首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Summary. We have isolated a caffeoylcyclohexane-1-carboxylic acid derivative, 3-caffeoyl-muco-quinic acid (3-CmQA), as a contact oviposition stimulant for the zebra swallowtail butterfly, Eruytides marcellus (Papilionidae), from the foliage of its primary host plant, Asimina triloba (Annonaceae). This compound alone was as active in stimulating oviposition by females as were the parent ethanolic plant extract and the host plant itself. Other tested isomers of 3-CmQA, including 5-caffeoylquinic acid (5-CQA or trans-chlorogenic acid), were inactive. We found, however, that experienced female butterflies responded strongly to host volatiles, which enhanced landing rates and hence oviposition.? This is the first report of an oviposition stimulant for a swallowtail butterfly of the tribe Graphiini. We found 3-CmQA to be the major caffeoylcyclohexane-1-carboxylic acid isomer in plants of the genus Asimina. These plants lack appreciable amounts of 5-CQA, which has been shown previously to be one of the oviposition stimulants for certain Rutaceae- or Apiaceae-feeding swallowtails of the related tribe Papilionini.? Our findings, along with earlier results from the tribes Troidini and Papilionini, suggest that responses by swallowtails to hydroxycinnamic acid derivatives as oviposition cues date back at least to the ancestor of the subfamily Papilioninae. Received 24 March 1998; accepted 27 May 1998.  相似文献   

2.
Plant volatiles affect oviposition by codling moths   总被引:4,自引:0,他引:4  
Summary. Oviposition in wild codling moth females, collected as overwintering larvae from apple, pear and walnut, was stimulated by volatiles from fruit-bearing green branches of these respective hostplants. Analysis of headspace collections showed that eight compounds present in apple, pear and walnut elicited a reliable antennal response in codling moth females: (E)--ocimene, 4,8-dimethyl-1,(E)3,7-nonatriene, (Z)3-hexenyl acetate, nonanal, -caryophyllene, germacrene D, (E,E)--farnesene, and methyl salicylate. Any one of these compounds is found in many other non-host plants, and host recognition in codling moth is thus likely encoded by a blend of volatiles. A large variation in the blend proportion of these compounds released from apple, pear and walnut suggests a considerable plasticity in the female response to host plant odours. Wild females, collected as overwintering larvae in the field, laid significantly fewer eggs in the absence of host plant volatiles. The offspring of these females, however, reared on a semi-artificial diet in the laboratory, laid as many eggs with or without plant volatile stimulus. Tests with individual females showed that this rapid change in oviposition behaviour may be explained by selection for females which oviposit in the absence of odour stimuli, rather than by preimaginal conditioning of insects when rearing them on semi-artificial diet. Oviposition bioassays using laboratory-reared females are therefore not suitable to identify the volatile compounds which stimulate egglaying in wild females.  相似文献   

3.
Based on carbohydrate histochemistry, including the use of lectins, and TEM, the study describes the distribution of terminal sugars in different structures of the demosponge Chondrilla nucula. The results of the general and specific carbohydrate histochemical approaches confirmed the presence of acidic and neutral glycoconjugates in the cells, and, with declining amounts from the ectosome to the mesohyl, in the extracellular matrix (ECM). AB-PAS staining indicated acidic complex carbohydrates particularly in the exopinacoderm, and more neutral ones in the cells and the ECM of the mesohyl. The PO-lectins applied demonstrated a general spectrum of free saccharide residues (α-d-mannose, α-/β-d-N-acetylglucosamine, α-d-N-acetylgalactosamine, α-d-galactose, β-d-galactose) in both sponge parts; α-l-fucose was only distinct in the ectosome. Sialic acids [siaα(2,3)-galactose, siaα(2,6)-N-acetylgalactosamine] were dominant in the very thin exopinacoderm, indicating O-linked high molecular weight glycoproteins. In this way a glycophysiologically ‘rigid’ outer mucus cover is developed as protection against mechanical hazards. Some of the free sugars (α-d-mannose, N-acetylglucosamine, N-acetylgalactosamine β-d-galactose, α-l-fucose) are known to prevent the adherence of different bacteria and fungi to cellular surfaces. Thus a high concentration of such sugars, may impede massive attacks of micro-inhabitants on mobile sponge cells, pinacocytes, and the exopinacoderm layer.  相似文献   

4.
T. Nakayama  K. Honda 《Chemoecology》2004,14(3-4):199-205
Summary. In the natural habitat of Papilio polytes, a Rutaceae feeder utilizing Toddalia asiatica as a major host plant, some other rutaceous plants such as Murraya paniculata (abundant) and Glycosmis citrifolia (relatively rare) occur sympatrically as potential hosts. Whereas G. citrifolia is occasionally infested in the field, M. paniculata remains entirely unexploited by the butterfly. We thus examined the phytochemical mechanisms that can explain the differential acceptance of the two plants by ovipositing females of P. polytes. The foliage of G. citrifolia was found to readily induce oviposition and females deposited eggs in response to a methanolic extract of the plant. Stimulatory activity-directed fractionation of the extract revealed the presence of two characteristic compounds, trans-4-hydroxy-N-methylproline and 2-C-methylerythronic acid, known to serve as oviposition stimulants for the butterfly. In addition, larvae performed as well or better onG. citrifolia as on T. asiatica. Similar examination of the inhibitory chemical constituents of M. paniculata led to the isolation of an oviposition deterrent. The compound, identified as trigonelline (N-methylpyridine- 3-carboxylic acid), exhibited moderate oviposition deterrency to females. These results combined with our previous data are in agreement with the observed differential utilization of the two plants by P. polytes in the field.  相似文献   

5.
Summary (1) Females of the myrmecophilous lycaenid butterfly, Jalmenus evagoras are far more likely to lay eggs on plants that contain their attendant ants, Iridomyrmex sp. 25 than on plants without ants, although the clutch sizes of individual egg masses laid in either situation is the same. (2) Ovipositing females respond to the presence or absence of ants before they alight on a potential food plant. Once they have landed, they are equally likely to ley eggs whether or not they encounter ants. (3) Ovipositing females prefer to lay eggs on plants that contain ant tended homopterans than on plants that contain only a few foraging ants. The presence of ant tended homopterans can act as a strong stimulus to induce females to lay eggs on plant species that differ from their original host species. (4) Ant dependent oviposition behavior has been described or suggested in 46 species of lycaenid and one riodinid. In general, the more dependent a species is upon ants for either food or protection, the more likely it is to use ants as cues in oviposition. Prominent characteristics of lycaenids that have ant dependent oviposition are described and discussed. (5) Myrmecophilous lycaenids that may use ants as cues in oviposition feed on a significantly wider range of plants than non-myrmecophilous lycaenids. Possible reasons for this pattern and its ecological significance are discussed.  相似文献   

6.
Summary. We tested the hypothesis that Daphne gnidium is an ancestral host plant of Lobesia botrana. To this end, we studied the oviposition response of this moth to various aerial organs of this plant. Our results show that females prefer to lay eggs on daphne berries rather than on grapes (cv. chasselas) and that polar surface extracts of daphne berries and leaves strongly stimulate oviposition in a dosedependant way, whereas flower extracts are weakly stimulant and branch extracts are inactive or deterrent for oviposition. Furthermore, a total extract of daphne berries stimulates oviposition in semi-natural conditions when applied onto fresh grapes. Oviposition stimulants from berries were isolated by HPLC coupled with a dual-choice oviposition bioassay. The ecological value of D. gnidium for L. botrana is discussed and the possible use of oviposition stimulants from daphne, contrasting with the oviposition signal of the cultivated host plant, is proposed in the perspective of developing behavioural manipulation methods such as stimulo-deterrent diversionary strategies compatible with IPM programs.  相似文献   

7.
Host-plant leaf surface compounds influencing oviposition in Delia antiqua   总被引:1,自引:0,他引:1  
Summary. Delia antiqua (Diptera: Anthomyiidae) females lay eggs between the leaves of onion plants or in the soil around the base of the plants, then the maggots feed on the onion bulb and roots causing rapid secondary infection by fungi and bacteria. It is well known that the first sensory modality used by the onion fly is vision, therefore the shape (vertical narrow cylinders) and colour (yellow) of the plant play a crucial role in the recognition of a potential host plant. In the past it has been shown that n-dipropyl disulfide (Pr2S2), a typical component of onion volatiles, is an important chemical host plant cue. We extracted host leaf surface to verify if Pr2S2 is the major chemical oviposition stimulant and to determine if other as yet unknown substances may play a role in host-plant selection. We confirmed that the females laid more eggs around onion plants with leaves than when only the onion bulb was present and that the odour of chopped onion stimulates oviposition. Extraction of the surface of onion leaves revealed that only the apolar fraction contained substances that stimulate egg-laying in D. antiqua. GC-EAD analysis indicated that a minor constituent, Pr2S2, is perceived by the olfactory receptor on the antennae of the onion fly females. This confirmed the importance of Pr2S2 as oviposition stimulant. Contact with the polar fraction did not stimulate egg-laying behaviour in this Delia species. We discuss the oviposition strategy of D. antiqua in comparison with its closely related species, D. radicum, in which the oviposition behaviour is stimulated mainly through contact with the cabbage leaf surface and only partially by the host volatiles.  相似文献   

8.
Summary. Oviposition site selection of herbivorous insects depends primarily on host plant presence which is essential for offspring survival. However, parasitoids can exploit host plant cues for host location. In this study, we hypothesised that herbivores can solve this dilemma by ovipositing within high plant diversity. A diverse plant species composition might represent an ‘infochemical shelter’, as a potentially complex volatile blend can negatively affect the host location ability of parasitoids. We examined this exemplarily for the egg-laying response of the generalist leaf beetle, Galeruca tanaceti, in relation to (1) host plant availability and (2) plant species diversity in the field. Further, we investigated the effect of odours from mixed plant species compositions on (3) leaf beetle oviposition site selection and on (4) the orientation of its specialised egg parasitoid, Oomyzus galerucivorus. In the field, egg clutch occurrence was positively related to the presence and quantity of two major host plants, Achillea millefolium (yarrow) and Centaurea jacea, and to the number of herbaceous plant species. In two-choice bioassays, female beetles oviposited more frequently on sites surrounded by an odour blend from a diverse plant species composition (including yarrow) than on sites with a pure grass odour blend. In the presence of yarrow odour and an odour blend from a diverse plant mixture (including yarrow) no difference in the oviposition response was recorded. Experienced parasitoid females were attracted to yarrow odours, but showed no response when yarrow odours were offered simultaneously with odours of a non-host plant. In conclusion, it could be shown in laboratory bioassays that the parasitoid responds only to pure host plant odours but not to complex odour blends. In contrast, the herbivore prefers to oviposit within diverse vegetation in the field and in the laboratory. However, the laboratory results also point to a priority of host plant availability over the selection of a potential ‘infochemical shelter’ for oviposition due to high plant diversity.  相似文献   

9.
Summary. The purpose of this study was to identify plant volatiles that provide host location cues for adult females of the gall wasp Antistrophus rufus Gillette (Hymenoptera: Cynipidae). Larvae of this species inhabit flowering stems of the prairie perennial Silphium laciniatum L. (Asteraceae). Adult females responded to volatile compounds emitted by stems of S. laciniatum in field olfactometer bioassays. Plant volatiles were monoterpenes, including, in descending order of abundance, racemic - and -pinene (~50% + enantiomer for both), (+)-limonene, (–)-camphene, and -myrcene. In laboratory bioassays, females responded to aeration extracts of plant stems, the full blend of synthetic monoterpenes, and the four-component blend of -pinene, -pinene, (+)-limonene, and (–)-camphene. This monoterpene blend apparently serves as an olfactory cue for host plant location for female A. rufus and is the first such cue to be reported for a cynipid gall wasp. Species-specific ratios of plant monoterpenes may provide cues for gall wasp females to distinguish between plant species and choose appropriate hosts for oviposition. The olfactometer and bioassay techniques developed for this research may be useful for field bioassays of other types of minute arthropods.  相似文献   

10.
Nishida  Ritsuo 《Chemoecology》1994,5(3-4):127-138
Summary A number of aposematic butterfly and moth species sequester toxic substances from their host plants. Some of these insects can detect the toxic compounds during food assessment. Some pipevine swallowtails use aristolochic acids among the host finding cues during oviposition and larval feeding and accumulate the toxins in the body tissues throughout all life stages. Likewise, a danaine butterfly,Idea leuconoe, which sequesters high concentrations of pyrrolizidine alkaloids in the body, lays eggs in response to the specific alkaloid components contained in the apocynad host. Insect species sharing the same poisonous host plants may differ in the degree of sequestration of toxins. Two closely ralated aposematic geometrid moth species,Arichanna gaschkevitchii andA. melanaria, sequester a series of highly toxic diterpenoids (grayanotoxins) in different degrees, while a cryptic geometrid species,Biston robstus, does not sequester the toxins, illustrating the diversity in adaptation mechanisms even within the same subfamily. By contrast, a number of lepidopteran species store the same compounds though feeding upon taxonomically diverse plant species. A bitter cyanoglycoside, sarmentosin, was characterised from several moth species in the Geometridae, Zygaenidae and Yponomeutidae, and from the apollo butterflies,Parnassius spp. (Papilionidae), although each species feeds on different groups of plants.Interspecific similarities and differences in life history and ecology are discussed in relation to variable characteristics of sequestration of plant compounds among these lepidopteran insects.  相似文献   

11.
Summary. Cotesia plutellae is a specialist parasitoid of Plutella xylostella. This specificity is potentially under the control of several factors before and after oviposition. Thereby, the stimuli that lead female parasitoids to host locations and to oviposition, might be at the basis of the specificity. We explore here the response of C. plutellae females exposed to host cuticular lipids. A total cuticular lipid extract of host caterpillars was fractionated into a hydrocarbon fraction and a non-hydrocarbon fraction. Neither fraction alone had any effect on oviposition behaviour in C. plutellae but the hydrocarbon fraction alone did seem to have a positive effect on the rate of antennal contact by the females. To induce oviposition behaviour, both fractions were necessary and reflect cooperation between at least one compound in each fraction. Identification of cuticular lipids shows that hydrocarbons were dominant (77%). Non-hydrocarbon compounds were mainly represented by 15-nonacosanone (18% of the total lipid extract). This ketone is rare in insect cuticle lipids and is thought to originate from the cabbage epicuticle where it is dominant with n-C29 and 14- and 15-nonacosanol also found among the cuticular lipids of the host caterpillar.  相似文献   

12.
Aristolochia macrophylla (Lam.) is a major host of the pipevine swallowtail butterfly,Battus philenor (L.), in the eastern United States. The female butterflies use a synergistic mixture of inositols, acids and a lipid as oviposition cues in recognizing this plant on contact. The acids and lipid, all isolated from the Et2O-CHCl3 fraction of an alcoholic extract of fresh foliage, were identified as aristolochic acid I (1), aristolochic acid II (2) and 1,2-[di(9Z,12Z,15Z)-octadeca-9, 12, 15-trienoyl]-3-galactosyl-sn-glycerol (3). Identifications were facilitated by UV, MS (EI and FAB) and NMR (1D and 2D) spectral techniques and by analysis of the hydrolysis products of 3. The active inositols were identified as D-(+)-pinitol, reported previously, and sequoyitol. Though this is apparently the first report of oviposition responses to a diacyl glycerol glycoside by a phytophagous insect, responses to aristolochic acids and sequoyitol have been reported previously for anAristolochia-feeding swallowtail of a different genus in Japan. This indicates substantial evolutionary conservatism in chemical oviposition cues within the tribe Troidini.  相似文献   

13.
Doak P  Kareiva P  Kingsolver J 《Ecology》2006,87(2):395-408
For the majority of insects, a female's choice of oviposition site(s) greatly influences both the success of individual offspring and her own total fitness. Theory predicts that females most strongly limited by egg number will employ greater oviposition site discrimination than those predominately subject to time limitation. The reproductive success of the butterfly Pieris virginiensis at our Connecticut, USA, field site is strongly time constrained on two fronts. First, during their three-week flight season, only 60% of days and 28% of daytime hours were suitable for flight. Second, larval survival is impacted by the rapid senescence of their spring ephemeral host plant Dentaria diphylla, with eggs laid during the first half of the flight season having approximately three times the survival chance of those laid later. Yet, on average, females choose to oviposit on only half the plants they closely inspect and fly over most ramets without any inspection. Our experiments demonstrate that the preferred host ramets confer an approximate two-fold survival advantage. Females are not choosing plants that senesce later, despite the advantage that such plants would confer. We use empirical data on female behavior and larval performance to parameterize a simulation model. Model results suggest that, despite the notable time limitation in this system, the observed level of female oviposition site preference not only increases individual larval survival, but also total female fitness. Low egg loads in this species may contribute to selection for strong host plant discrimination.  相似文献   

14.
The effects of larval diet on the nutritional preferences of butterflies has rarely been examined. This study investigates whether alterations in the larval diet result in changes in adult preferences for nectar amino acids. Larvae of Coenonympha pamphilus were raised on fertilized or unfertilized Festuca rubra, grown under ambient (350 ppm) or elevated (750 ppm) atmospheric CO 2environments. Fertilization led to marked increases in leaf nitrogen concentration. In plants grown under elevated CO 2conditions, leaf water and nitrogen concentrations were significantly lower, and the C/N-ratio increased significantly. Fertilization of the host plant shortened the development time of C. pamphilus larvae, and pupal weight increased. In contrast, larvae of C. pamphilus developed significantly slower on F. rubra grown under elevated CO 2, but adult emergence weight was not affected by CO 2treatment of the plant. C. pamphilus females showed a clear preference for nectar mimics containing amino acids, whereas males, regardless of treatment, either preferred the nectar mimic void of amino acids or showed no preference for the different solutions. Female butterflies raised on fertilized plants showed a significant decline in their preference for nectar mimics containing amino acids. A slight, but not significant, trend towards increased nectar amino acid preference was found in females raised on plants grown under elevated CO 2. We clearly demonstrate that alterations in larval host quality led to changes in butterfly nectar preferences. The ability of the butterfly to either rely less on nectar uptake or compensate for poor larval conditions represents a trade-off between larval and adult butterfly feeding.  相似文献   

15.
Many bacteria live in close association with sponges. Within these consortia, molecules of communication such as quorum-sensing and hormone-like molecules may occur in order to regulate the partnership. Of particular interest, bacterial N-acyl-l-homoserine lactones (AHLs) were screened in supernatants from Suberites domuncula-associated bacteria using an E. coli bioluminescent reporter system. These sponge-associated bacteria were beforehand isolated on several media supplemented or not with a sponge extract to attempt to isolate sponge-specific bacteria. Out of 81 AHL-producing bacteria, three strains requiring sponge extract to grow were selected for AHL characterization. The in vitro produced AHLs, that is, in bacterial culture supernatants, were identified as N-(3-butanoyl)-l-homoserine lactone and N-(3-oxododecanoyl)-l-homoserine lactone and quantified using LC–ESI–MS/MS. The in vivo production of AHLs by sponge-associated bacteria has also been demonstrated in a healthy host for the first time: N-(3-oxododecanoyl)-l-homoserine lactone, N-(3-hexanoyl)-l-homoserine lactone, and N-(3-heptanoyl)-l-homoserine lactone. This AHL production in sponges may suggest a potential role of these molecules between sponge-associated bacteria and/or between sponge-associated bacteria and the sponge.  相似文献   

16.
Summary. The sugar alcohol dulcitol is a strong feeding stimulant for larvae of the small ermine moth Yponomeuta cagnagellus. In this paper we tested the hypothesis that dulcitol also acts as an oviposition stimulant for this species. We found that the sugar-alcohol dulcitol was present on the surface of the host Euonymus europaeus. We also showed that (as yet unidentified compounds) can be systemically transferred (i.e. by uptake and transport via the vascular system) from E. europaeus, to the non-host Crataegus monogyna and stimulate oviposition. However, no evidence was found that this stimulatory activity was due to dulcitol. Systemic enrichment of C. monogyna with dulcitol did not induce oviposition on this plant. Neither was the application of pure dulcitol on artificial twigs effective. In addition it was shown that when dulcitol was removed from host plant extracts, oviposition stimulatory activity was retained in the fraction without dulcitol. Synergism between dulcitol and other stimulants could not be demonstrated, however, high concentrations of dulcitol in combination with the main stimulant(s) showed a trend towards enhanced oviposition. It is concluded that the sugar alcohol dulcitol can only play a limited role in adult host acceptance behaviour. The hypothesis that a host shift in the genus Yponomeuta from Celastraceae to Rosaceae might have been facilitated by the presence of small amounts of dulcitol in Rosaceae therefore needs to be restricted to larval feeding behaviour. Received 20 August 1999; accepted 6 December 1999  相似文献   

17.
Phyllomorpha laciniata Vill. (Heteroptera, Coreidae) females lay eggs on the host plant and on the backs of conspecifics. Since egg survival is greater when eggs develop on the backs of conspecifics than when laid on plants, we predict that females should prefer to lay eggs on conspecifics. In addition, because conspecifics are a high-quality site that represents a limiting resource, females should experience oviposition stimulation upon an encounter with a conspecific. Our results reveal that, when both the host plant and conspecifics are available simultaneously, females lay eggs preferentially on conspecifics. The results also support the second prediction, since females housed with conspecifics lay more than twice the number of eggs than isolated females. Isolated females do not seem to retain eggs, suggesting that oviposition stimulation is the result of an acceleration of egg-maturation rates. Other studies have found oviposition stimulation by mating and have suggested that it is the result of male strategies to increase short-term male reproductive success at some cost to females. The evolutionary scenario of our model organism seems to be quite different since females benefit greatly from increasing egg laying when there are conspecifics, because the advantages in terms of offspring survival are likely to translate into substantial increases in female reproductive success.  相似文献   

18.
Summary. The ability to perceive and respond to phytochemicals that reliably indicate poor suitability of a potential host plant confers a selective advantage to ovipositing female swallowtail butterflies. Papilio glaucus females are generalists that nonetheless do not oviposit on red bay (Persea borbonia: Lauraceae). Red bay is toxic to P. glaucus neonates but is commonly found in habitats alongside their principal host plant, Magnolia virginiana, in central Florida. The hypothesis that deterrent compounds present in the leaves of red bay mediate its rejection by P. glaucus was evaluated in our study. Florida populations of P. glaucus did not oviposit on host leaves sprayed with the methanol extract of red bay foliage, although they accepted solvent-treated and untreated tulip tree leaves in 3 choice bioassays. Additionally, tulip tree leaves sprayed with methanolic extracts of red bay also deterred oviposition by P. glaucus females from Ohio, Kentucky and Pennsylvania, although these populations do not naturally encounter red bay. Clearly, deterrent compounds found within this non-host are the basis of its rejection by populations of P. glaucus and such recognition is fundamental to the species, not just a reflection of local adaptations. Received 2 April 1999; accepted 11 June 1999.  相似文献   

19.
Summary The present study aimed to test the possible function of the aphid alarm pheromone (E)--farnesene (EBF) as a host finding kairomone for aphid primary parasitoids. Extracts of volatile emissions of undisturbed aphids and of aphids under parasitoid attack were obtained by air entrainment. Extracts of cornicle secretions were gained by disturbing aphids and taking their secretions into solution. Extracts were compared by gas chromatography. Only air entrainments of aphids under attack and solvent extracts of cornicle secretions contained the alarm pheromone. In Y-tube olfactometer bioassays, femaleA. uzbekistanicus were attracted to aphid groups under attack of parasitoids, presumably by released EBF. High concentrations of synthetic EBF (1.4 µg to 5.7 µg) also attractedA. uzbekistanicus females. Females with oviposition experience reacted more readily to lower concentrations of EBF than females without experience. In experiments designed as Petri-dish bioassays, the test animals could contact filter paper discs that were treated with solutions containing EBF. Behavioural effects like antennation or stinging attack were not observed. With computer video analysis of parasitoid movements, some effects onA. uzbekistanicus behaviour were detected, again indicating attraction to EBF.As the volatile aphid alarm pheromone attractedA. uzbekistanicus females, it can be concluded that this chemical stimulus acts as a host finding kairomone for this parasitoid species. However, its effect over long distances seems to be limited due to the relatively high concentrations required for reactions. Of two other parasitoid species examined (P. volucre andL. testaceipes) onlyP. volucre was also significantly attracted to the volatile EBF in the Y-tube olfactometer.  相似文献   

20.
Non-random distribution patterns of specialized phytophagous insects on their hosts may depend on intraspecific differences in plant tissue quality, including nutrients and secondary compounds. Secondary compounds are involved in plant resistance, but are also important for the recognition and acceptability of plants as resources by specialized insects. If individuals within a plant species vary in their content of such secondary substances, there may also be qualitative differences between them. In such cases, natural selection will favor insects with the ability to distinguish and prefer the more suitable plants. In Sweden, the leaf beetle Gonioctena linnaeana Schrank (Coleoptera, Chrysomelidae) is highly specialized on one host, the native willow Salix triandra L (Salicaceae). Field observations reveal that some host plants in a population harbor many feeding larvae, causing severe defoliation, whereas neighboring plants may have few or no feeding larvae. Our hypothesis is that the distribution pattern of G. linnaeana larvae in this population results from qualitative differences between individual host plants in combination with the ability of G. linnaeana females to distinguish between plants that are suitable and not suitable for offspring performance. We examine whether larval survival differs depending on diet and whether the content of secondary chemical compounds explains female preference. Based on the higher survival rate of larvae reared on leaves from preferred hosts, we conclude that G. linnaeana females have evolved a behavior that maximizes offspring performance and thus positively affects female fitness. A chemical survey of the plants indicates that luteolin-7-glucoside and an unidentified flavonoid are important for separating the preferred from the non-preferred plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号