首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Chemical reduction of nitrate using metal nanoparticles has received increasing interest due to over-dependence on groundwater and consequence health hazard of the nitrate ion. One major drawback of this technique is the agglomeration of nanoparticles leading to the formation of large flocs. A low cost biopolymeric material, poly [β-(1 → 4)-2-amino-2-deoxy-D-glucopyranose] (β-PADG) obtained from deacetylated chitin was used as stabilizer to synthesize zero valent nickel (ZVNi) nanoparticles. The β-PADG-ZVNi nanocomposite was characterized using infra red (IR), UV-Vis spectrophotometric techniques and Scanning Electron Microscope (SEM). The morphology of the composite showed that β-PADG stabilized-ZVNi nanoparticles were present as discrete particles. The mean particle size was estimated to be (7.76 ± 2.98) nm and surface area of 87.10 m2/g. The stabilized-ZVNi nanoparticles exhibited markedly greater reactivity for reduction of nitrate in water with 100% conversion within 2 hr contact owing to less agglomeration. Varying the β-PADG-to-ZVNi ratio and the ZVNi-to-nitrate molar ratio generally led to a faster nitrate reduction. About 3.4-fold difference in the specific reaction rate constant suggests that the application of the β-PADG-stabilizer not only increased the specific surface area of the resultant nanoparticles, but also greatly enhanced the surface reactivity of the nanoparticles per unit area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号