首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The impact of nanoparticles on fish health is still a matter of debate, since nanotechnology is quite recent. In this study, freshwater benthonic juvenile fish Prochilodus lineatus were exposed through water to three concentrations of TiO2 (0.1, 1, and 10 μg l?1) and ZnO (7, 70, and 700 μg l?1) nanoparticles, as well as to a mixture of both (TiO2 1 μg l?1?+?ZnO 70 μg l?1) for 5 and 30 days. Nanoparticle characterization revealed an increase of aggregate size in the function of concentration, but suspensions were generally stable. Fish mortality was high at subchronic exposure to 70 and 700 μg l?1 of ZnO. Nanoparticle exposure led to decreased acetylcholinesterase activity either in the muscle or in the brain, depending on particle composition (muscle—TiO2 10 μg l?1; brain—ZnO 7 and 700 μg l?1), and protein oxidative damage increased in the brain (ZnO 70 μg l?1) and gills (ZnO 70 μg l?1 and mixture) but not in the liver. Exposed fish had more frequent alterations in the liver (necrosis, vascular congestion, leukocyte infiltration, and basophilic foci) and gills (hyperplasia and epithelial damages, e.g., epithelial disorganization and epithelial loss) than the control fish. Thus, predicted concentrations of TiO2 and ZnO nanoparticles caused detectable effects on P. lineatus that may have important consequences to fish health. But, these effects are much more subtle than those usually reported in the scientific literature for high concentrations or doses of metal nanoparticles.  相似文献   

2.
3.
A highly tolerant phenol-degrading yeast strain PHB5 was isolated from wastewater effluent of a coke oven plant and identified as Candida tropicalis based on phylogenetic analysis. Biodegradation experiments with C. tropicalis PHB5 showed that the strain was able to utilize 99.4 % of 2,400 mg l?1 phenol as sole source of carbon and energy within 48 h. Strain PHB5 was also observed to grow on 18 various aromatic hydrocarbons. Haldane model was used to fit the exponential growth data and the following kinetic parameters were obtained: μ max?=?0.3407 h?1, K S?=?15.81 mg l?1, K i?=?169.0 mg l?1 (R 2?=?0.9886). The true specific growth rate, calculated from μ max, was 0.2113. A volumetric phenol degradation rate (V max) was calculated by fitting the phenol consumption data with Gompertz model and specific degradation rate (q) was calculated from V max. The q values were fitted with Haldane model, yielding following parameters: q max?=?0.2766 g g?1 h?1, K S ?=?2.819 mg l?1, K i ?=?2,093 (R 2?=?0.8176). The yield factor (Y X/S ) varied between 0.185 to 0.96 g g?1 for different initial phenol concentrations. Phenol degradation by the strain proceeded through a pathway involving production of intermediates such as catechol and cis,cis-muconic acid which were identified by enzymatic assays and HPLC analysis.  相似文献   

4.
An antialgal bacterium, Streptomyces sp. HJC-D1, was applied for the biodegradation of cyanobacterium Microcystis aeruginosa, and the isolation and characterization of dissolved organic matter (DOM) fractions in antialgal products were studied. Results showed the the growth of M. aeruginosa was significantly inhibited by the cell-free filtrate of Streptomyces sp. HJC-D1 with the growth inhibition of 86?±?7 %. The antialgal products were divided using resin adsorbents into the hydrophilic fraction (HPI), hydrophobic acid (HPO-A), transphilic acid (TPI-A), hydrophobic neutral and transphilic neutral, and then the five fractions were analyzed by the 3-D fluorescence spectroscopy, gel permeation chromatography, and Fourier transform infrared spectroscopy. The results indicated that the HPI component was the most abundant DOM fraction in the antialgal products, and its concentration was increased with the increase of cell-free filtrate concentration. The fluorescence peak location and intensity analysis showed that the protein-, fulvic-, and humic-like substances were dominant in the HPI, HPO-A, and TPI-A fractions, and intensities of the relevant fluorescence peaks were stronger in the experimental groups than those of the control groups. It was also found that the number-average molecular weight of DOM fractions ranged from 245 to 1,452 g mol?1, and thereinto organic acids such as HPO-A and TPI-A exhibited lower molecular weights.  相似文献   

5.
Ponds play an important role in urban areas. However, cyanobacterial blooms counteract the societal need for a good water quality and pose serious health risks for citizens and pets. To provide insight into the extent and possible causes of cyanobacterial problems in urban ponds, we conducted a survey on cyanobacterial blooms and studied three ponds in detail. Among 3,500 urban ponds in the urbanized Dutch province of North Brabant, 125 showed cyanobacterial blooms in the period 2009–2012. This covered 79 % of all locations registered for cyanobacterial blooms, despite the fact that urban ponds comprise only 11 % of the area of surface water in North Brabant. Dominant bloom-forming genera in urban ponds were Microcystis, Anabaena and Planktothrix. In the three ponds selected for further study, the microcystin concentration of the water peaked at 77 μg l?1 and in scums at 64,000 μg l?1, which is considered highly toxic. Microcystin-RR and microcystin-LR were the most prevalent variants in these waters and in scums. Cyanobacterial chlorophyll-a peaked in August with concentrations up to 962 μg l?1 outside of scums. The ponds were highly eutrophic with mean total phosphorus concentrations between 0.16 and 0.44 mg l?1, and the sediments were rich in potential releasable phosphorus. High fish stocks dominated by carp lead to bioturbation, which also favours blooms. As urban ponds in North Brabant, and likely in other regions, regularly suffer from cyanobacterial blooms and citizens may easily have contact with the water and may ingest cyanobacterial material during recreational activities, particularly swimming, control of health risk is of importance. Monitoring of cyanobacteria and cyanobacterial toxins in urban ponds is a first step to control health risks. Mitigation strategies should focus on external sources of eutrophication and consider the effect of sediment P release and bioturbation by fish.  相似文献   

6.
The presence of pharmaceutical drugs in the environment is an important field of toxicology, since such residues can cause deleterious effects on exposed biota. This study assessed the ecotoxicological acute and chronic effects of two anticholinesterasic drugs, neostigmine and pyridostigmine in Daphnia magna. Our study calculated 48 h-EC50 values for the immobilization assay of 167.7 μg L?1 for neostigmine and 91.3 μg L?1 for pyridostigmine. In terms of feeding behavior, we calculated a 5 h-EC50 for filtration rates of 7.1 and 0.2 μg L?1 for neostigmine and pyridostigmine, respectively; for the ingestion rates, the calculated EC50 values were, respectively, 7.5 and 0.2 μg L?1 for neostigmine and pyridostigmine. In the reproduction assay, the most affected parameter was the somatic growth rate (LOECs of 21.0 and 2.9 μg L?1 for neostigmine and pyridostigmine, respectively), followed by the fecundity (LOECs of 41.9 and 11.4 μg L?1 for neostigmine and pyridostigmine, respectively). We also determined a 48 h-IC50 for cholinesterase activity of 1.7 and 4.5 μg L?1 for neostigmine and pyridostigmine, respectively. These results demonstrated that both compounds are potentially toxic for D. magna at concentrations in the order of the μg L?1.  相似文献   

7.
Agra, one of the oldest cities “World Heritage site”, and Delhi, the capital city of India are both located in the border of Indo-Gangetic Plains (IGP) and heavily loaded with atmospheric aerosols due to tourist place, anthropogenic activities, and its topography, respectively. Therefore, there is need for monitoring of atmospheric aerosols to perceive the scenario and effects of particles over northern part of India. The present study was carried out at Agra (AGR) as well as Delhi (DEL) during winter period from November 2011 to February 2012 of fine particulate (PM2.5: d?<?2.5 μm) as well as associated carbonaceous aerosols. PM2.5 was collected at both places using medium volume air sampler (offline measurement) and analyzed for organic carbon (OC) and elemental carbon (EC). Also, simultaneously, black carbon (BC) was measured (online) at DEL. The average mass concentration of PM2.5 was 165.42?±?119.46 μg m?3 at AGR while at DEL it was 211.67?±?41.94 μg m?3 which is ~27 % higher at DEL than AGR whereas the BC mass concentration was 10.60 μg m?3. The PM2.5 was substantially higher than the annual standard stipulated by central pollution control board and United States Environmental Protection Agency standards. The average concentrations of OC and EC were 69.96?±?34.42 and 9.53?±?7.27 μm m?3, respectively. Total carbon (TC) was 79.01?±?38.98 μg m?3 at AGR, while it was 50.11?±?11.93 (OC), 10.67?±?3.56 μg m?3 (EC), and 60.78?±?14.56 μg m?3 (TC) at DEL. The OC/EC ratio was 13.75 at (AGR) and 5.45 at (DEL). The higher OC/EC ratio at Agra indicates that the formation of secondary organic aerosol which emitted from variable primary sources. Significant correlation between PM2.5 and its carbonaceous species were observed indicating similarity in sources at both sites. The average concentrations of secondary organic carbon (SOC) and primary organic carbon (POC) at AGR were 48.16 and 26.52 μg m?3 while at DEL it was 38.78 and 27.55 μg m?3, respectively. In the case of POC, similar concentrations were observed at both places but in the case of SOC higher over AGR by 24 in comparison to DEL, it is due to the high concentration of OC over AGR. Secondary organic aerosol (SOA) was 42 % higher at AGR than DEL which confirms the formation of secondary aerosol at AGR due to rural environment with higher concentrations of coarse mode particles. The SOA contribution in PM2.5 was also estimated and was ~32 and 12 % at AGR and DEL respectively. Being high loading of fine particles along with carbonaceous aerosol, it is suggested to take necessary and immediate action in mitigation of the emission of carbonaceous aerosol in the northern part of India.  相似文献   

8.
Psychiatric pharmaceuticals, such as anxiolytics, sedatives, hypnotics and antidepressors, are among the most prescribed active substances in the world. The occurrence of these compounds in the environment, as well as the adverse effects they can have on non-target organisms, justifies the growing concern about these emerging environmental pollutants. This study aims to analyse the effects of six psychotropic drugs, valproate, cyamemazine, citalopram, sertraline, fluoxetine and oxazepam, on the survival and locomotion of Japanese medaka Oryzias latipes larvae. Newly hatched Japanese medaka were exposed to individual compounds for 72 h, at concentrations ranging from 10 μg L?1 to 10 mg L?1. Lethal concentrations 50 % (LC50) were estimated at 840, 841 and 9,136 μg L?1 for fluoxetine, sertraline and citalopram, respectively, while other compounds did not induce any significant increase in mortality. Analysis of the swimming behaviour of larvae, including total distance moved, mobility and location, provided an estimated lowest observed effect concentration (LOEC) of 10 μg L?1 for citalopram and oxazepam, 12.2 μg L?1 for cyamemazine, 100 μg L?1 for fluoxetine, 1,000 μg L?1 for sertraline and >10,000 μg L?1 for valproate. Realistic environmental mixture of the six psychotropic compounds induced disruption of larval locomotor behaviour at concentrations about 10- to 100-fold greater than environmental concentrations.  相似文献   

9.
Since it was commercially introduced in 1974, glyphosate has been one of the most commonly used herbicides in agriculture worldwide, and there is growing concern about its adverse effects on the environment. Assuming that glyphosate may increase the organic turbidity of water bodies, we evaluated the effect of a single application of 2.4?±?0.1 mg l?1 of glyphosate (technical grade) on freshwater bacterioplankton and phytoplankton (pico, micro, and nanophytoplankton) and on the physical and chemical properties of the water. We used outdoor experimental mesocosms under clear and oligotrophic (phytoplanktonic chlorophyll a?=?2.04 μg l?1; turbidity?=?2.0 NTU) and organic turbid and eutrophic (phytoplanktonic chlorophyll a?=?50.3 μg l?1; turbidity?=?16.0 NTU) scenarios. Samplings were conducted at the beginning of the experiment and at 1, 8, 19, and 33 days after glyphosate addition. For both typologies, the herbicide affected the abiotic water properties (with a marked increase in total phosphorus), but it did not affect the structure of micro and nanophytoplankton. In clear waters, glyphosate treatment induced a trend toward higher bacteria and picoeukaryotes abundances, while there was a 2 to 2.5-fold increase in picocyanobacteria number. In turbid waters, without picoeukaryotes at the beginning of the experiment, glyphosate decreased bacteria abundance but increased the number of picocyanobacteria, suggesting a direct favorable effect. Moreover, our results show that the impact of the herbicide was observed in microorganisms from both oligo and eutrophic conditions, indicating that the impact would be independent of the trophic status of the water body.  相似文献   

10.
Biofilm-forming marine bacterium Pseudomonas aeruginosa JP-11 was isolated from coastal marine sediment of Paradeep Port, Odisha, East Coast, India, which resisted up to 1,000 ppm of cadmium (Cd) as cadmium chloride in aerobic conditions with a minimal inhibitory concentration of 1,250 ppm. Biomass and extracellular polymeric substances (EPS) secreted by the cells effectively removed 58.760?±?10.62 and 29.544?±?8.02 % of Cd, respectively. The integrated density of the biofilm-EPS observed under fluorescence microscope changed significantly (P?≤?0.05) in the presence of 50, 250, 450, 650 and 850 ppm Cd. ATR-FTIR spectroscopy showed a peak at 2,365.09/cm in the presence of 50, 250, 450 and 650 ppm Cd which depicts the presence of sulphydryl group (–SH) within the EPS, whereas, a peak shift to 2,314.837/cm in the presence of 850 ppm Cd suggested the major role of this functional group in the binding with cadmium. On exposure to Cd at 100, 500 and 1,000 ppm, the expression profiles of cadmium resistance gene (czcABC) in the isolate showed an up-regulation of 3.52-, 17- and 24-fold, respectively. On the other hand, down-regulation was observed with variation in the optimum pH (6) and salinity (20 g l?1) level. Thus, the cadmium resistance gene expression increases on Cd stress up to the tolerance level, but an optimum pH and salinity are the crucial factors for proper functioning of cadmium resistance gene.  相似文献   

11.
Incomplete removal of sodium dodecyl sulfate (SDS) in wastewater treatment plants may result in SDS residues escaping and finding their way into receiving water bodies like rivers, lakes, and sea. Introduction of effective microorganisms into the aerobic treatment facilities can reduce unpleasant by-products and SDS residues. Selecting effective microorganisms for SDS treatment is a big challenge. Current study reports the isolation, identification, and in situ monitoring of an effective SDS-degrading isolate from detergent-polluted river waters. Screening was carried out by the conventional enrichment culture technique and the isolate was tentatively identified by using fatty acid methyl ester and 16S ribosomal RNA (rRNA) sequence analyses. Fatty acids produced by the isolate investigated were assumed as typical for the genus Comamonas. 16S rRNA sequence analysis also confirmed that the isolate had 95 % homology with Delftia acidovorans known as Comamonas or Pseudomonas acidovorans previously. D. acidovorans exhibited optimum growth at SDS concentration of 1 g l-1 but tolerated up to 10 g l-1 SDS. 87 % of 1.0 g l-1 pure SDS was degraded after 11 days of incubation. The temporal succession of D. acidovorans in detergent-polluted river water was also monitored in situ by using Comamonas-specific fluorescein-labeled Cte probe. Being able to degrade SDS and populate in SDS-polluted surface waters, D. acidovorans isolates seem to be very helpful in elimination of SDS.  相似文献   

12.
An indoor/outdoor monitoring programme of PM10 was carried out in two sports venues (a fronton and a gymnasium). Levels always below 50 μg m?3 were obtained in the fronton and outdoor air. Due to the climbing chalk and the constant process of resuspension, concentrations above 150 μg m?3 were registered in the gymnasium. The chalk dust contributed to CO3 2? concentrations of 32?±?9.4 μg m?3 in this sports facility, which represented, on average, 18 % of the PM10 mass. Here, the carbonate levels were 128 times higher than those registered outdoors. Much lower concentrations, around 1 μg m?3, were measured in the fronton. The chalk dust is also responsible for the high Mg2+ concentrations in the gym (4.7?±?0.89 μg m?3), unfolding a PM10 mass fraction of 2.7 %. Total carbon accounted for almost 30 % of PM10 in both indoor spaces. Aerosol size distributions were bimodal and revealed a clear dependence on physical activities and characteristics of the sports facilities. The use of climbing chalk in the gymnasium contributed significantly to the coarse mode. The average geometric mean diameter, geometric standard deviation and total number of coarse particles were 0.77 μm, 2.79 cm?3 and 28 cm?3, respectively.  相似文献   

13.
Nutrient enrichment from nonpoint source pollution is one of the main causes of poor water quality and biotic impairment in many streams and rivers worldwide. The establishment of reference nutrient conditions in a river system is an essential but difficult task for water quality control. In the present study, the reference concentrations of total nitrogen (TN) and total phosphorus (TP) were estimated in an intensive agricultural watershed, the Cao-E River system of Eastern China. Based on a 3-year water quality monitoring data in the river system, three approaches were adopted to establish the reference concentrations of TN and TP, those are the 75th percentile of frequency distribution of nutrient concentrations in reference streams, the 25th percentile of frequency distribution of nutrient concentration in general streams (including reference and non-reference streams) and regression modeling. Results showed that the nutrient reference concentrations were slightly different from different approaches. By the three approaches, the average reference concentrations for TN and TP in the study system were 1.73?±?0.13 mg l?1 and 55.23?±?4.77 μg l?1 with CV of 7.39 % and 8.63 %, respectively. Accordingly, the reference concentrations for TN and TP were recommended to be 1.70 mg l?1 and 55 μg l?1, respectively. In the mountainous and intensive agricultural watershed, the major anthropogenic impacts to river water quality were the urban area percentage cover, cropland area with slopes 0–8°, and livestock and poultry waste loads density. These variables could account for 89.7 % and 80.3 % of the total variations for TN and TP concentration, respectively.  相似文献   

14.
Lake Erhai is the second largest lake of Southwest China and an important drinking water source. The lake is currently defined as the preliminary stage of eutrophic states, but facing a serious threat with transfer into intensive eutrophication. The present study examined the dynamics of Microcystis blooms and toxic Microcystis in Lake Erhai during 2010, based on quantitative real-time PCR method using 16S rRNA gene specific for Microcystis and microcystin systhesis gene (mcy), and chemical analysis on microcystin (MC) concentrations. Total Microcystis cell abundance at 16 sampling sites were shown as an average of 1.7?×?107 cells l?1 (1.3?×?102–3.8?×?109 cells l?1). Microcystin LR (MC-LR) and microcystin RR (MC-RR) were the main variants. The strong southwesterly winds, anticlockwise circular flows and geographical characteristics of lake and phytoplankton community succession impacted the distribution patterns of Chl a and MC in the lake. The concentration of Chl a and MC and abundances of total Microsytis and MC-producing Microsystis (MCM) were shown to be positively correlated with pH, DO and TP, negatively correlated with SD, NO3-N, TN/Chl a and TN/TP, and not correlated with NH4-N, TN, dissolved total nitrogen (DTN) and water temperatures. When TN/TP decrease, Microcystis tended to dominate and MC concentrations tended to increase, suggesting that the “TN/TP rule” can be partially applied to explain the correlation between the cyanobacterial blooms and nutrients N and P only within a certain nutrient level. It is speculated that N and P nutrients and the associated genes (e.g., mcy) may jointly drive MC concentration and toxigenicity of Microcystis in Lake Erhai.  相似文献   

15.
Anthropogenic-induced water quality pollution is a major environmental problem in freshwater ecosystems today. As a result of this, eutrophication of lakes occurs. Population and economic development are key drivers of water resource pollution. To evaluate how growth in the riparian population and in the gross domestic product (GDP) with unplanned development affects the water quality of the lake, this paper evaluates Lake Victoria Kenyan waters basin. Waters quality data between 1990 and 2012 were analyzed along with reviews of published literature, papers, and reports. The nitrate-nitrogen (NO3-N), soluble phosphorus (PO4-P), chlorophyll a, and Secchi transparencies were evaluated as they are key water quality indicators. The NO3-N increased from 10 μg l?1 in 1990 to 98 μg 1?1 in 2008, while PO4-P increased from 4 μg l?1 in 1990 to 57 μg l?1 in 2008. The population and economic growth of Kenya are increasing with both having minimums in 1990 of 24.143 million people and 12.18 billion US dollars, to maximums in 2010 of 39.742 million people and 32.163 billion US dollars, respectively. A Secchi transparency is reducing with time, indicating an increasing pollution. This was confirmed by an increase in aquatic vegetation using an analysis of moderate resolution imaging spectroradiometer (MODIS) images of 2000 and 2012 of Kenyan waters. This study found that increasing population and GDP increases pollution discharge thus polluting lakes. One of major factors causing lake water pollution is the unplanned or poor waste management policy and service.  相似文献   

16.
This study evaluated the toxicity of herbicide atrazine, along with its bioaccumulation and biodegradation in the green microalga Chlamydomonas mexicana. At low concentration (10 μg L?1), atrazine had no profound effect on the microalga, while higher concentrations (25, 50, and 100 μg L?1) imposed toxicity, leading to inhibition of cell growth and chlorophyll a accumulation by 22 %, 33 %, and 36 %, and 13 %, 24 %, and 27 %, respectively. Atrazine 96-h EC50 for C. mexicana was estimated to be 33 μg L?1. Microalga showed a capability to accumulate atrazine in the cell and to biodegrade the cell-accumulated atrazine resulting in 14–36 % atrazine degradation at 10–100 μg L?1. Increasing atrazine concentration decreased the total fatty acids (from 102 to 75 mg g?1) and increased the unsaturated fatty acid content in the microalga. Carbohydrate content increased gradually with the increase in atrazine concentration up to 15 %. This study shows that C. mexicana has the capability to degrade atrazine and can be employed for the remediation of atrazine-contaminated streams.  相似文献   

17.
The mass concentration of carbonaceous species, organic carbon (OC), and elemental carbon (EC) using a semicontinuous thermo-optical EC-OC analyzer, and black carbon (BC) using an Aethalometer were measured simultaneously at an urban mega city Delhi in Ganga basin from January 2011 to May 2012. The concentrations of OC, EC, and BC exhibit seasonal variability, and their concentrations were ~2 times higher during winter (OC 38.1?±?17.9 μg m?3, EC 15.8?±?7.3 μg m?3, and BC 10.1?±?5.3 μg m?3) compared to those in summer (OC 14.1?±?4.3 μg m?3, EC 7.5?±?1.5 μg m?3, and BC 4.9?±?1.5 μg m?3). A significant correlation between OC and EC (R?=?0.95, n?=?232) indicate their common emission sources with relatively lower OC/EC ratio (range 1.0–3.6, mean 2.2?±?0.5) suggests fossil fuel emission as a major source of carbonaceous aerosols over the station. On average, mass concentration of EC was found to be ~38 % higher than BC during the study period. The measured absorption coefficient (babs) was significantly correlated with EC, suggesting EC as a major absorbing species in ambient aerosols at Delhi. Furthermore, the estimated mass absorption efficiency (σabs) values are similar during winter (5.0?±?1.5 m2 g?1) and summer (4.8?±?2.8 m2 g?1). Significantly high aerosol loading of carbonaceous species emphasize an urgent need to focus on air quality management and proper impact assessment on health perspective in these regions.  相似文献   

18.
Photocatalytic degradation of bisphenol A (BPA) in waters and wastewaters in the presence of titanium dioxide (TiO2) was performed under different conditions. Suspensions of the TiO2 were used to compare the degradation efficiency of BPA (20 mg L?1) in batch and compound parabolic collector (CPC) reactors. A TiO2 catalyst supported on glass spheres was prepared (sol–gel method) and used in a CPC solar pilot plant for the photodegradation of BPA (100 μg L?1). The influence of OH·, O2 ·?, and h + on the BPA degradation were evaluated. The radicals OH· and O2 ·? were proved to be the main species involved on BPA photodegradation. Total organic carbon (TOC) and carboxylic acids were determined to evaluate the BPA mineralization during the photodegradation process. Some toxicological effects of BPA and its photoproducts on Eisenia andrei earthworms were evaluated. The results show that the optimal concentration of suspended TiO2 to degrade BPA in batch or CPC reactors was 0.1 g L?1. According to biological tests, the BPA LC50 in 24 h for E. andrei was of 1.7?×?10?2 mg cm?2. The photocatalytic degradation of BPA mediated by TiO2 supported on glass spheres suffered strong influence of the water matrix. On real municipal wastewater treatment plant (MWWTP) secondary effluent, 30 % of BPA remains in solution; nevertheless, the method has the enormous advantage since it eliminates the need of catalyst removal step, reducing the cost of treatment.  相似文献   

19.
It is the first report in which a novel psychrotrophic Pseudomonas putida SKG-1 strain was evaluated for simultaneous bioremediation of pentachlorophenol and Cr6+ under various cultural and nutritional conditions. Pentachlorophenol (PCP) dechlorination products, bacterial structure, and functional groups were characterized by gas chromatography and mass spectrometry (GC–MS), scanning electron microscope and energy dispersive X-ray spectroscopy (SEM–EDS), and Fourier-transform infrared (FTIR) techniques. The strain was extremely tolerant to excessively higher individual concentration of PCP (1,400 mg l?1) and Cr6+ (4,300 mg l?1). Increasing concentration of PCP and Cr6+ exerted inhibitory effect on bacterial growth and toxicants’ removal. The strain exhibited growth, and concomitantly remediated both the pollutants simultaneously over a broad pH (7.0–9.0) and temperature (28–32 °C) range; maximum growth, PCP dechlorination (87.5 %), and Cr6+ removal (80.0 %) occurred at optimum pH 8.0 and 30 °C (from initial PCP 100 mg l?1 and Cr6+ 500 mg l?1) under shaking (150 rpm) within 72 h incubation. Optimization of agitation (125 rpm) and aeration (0.4 vvm) in bioreactor further enhanced PCP dechlorination by ~10 % and Cr6+ removal by 2 %. A direct correlation existed between growth and bioremediation of both the toxicants. Among other heavy metals, mercury exerted maximum and cobalt minimum inhibitory effect on PCP dechlorination and Cr6+ removal. Chromate reductase activity was mainly associated with the supernatant and cytosolic fraction of bacterial cells. GC–MS analysis revealed the formation of tetrachloro-p-hydroquinone, 2,4,6-trichlorophenol, and 2,6-dichlorophenol as PCP dechlorination products. FTIR spectrometry indicated likely involvement of carbonyl and amide groups in Cr3+ adsorption, and SEM–EDS showed the presence of chromium on P. putida surface. Thus, our promising isolate can be ecofriendly employed for biotreatment of various industrial wastes contaminated with high PCP and Cr6+ concentrations.  相似文献   

20.
Organic carbon (OC) and elemental carbon (EC) concentrations, associated to PM10 and PM2.5 particle fractions, were concurrently determined during the warm and the cold months of the year (July–September 2011 and February–April 2012, respectively) at two urban sites in the city of Thessaloniki, northern Greece, an urban-traffic site (UT) and an urban-background site (UB). Concentrations at the UT site (11.3?±?5.0 and 8.44?±?4.08 14 μg m?3 for OC10 and OC2.5 vs. 6.56?±?2.14 and 5.29?±?1.54 μg m?3 for EC10 and EC2.5) were among the highest values reported for urban sites in European cities. Significantly lower concentrations were found at the UB site for both carbonaceous species, particularly for EC (6.62?±?4.59 and 5.72?±?4.36 μg m?3 for OC10 and OC2.5 vs. 0.93?±?0.61 and 0.69?±?0.39 μg m?3 for EC10 and EC2.5). Despite that, a negative UT-UB increment was frequently evidenced for OC2.5 and PM2.5 in the cold months possibly indicative of emissions from residential wood burning at the urban-background site. At both sites, cconcentrations of OC fractions were significantly higher in the cold months; on the contrary, EC fractions at the UT site were prominent in the warm season suggesting some influence from maritime emissions in the nearby harbor area. Secondary organic carbon, being estimated using the EC tracer method and seasonally minimum OC/EC ratios, was found to be an appreciable component of particle mass particularly in the cold season. The calculated secondary contributions to OC ranged between 35 and 59 % in the PM10 fraction, with relatively higher values in the PM2.5 fraction (39–61 %). The source origin of carbonaceous species was investigated by means of air parcel back trajectories, satellite fire maps, and concentration roses. A local origin was mainly concluded for OC and EC with limited possibility for long range transport of biomass (agricultural waste) burning aerosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号