Moreover, malathion chronic exposure significantly decreased the survival of A. guttata. Moreover, L. papuana was affected chronically for the three pesticides.  相似文献   

4.
The impact of nanoparticles on fish health is still a matter of debate, since nanotechnology is quite recent. In this study, freshwater benthonic juvenile fish Prochilodus lineatus were exposed through water to three concentrations of TiO2 (0.1, 1, and 10 μg l?1) and ZnO (7, 70, and 700 μg l?1) nanoparticles, as well as to a mixture of both (TiO2 1 μg l?1?+?ZnO 70 μg l?1) for 5 and 30 days. Nanoparticle characterization revealed an increase of aggregate size in the function of concentration, but suspensions were generally stable. Fish mortality was high at subchronic exposure to 70 and 700 μg l?1 of ZnO. Nanoparticle exposure led to decreased acetylcholinesterase activity either in the muscle or in the brain, depending on particle composition (muscle—TiO2 10 μg l?1; brain—ZnO 7 and 700 μg l?1), and protein oxidative damage increased in the brain (ZnO 70 μg l?1) and gills (ZnO 70 μg l?1 and mixture) but not in the liver. Exposed fish had more frequent alterations in the liver (necrosis, vascular congestion, leukocyte infiltration, and basophilic foci) and gills (hyperplasia and epithelial damages, e.g., epithelial disorganization and epithelial loss) than the control fish. Thus, predicted concentrations of TiO2 and ZnO nanoparticles caused detectable effects on P. lineatus that may have important consequences to fish health. But, these effects are much more subtle than those usually reported in the scientific literature for high concentrations or doses of metal nanoparticles.  相似文献   

5.
Although trace concentrations of ibuprofen (IBP) have been detected in diverse water bodies, there is currently insufficient information on the potentially deleterious effects of this xenobiotic. The present study aimed to determine whether IBP induces oxidative stress in brain, liver, gill, and blood of the common carp Cyprinus carpio. To this end, the median lethal concentration at 96 h (96-h LC50) was determined and the lowest observed adverse effect level was established. Carp were exposed to the latter concentration (17.6 mg L?1) for 12, 24, 48, 72, and 96 h, and the following biomarkers were evaluated: lipid peroxidation (LPX) and activity of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase. Results indicated that LPX and antioxidant enzymes’ activity increased significantly (p?<?0.05) with respect to the control group in liver, gill, and blood, while no significant differences occurred in brain. In conclusion, IBP induced oxidative stress on C. carpio, the liver being the organ most affected by this damage.  相似文献   

6.
The objective of this study was to determine the acute toxicity of some pesticides used in irrigated rice farming to Lithobates catesbeianus tadpoles. The LC50-96h for commercial formulations containing bentazon, penoxsulam, vegetable oil, permethrin and carbofuran, separately and their mixtures, were determined at the proportions commonly used in the field. The limits of risk concentrations of these products for the studied species were also established. The LC50-96h for tadpoles was 4,530 mg L?1 for bentazon; 7.52 mg L?1 for penoxsulam + 145.66 mg L?1 of vegetable oil; 81.57 mg L?1 for vegetable oil; 0.10 mg L?1 for permethrin; 29.90 mg L?1 for carbofuran (active ingredients), and 38.79 times the dose used in the field for the mixture of these products. The environmental risk was determined only for permethrin, and care should be taken when using the vegetable oil.  相似文献   

7.
To document the toxicity of copper and nickel in binary mixtures, freshwater amphipods Gammarus pulex were exposed to the metals given independently or as mixtures. Toxicity to Cu alone was relatively high: 96-h LC10 and LC50 were found at 91 and 196 μg L?1, respectively. Toxicity to Ni alone was very low, with 96-h LC10 and LC50 of 44,900 and 79,200 μg L?1, respectively. Mixture toxicities were calculated from single toxicity data using conventional models. Modeled toxicity was then compared with the measured toxicity of the binary mixture. Two kinds of mixtures were tested. Type I mixtures were designed as combinations of Cu and Ni given at the same effect concentrations, when taken independently, to identify possible interactions between copper and nickel. In type II mixtures, Cu concentrations varied from 0 to 600 μg L?1 while the nickel concentration was kept constant at 500 μg L?1 to mimic conditions of industrial wastewater discharges. Ni and Cu showed synergic effects in type I mixtures while type II mixtures revealed antagonistic effects. Low doses of Ni reduced Cu toxicity towards G. pulex. These results show that even for simple binary mixtures of contaminants with known chemistry and toxicity, unexpected interactions between the contaminants may occur. This reduces the reliability of conventional additivity models.  相似文献   

8.
Substantial percentage of world food production depends on pollinating service of honeybees that directly depends on their health status. Among other factors, the success of bee colonies depends on health of developed larvae. The crucial phase of larval development is the first 6 days after hatching when a worker larva grows exponentially and larvae are potentially exposed to xenobiotics via diet. In the present study, we determined the lethal concentration LC50 (72 h) following single dietary exposure of honeybee larvae to formetanate under laboratory conditions, being also the first report available in scientific literature. Activities of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) were also measured in the homogenates of in vitro reared honeybee larvae after single formetanate exposure. Decreased specific activity of SOD and increased activities of CAT and GST suggest the induction of oxidative stress. Higher levels of thiobarbituric reactive species in all samples supported this fact. Comparing determined larval toxicity (LC50 of 206.01 mg a.i./kg diet) with adult toxicity data, we can suppose that the larvae may be less sensitive to formetanate than the adult bees.  相似文献   

9.
Although the toxicological impact of metal oxide nanoparticles has been studied for the last few decades on aquatic organisms, the exact mechanism of action is still unclear. The fate, behavior, and biological activity of nanoparticles are dependent on physicochemical factors like size, shape, surface area, and stability in the medium. This study deals with the effect of nano and bulk CeO2 particles on marine microcrustacean, Artemia salina. The primary size was found to be 15 ± 3.5 and 582 ± 50 nm for nano and bulk CeO2 (TEM), respectively. The colloidal stability and sedimentation assays showed rapid aggregation of bulk particles in seawater. Both the sizes of CeO2 particles inhibited the hatching rate of brine shrimp cyst. Nano CeO2 was found to be more toxic to A. salina (48 h LC50 38.0 mg/L) when compared to bulk CeO2 (48 h LC50 92.2 mg/L). Nano CeO2-treated A. salina showed higher oxidative stress (ROS) than those treated with the bulk form. The reduction in the antioxidant activity indicated an increase in oxidative stress in the cells. Higher acetylcholinesterase activity (AChE) was observed upon exposure to nano and bulk CeO2 particles. The uptake and accumulation of CeO2 particles were increased with respect to the concentration and particle size. Thus, the above results revealed that nano CeO2 was more lethal to A. salina as compared to bulk particles.  相似文献   

10.

Subacute studies of monocrotophos [Dimethyl (E)-1-methyl-2-(methyl-carbamoyl) vinyl phosphate] on mosquito fish, Gambusia affinis, were carried out in vivo for 24 days to assess the locomotor behavior, structural integrity of gill, and targeted enzyme acetylcholinesterase (AChE, EC: 3.1.1.7) interactions. Monocrotophos (MCP) can be rated as moderately toxic to G. affinis, with a median lethal concentration (LC50) of 20.49 ± 2.45 mgL?1. The fish exposed to sublethal concentration of LC10 (7.74 mgL?1) were under stress and altered their locomotor behavior, such as distance traveled per unit time (m min?1) and swimming speed (cm sec?1) with respect to the length of exposure. Inhibition in the activity of brain AChE and deformities in the primary and secondary lamellae of gill may have resulted in failure of exchange of gases. The maximum inhibition of 95% of AChE activity was observed on days 20 and 24.

Morphological aberrations in the gills were also studied during exposure to the sublethal concentration of monocrotophos for a period ranging from 8 to 24 days. The extent of damage in gill was dependent on the duration of exposure. The findings revealed that inhibition in brain AChE activity and structural alteration in gill were responsible for altering the locomotor behavior of exposed fish.  相似文献   

11.
The present study was undertaken to determine the toxic effect of a lethal concentration of six different commercially used textile dyes on the 46th stage of Xenopus laevis tadpoles. The tadpoles were exposed to Astrazon Red FBL, Astrazon Blue FGRL, Remazol Red RR, Remazol Turquoise Blue G-A, Cibacron Red FN-3G, and Cibacron Blue FN-R for 168 h in static test conditions, and thus, 168-h median lethal concentrations (LC50s) of each dye were determined to be 0.35, 0.13, 112, 7, 359, and 15.8 mg/L, respectively. Also, to evaluate the sublethal effects of each dye, tadpoles were exposed to different concentrations of dyes (with respect to 168-h LC50s) for 24 h. The alteration of selected enzyme activities was tested. For this aim, glutathione S-transferase (GST), carboxylesterase, and lactate dehydrogenase (LDH) were assayed. After dye exposure, the GST induction or inhibition and LDH induction indicated some possible mechanisms of oxidative stress and deterioration in aerobic respiration processes induced by the tested dyes. Findings of the study suggest that selected biomarker enzymes are useful in understanding the toxic mechanisms of these dyes in X. laevis tadpoles as early warning indicators. Therefore, these selected biomarkers may evaluate the effect of environmental factors, such as textile dye effluents and other industrial pollutants, on amphibians in biomonitoring studies.  相似文献   

12.
The genotoxic effects of oxidative metabolites of trichloroethylene (TCE), namely chloral hydrate, trichloroacetic acid (TCA), dichloroacetic acid (DCA), and trichloroethanol (TCEOH) were examined in human peripheral blood lymphocytes. In this context, lymphocytes were exposed in vitro to 25, 50, and 100 μg/ml concentrations of these metabolites separately for a period of 48 h and examined for micronucleus (MN) induction through flow cytometer. At 50 μg/ml TCE metabolites, TCA (6.33?±?0.56 %), DCA (5.06?±?0.55), and TCEOH (4.70?±?1.73) induced highly significant (p?<?0.001) frequency of MN in comparison to control (1.03?±?0.40) suggestive of their genotoxic potential. However, exposure of 100 μg/ml of all the metabolites consistently declined the frequencies of MN which in some cases was equable to that of observed at 25 μg/ml. Further, cytotoxicity and cell cycle disturbances were also measured to find out the association of these endpoints with the MN induction. DNA content analysis revealed 3–4-fold elevation of S-phase at all the concentrations tested. Particularly, at 100 μg/ml, treatment elevation of S-phase was significantly (p?<?0.0001) higher as compared to the control. Present findings together with earlier reports indicate that TCE induces genotoxicity through its metabolites. Interaction of these metabolites with DNA, as evident by elevated S-phase, seems to be the major cause of MN induction. However, involvement of spindle disruption cannot be ruled out. This comparative study also suggests that after TCE exposure, the metabolic efficiency of human to generate oxidative metabolites determines the extent of genotoxicity.  相似文献   

13.
With the goal in mind to minimize the application of environmentally hazardous chemical insecticides, the larvicidal activity of two plant extracts along with deltamethrin was studied at University of Mysore. The extracts of Solidago canadensis and Eugenia jambolana were employed for working out the synergistic efficacy against Aedes aegypti larvae, as the extracts of both the plants exhibited high efficacy when applied individually. The deltamethrin when analyzed separately, LC50 and LC90 values were 0.00045 and 0.00148 ppm, respectively. Synergistic studies with two plant extracts on deltamethrin revealed S. canadensis as more effective with synergistic factor(SF) of 4.090 for LC50 value and 4.781 for LC90 followed by E. jambolana with SF 1.80 for LC50 and 2.467 for LC90 at 1:1 ratio of the phytoextracts and deltamethrin. Thus, S. canadensis was found to be a better larvicidal and synergistic agent. Combination of phytochemical and insecticide were found to be more effective than insecticides or phytochemicals alone which could be a good ecofriendly and cost-effective approach to reduce the dose of chemicals with high residual effect to be applied in vector control programs.  相似文献   

14.
Organic pollutants present in the soil of a microcosm containing pulp and paper mill black liquor were extracted with hexane/acetone (1:1 v/v) to study the biodegradation and detoxification potential of a Bacillus sp. gas chromatography-mass spectroscopic (GC-MS) analysis performed after biodegradation showed formation of simpler compounds like p-hydroxyhydrocinnamic acid (retention time [RT] 19.3 min), homovanillic acid methyl ester (RT 21.6 min) and 3,5-dimethoxy-p-coumaric alcohol (RT 24.7 min). The methyltetrazolium (MTT) assay for cytotoxicity, 7-ethoxyresorufin-O-deethylase (EROD) assay for dioxin-like behavior and alkaline comet assay for genotoxicity were carried out in the human hepatocarcinoma cell line HuH-7 before and after bacterial treatment. Bioremediation for 15 days reduced toxicity, as shown by a 139-fold increase in black liquor’s LC50 value, a 343-fold reduction in benzo(a)pyrene equivalent value and a 5-fold reduction in olive tail moment. The EROD assay positively correlated with both the MTT and comet assays in post biodegradation toxicity evaluation.  相似文献   

15.
Distinctive effects of nano-sized permethrin in the environment   总被引:1,自引:0,他引:1  
Pesticides are an essential tool in integrated pest management. Nanopermethrin was prepared by solvent evaporation from an oil-in-water volatile microemulsion. The efficacy of the formulated nanopermethrin was tested against Aedes aegypti and the results compared to those of regular, microparticular permethrin. The 24 h LC50 for nanopermethrin and permethrin was found to be 0.0063 and 0.0199 mg/L, respectively. The formulated nanopermethrin was tested for toxicity against non-target organisms. Nanopermethrin did not show antibacterial activity against Escherichia coli (ATCC 13534 and 25922) or against Bacillus subtilis. Phytotoxicity studies of nanopermethrin to the seeds of Lycopersicum esculentum, Cucumis sativus, and Zea mays showed no restraint in root length and germination percentage. In the Allium cepa test, regular microparticular permethrin treatment of 0.13 mg/L showed a mitotic index (MI) of 46.8 % and chromosomal aberration of 0.6 %, which was statistically significant (p?<?0.05) compared to control. No significant differences were observed in 0.13 mg/L nanopermethrin exposure as compared to control (MI of 52.0 and 55.03 % and chromosomal aberration of 0.2 and 0 %, respectively). It was concluded that formulated nanopermethrin can be used as a safe and effectual alternative to commercially available permethrin formulation in agricultural practices.  相似文献   

16.
The effects of permethrin (PER) on a panel of antoxidant enzymes; superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) and indices of protein oxidation status (carbonylation and free thiols) were determined in digestive gland and gills of the clam Ruditapes decussatus. Animals were exposed to 100 ppb PER for 2 days. These enzyme activities increased significantly in digestive gland (p?<?0.05) after PER treatment and oxidative modification of proteins was detected in both gill and digestive gland extracts using redox proteomics. PER exposure significantly reduced the amount of protein free thiol groups in digestive gland rather than in gill, when compared to controls. Conversely, digestive gland showed significantly higher levels of carbonylated proteins than gill after PER exposure. Some proteins were successfully identified by mass spectrometry of tryptic peptides. Our data suggest that digestive gland of R. decussatus can be used as a model tissue for investigating environmental risk of PER contamination.  相似文献   

17.

Act Force Gold®, Butaforce®, and Atraforce® are among the most commonly used pesticides in Nigeria. The lethal concentrations and the respective toxic units for the three pesticides were determined. The genotoxic effects of the three pesticides were investigated in the red blood cells of Clarias gariepinus using micronucleus (MN) assay. The 96 h LC50 was 4.75, 4.84, and 54.74 mg L−1 for Act Force Gold®, Butaforce®, and Atraforce®, respectively. The toxic units in ascending order of toxicity were 1.83, 20.66, and 21.05 for Act Force Gold®, Butaforce®, and Atraforce® respectively. The estimated safe levels based on NAS/NAE varied from 4.75 × 10−1–4.75 × 10−5 in Act Force Gold® through 4.64 × 10−1–4.85 × 10−5 in Butaforce® to 5.74–5.74 × 10−5 in Atraforce®. Fish specimens were exposed to the pesticides and sampling was done at regular intervals at days 1, 7, 14, and 21 and after another 7-day recovery period. The results obtained indicated concentration- and duration-dependent increase in % MN formation with maximum values of 3.40 ± 0.25 for Act Force Gold® on day 14 and 3.05 ± 0.36 and 2.35 ± 0.14 for Butaforce® and Atraforce® respectively on day 7 of exposure. The 7-day recovery period could not reverse the trend as the % MN values obtained were significantly different from the control. The results further support the use of MN assay in assessing the toxicity of aquatic pollutants and can be used in the monitoring of aquatic ecosystems.

  相似文献   

18.
Using rare minnow (Gobiocypris rarus) at early-life stages as experimental models, the developmental toxicity of five widely used triazole fungicides (myclobutanil, fluconazole, flusilazole, triflumizole, and epoxiconazole) were investigated following exposure to 1–15 mg/L for 72 h. Meanwhile, morphological parameters (body length, body weight, and heart rate), enzyme activities (superoxide dismutase (SOD), glutathione S-transferase (GST), adenosine triphosphatase (ATPase), and acetyl cholinesterase (AChE)), and mRNA levels (hsp70, mstn, mt, apaf1, vezf1, and cyp1a) were also recorded following exposure to 0.2, 1.0, and 5.0 mg/L for 72 h. Results indicated that increased malformation and mortality, decreased body length, body weight, and heart rate provide a concentration-dependent pattern; values of 72 h LC50 (median lethal concentration) and EC50 (median effective concentration) ranged from 3 to 12 mg/L. Most importantly, the results of the present study suggest that even at the lowest concentration, 0.2 mg/L, five triazole fungicides also caused notable changes in enzyme activities and mRNA levels. Overall, the present study points out that those five triazole fungicides are highly toxic to the early development of G. rarus embryos. The information presented in this study will be helpful in better understanding the toxicity induced by triazole fungicides in fish embryos.  相似文献   

19.
We evaluated 41 rural workers occupationally exposed to pesticides and 32 subjects as a control group, using the micronucleus (MN) and the comet assay. For the comet assay, we evaluated the peripheral blood, and for the MN, we sampled cells from the oral epithelium. Damage to DNA was measured by tail length, % DNA in tail (% tail), olive tail moment (OTM), and tail moment (TM). The exposed group presented an 8× increase in MN frequency, when compared to the control group (p <0.05). When we contrasted the MN frequencies between the individuals that use and do not use personal protective equipment, we found a mean of 7.5 MN (57 % variance) and 12.1 MN (130 % variance), respectively. The binucleated cells were 0.04 and 0.005, in the exposed and control groups, respectively, indicating 8× increase in the number of binucleated cells, when comparing the groups (p <0.05). In the comet assay, we demonstrated statistically significant differences in three parameters (% DNA, OTM, and TM) indicating that the rural workers presented high levels of genomic damages. Our results indicate that occupational exposure to pesticides could cause genome damage in somatic cells, representing a potential health risk to Brazilian rural workers that deal constantly with agrochemicals without adequate personal protection equipment.  相似文献   

20.
This study evaluated the influence of the clomazone herbicide (2-[(2-chlorophenyl)methyl]-4,4-dimethyl-3-isoxazolidinone) contamination on the hematological parameters and histological changes in gills and liver of silver catfish (Rhamdia quelen) from Madre River, Santa Catarina State, Southern Brazil. Fish were collected between March 2010 and January 2012 at two different sites of the Madre River, one site receiving residual water (contaminated site) from rice culture (n = 49) and another that do not receive residual water (reference site) (n = 48). The herbicide clomazone analysis detected 3.40 ± 1.70 μg/L in the contaminated site and 1.1 ± 0.33 μg/L in the reference site. Fish from contaminated site showed increased (P < 0.05) number of monocytes suggesting the possible defense response as a result of chronic exposure to clomazone. On the other hand, no difference was found in the hematocrit percentage, red blood cell count, total thrombocyte number, white blood cell count, lymphocytes, and neutrophils number. Fish from both sites showed histopathological changes in gills and liver, possibly caused by chronic exposure to contamination. The influence of herbicide sub doses on fish health is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号