首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Production dynamics of eelgrass, Zostera marina was examined in two bay systems (Koje Bay and Kosung Bay) on the south coast of the Korean peninsula, where few seagrass studies have been conducted. Dramatically reduced eelgrass biomass and growth have been observed during summer period on the coast of Korea, and we hypothesized that the summer growth reduction is due to increased water temperature and/or reduced light and nutrient availabilities. Shoot density, biomass, morphological characteristics, leaf productivities, and tissue nutrient content of eelgrass were measured monthly from June 2001 to April 2003. Water column and sediment nutrient concentrations were also measured monthly, and water temperature and underwater irradiance were monitored continuously at seagrass canopy level. Eelgrass shoot density, biomass, and leaf productivities exhibited clear seasonal variations, which were strongly correlated with water temperature. Optimal water temperature for eelgrass growth in the present study sites was about 15–20°C during spring period, and eelgrass growths were inhibited at the water temperature above 20°C during summer. Daily maximum underwater photon flux density in the study sites was usually much higher than the light saturation point of Z. marina previously reported. Densities of each terminal, lateral, and reproductive shoot showed their unique seasonal peak. Seasonal trends of shoot densities suggest that new eelgrass shoots were created through formation of lateral shoots during spring and a part of the vegetative shoots was transformed into flowering shoots from March. Senescent reproductive shoots were detached around June, and contributed to reductions of shoot density and biomass during summer period. Ambient nutrient level appeared to provide an adequate reserve of nutrient for eelgrass growth throughout the experimental period. The relationships between eelgrass growth and water temperature suggested that rapid reductions of eelgrass biomass and growth during summer period on the south coast of the Korean peninsula were caused by high temperature inhibition effects on eelgrass growth during this season.  相似文献   

2.
Proliferation of macroalgal mats is a frequent consequence of nutrient-driven eutrophication in shallow, photic coastal marine ecosystems. These macroalgae have the potential to significantly modify water quality, plankton productivity, nutrient cycling, and dissolved oxygen dynamics. We developed a model for Ulva lactuca and Gracilaria tikvahiae in Greenwich Bay, RI (USA), a shallow sub-estuary of Narragansett Bay, as part of a larger estuarine ecosystem model. The model predicts the biomass of both species in units of carbon, nitrogen, and phosphorus as a function of primary production, respiration, grazing, decay, and physical exchange, with particular attention to the effects of biomass layering on light attenuation and suppression of metabolic rates. The model successfully reproduced the magnitude and seasonal cycle of area-weighted and peak biomass in Greenwich Bay along with tissue C:N ratios, and highlighted the importance of grazing and inclusion of self-limitation primarily in the form of self-shading to overcome an order of magnitude difference in rates of production and respiration. Inclusion of luxury nutrient uptake demonstrated the importance of internal nutrient storage in fueling production when nutrients are limiting. Macroalgae were predicted to contribute a small fraction of total system primary production and their removal had little effect on predicted water quality. Despite a lack of data for calibration and a fair amount of sensitivity to individual parameter values, which highlights the need for further autecological studies to constrain formulations, the model successfully predicted macroalgal biomass dynamics and their role in ecosystem functioning. Our formulations should be exportable to other temperate systems where macroalgae occur in abundance.  相似文献   

3.
In this paper we investigate the seasonal autochthonous sources of dissolved organic carbon (DOC) and nitrogen (DON) in the euphotic zone at a station in the upper Chesapeake Bay using a new mass-based ecosystem model. Important features of the model are: (1) carbon and nitrogen are incorporated by means of a set of fixed and varying C:N ratios; (2) dissolved organic matter (DOM) is separated into labile, semi-labile, and refractory pools for both C and N; (3) the production and consumption of DOM is treated in detail; and (4) seasonal observations of light, temperature, nutrients, and surface layer circulation are used to physically force the model. The model reasonably reproduces the mean observed seasonal concentrations of nutrients, DOM, plankton biomass, and chlorophyll a. The results suggest that estuarine DOM production is intricately tied to the biomass concentration, ratio, and productivity of phytoplankton, zooplankton, viruses, and bacteria. During peak spring productivity phytoplankton exudation and zooplankton sloppy feeding are the most important autochthonous sources of DOM. In the summer when productivity peaks again, autochthonous sources of DOM are more diverse and, in addition to phytoplankton exudation, important ones include viral lysis and the decay of detritus. The potential importance of viral decay as a source of bioavailable DOM from within the bulk DOM pool is also discussed. The results also highlight the importance of some poorly constrained processes and parameters. Some potential improvements and remedies are suggested. Sensitivity studies on selected parameters are also reported and discussed.  相似文献   

4.
The fauna and environmental conditions in a freshwater rock pool ecosystem were followed by a weekly quantitative sampling program from April to August, 1974. The rock pool, situated on a small island in the northern Baltic Sea, was heavily eutrophicated by droppings from the surrounding colony of sea birds. The intermittent flushing of the pool with rainwater and the input of bird droppings, as well as the biological activity, contributed to the large seasonal variations in nutrients and organic matter that were observed. A dense algal bloom of flagellates occurred in April but vanished when the animal population started to increase in the middle of May. During the rest of the summer, most of the photosynthetic pigments were found in the bottom sediment, mostly as degraded phaeo-pigments due to intensive grazing by the animals in the pool. Very few animal taxa were found and the phyllopod Daphnia magna (Straus) dominated throughout the whole sampling period. D. magna contributed to more than 50% of the total biomass, except in late July when chironomid larvae were most abundant. The total biomass in the pool increased from about 15 mg (dry weight) l?1 in May to a maximum of about 60 mg l?1 at the end of June. There were few carnivores in the system, except during the spring when the water bug Deronectes griseostriatus (de Geer) was common.Analyses of size, age and sex structure and calculations of birth and death rates of the D. magna population showed large seasonal variations, correlated with the volume fluctuations and flushings of the pool which stimulated both the algal production and the growth and reproduction of Daphnia. Data from the extensive literature that exists on D. magna and other species of the same genus were used, together with field and experimental data from the rock pool population, in a numerical model describing the energy budget of this species. The model describes variations in weight-specific growth, reproduction, moulting, feeding and respiration rates in relation to temperatures and food concentrations. Energy budget relationships that maximise the chances for survival and utilisation of the available energy for a population exposed to varying food concentrations are predicted by the model. The energy budget model was also used to estimate the secondary production of the rock pool population of D. magna. The total production between April and August was 203 mg (dry weight) l?1 and the average production per biomass ratio was 0.094 day?1. The average net production efficiency was 42%, very close to other values reported for D. magna from other biotopes. The relative importance of different factors controlling the production was also analysed with the model. Production per biomass ratio was calculated, assuming a constant temperature and/or food concentration for the whole sampling period. The varying food concentrations in the rock pool had the most pronounced influence, greater than that of temperature and size structure variations in the population.  相似文献   

5.
The surfgrass Phyllospadix japonicus is endemic to exposed shores of the northeastern Pacific Ocean. Unlike the majority of seagrasses, P. japonicus grows on rocky substrata. The specific physical features of the habitat are likely related to the peculiar ecological characteristics of P. japonicus. However, few studies have been conducted thus far on the growth dynamics of Phyllospadix spp., largely due to the turbulent water conditions in its habitat. P. japonicus is a dominant seagrass species, and it plays critical ecological roles on the eastern coast of Korea. Here, we examined its growth dynamics for the first time on the Korean coast. We measured shoot density, biomass, leaf production, phenology, morphology, tissue nutrient content, as well as environmental factors including underwater photon flux density (PFD), water temperature and water column nutrient concentrations from March 2003 to December 2005. Shoot density, biomass, leaf productivity and morphological characteristics exhibited significant seasonal variations; maximum values of these variables occurred in winter and early spring, and the minima were recorded in late summer and early fall. PFD and water temperature were, respectively, positively and negatively correlated with leaf production. Nutrient availability fluctuated substantially, but there was no evidence of distinct seasonal variation, nor was it correlated with leaf production. Leaf chlorophyll concentrations were correlated strongly with leaf production, whereas tissue nutrient contents were unrelated to leaf production. Maximum potential seed production ranged from 1,200 seeds m−2 in 2004 to 3,445 seeds m−2 in 2003; however, seedlings were rarely detected through the observation period. Thus, P. japonicus meadows at the study site appeared to persist through vegetative propagation. Leaf C content varied bimodally, with peaks in spring and fall. Leaf N content was minimal during months in which leaf productivity was lowest. These patterns in tissue nutrient content are clearly different from those of the majority of soft-substratum seagrasses and appear to relate to the reduced physiological tolerance of high temperature in P. japonicus compared to other temperate seagrasses.  相似文献   

6.
The giant kelp Macrocystis pyrifera is one of the largest and fastest growing seaweeds and is dominant over large areas of the west coast of North America. A model of its growth has been developed which describes plant biomass and production over the course of a year as a function of environmental parameters which affect the light flux. Such parameters include water clarity, spacing between plants, bottom depth, latitude, harvesting activity, and photosynthetic response (P max and I k ). Model results for a standard set of conditions (latitude 33°N, 3 m plant spacing, water absorbance of 0.115 m-1 and 12 m depth) yield a peak daily gross production of almost 6 g C m-2 d-1, peak daily net production of almost 3 g C m-2 d-1, and a peak specific growth rate of about 0.022 d-1. Annual gross production for this case is 1 567 g C m-2 yr-1; annual net production is 537 g C m-2 yr-1. These values are comparable to those from field measurements. Size and timing of biomass and production peaks are affected by changes in the parameters describing the light field, with peaks usually occurring later in the year for more adverse circumstances. Inhigher latitudes, the seasonal variation is so extreme that the plant could not last the year at 53° N in 12 m of water, although it is able to survive the year in shallower water. Harvesting has severe effects on biomass and production. Model results suggest that light limitation is a very important constraint on kelp growth that should not be overlooked. This implies that differences in parameters describing two environments must be considered when comparing results obtained at different locales.  相似文献   

7.
The growth and production of the inshore marine copepod Pseudodiaptomus marinus was studied in the central part of the Inland Sea of Japan. The stage-specific growth rate was determined under controlled laboratory conditions by examining the length-weight relationship and development rates at various temperatures. The stage duration was short and constant from NII to CII, beyond which development was retarded. Males developed faster than females in CIV and CV. The specific growth rate was highest in copepodite stages followed by the nauplii and adult females (=egg production rate). The daily production of P. marinus was estimated from the stage-specific growth rate and stage-specific abundance in nature as the sum of the individual stages. The production changed seasonally with water temperature and population biomass. Daily production and biomass (P/B) ratios increased linearly with temperature. Total annual production was 20.7 mg C m-3 yr-1.  相似文献   

8.
The most studied and commonly applied model of fish growth is the von Bertalanffy model. However, this model does not take water temperature into account, which is one of the most important environmental factors affecting the life cycle of fish, as many physiological processes that determine growth, e.g. metabolic rate and oxygen supply, are directly influenced by temperature. In the present study we propose a version of the von Bertalanffy growth model that includes mean annual water temperatures by correlating the growth coefficient, k, explicitly and the asymptotic length, L, implicitly to water temperature. All relationships include parameters with an obvious biological relevance that makes them easier to identify. The model is used to fit growth data of bullhead (Cottus gobio) at different locations in the Bez River network (Drme, France). We show that temperature explains much of the growth variability at the different sampling sites of the network.  相似文献   

9.
Thalassia testudinum leaf dynamics in a Mexican Caribbean coral reef lagoon   总被引:1,自引:0,他引:1  
Shoot density, leaf growth, initiation, biomass and primary production in Thalassia testudinum (Banks ex König) were monitored at monthly intervals from August 1990 until January 1992 at three stations in the tropical coral reef of Puerto Morelos lagoon, Mexico. Leaf growth decreased with increasing leaf length, declining rapidly once the tips of leaves had started to decay; however, the leaves continued to grow until complete senescence. Maximum potential leaf age was>90 d. Leaf growth, biomass and primary production were highest at the station in the vicinity of mangrove discharges, intermediate at the nearshore fringe of the seagrass meadow, and lowest at the back-reef station. Leaf growth, leaf initiation, biomass and primary production were minimum in the winter months and maximum in the summer. Leaf growth and primary production were significantly correlated with water temperature or/and the hours of daylight. This is the first report of temperature-or/and hours of daylight-related seasonal variability in T. testudinum production from the tropical Caribbean.  相似文献   

10.
Rhizosolenia delicatula (Cleve) is not very often quantitatively recorded, although frequently mentioned in plankton investigations in European waters. Recent studies at Roscoff (France) place it among the dominant species in the seasonal cycle. R. delicatula is present most of the year. It flowered in May/June every year from 1962 to 1966 at a rate of cell division in accordance with exponential growth. This bloom falls in with the main seasonal bloom of phytoplankton as cell numbers and chlorophyll a. Detailed study of the growth in 1966 shows that horizontal transport exists due to spring and neap tide alternations. Highest records of cell numbers coincide with highest tidal coefficients. By comparing environmental conditions each year at the time growth takes place, optimal growth conditions were defined as follows: temperature 12° to 13°C, salinity 35‰, light 0.07 to 0.09 cal.g/cm2/min. Phosphate is not a limiting factor. After exponential growth, the species seems to be controlled by grazing. R. delicatula has a definite place in both the hydrographical cycle and plancton succession. It is the first noticeable species of the summer diatom suecession. R. fragilissima precedes R. delicatula in the succession, but has no such successful development. These two species exhibit the highest cell surface/volume ratios. The annual regularity in the appearance and growth of R. delicatula suggests that this species, an autochtonous one, actively increases in numbers when optimal conditions, as defined, occur. This development, when microplancton diversity is lowest, is not linked with water transportation. As incident light and temperature increase, primary production (as expected) increases also. At the same time, the structure of the community is changing; the species diversity increases.  相似文献   

11.
R. Williams 《Marine Biology》1985,86(2):145-149
The geographical distribution and annual mean abundance of Calanus finmarchicus (Gunnerus) and C. helgolandicus (Claus) in the northern North Atlantic Ocean were shown in relation to the seasonal and annual fluctuations of abundance of the species in the Celtic Sea from 1960 to 1981. These congeneric copepods, although showing allopatric distributions over most of their geographical range, have sympatric distributions in the Celtic Sea where they dominate the dry weight biomass of the plankton throughout the year. The two species respond differently to the development of the seasonal thermocline and halocline by taking up different vertical distributions in the water column. C. finmarchicus occurred in the colder, more saline water below the thermocline, while C. helgolandicus occurred in the warmer, less saline water above the thermocline. This behaviour is postulated as a mechanism by which these morphologically similar copepods more fully exploit the resources of their temporally and spatially heterogeneous environment and also minimise interspecific competition. The species have the same foraging techniques and are able to exploit the same size spectrum of particulates. The vertical depth strata in which the populations are found for most of the year in the Celtic Sea means that both species exploit the diatom bloom in early spring but, thereafter, C. helgolandicus grazes on the daily production of the autotrophs in the euphotic zone while C. finmarchicus, below the thermocline, has to rely for its food on sedimenting particulates (whole cells, detritus and faecal material). The isolating mechanisms whereby these two populations partition the habitat in the Celtic Sea are discussed.  相似文献   

12.
The aim of this work was to test a process-based model (hydrological model combined with forest growth model) on the simulation of seasonal variability of evapotranspiration (ET) in an even-aged boreal Scots pine (Pinus sylvestris L.) stand over a 10 year period (1999-2008). The water flux components (including canopy transpiration (Et) and evaporation from canopy (Ec) and ground surface (Eg) were estimated in order to output the long-term stand water budget considering the interaction between climate variations and stand development. For validation, half-hourly data on eddy water vapor fluxes were measured during the 10 growing seasons (May-September). The model predicted well the seasonal course of ET compared to the measured values, but slightly underestimated the water fluxes both in non-drought and drought (2000, 2003 and 2006) years. The prediction accuracy was, on average, higher in drought years. The simulated ET over the 10 years explained, on average, 58% of the daily variations and 84% of the monthly amount of ET. Water amount from Et contributed most to the ET, with the fractions of Et, Ec and Eg being, on average, 67, 11 and 23% over the 10-year period, respectively. Regardless of weather conditions, the daily ET was strongly dependent on air temperature (Ta) and vapor pressure deficit (Da), but less dependent on soil moisture (Ws). On cloudy and rainy days, there was a non-linear relationship between the ET and solar radiation (Ro). During drought years, the model predicted lower daily canopy stomatal conductance (gcs) compared with non-drought years, leading to a lower level of Et. The modeled daily gcs responded well to Da and Ws. In the model simulation, the annual LAI increased by 35% between 1999 and 2008. The ratio of Ec: ET correlated strongly with LAI. Furthermore, LAI reduced the proportion of Eg as a result of the increased share of Ec and Et and radiation interception. Although the increase of LAI affected positively Et, the contribution of Et in ET was not significantly correlated with LAI. To conclude, although the model predicted reasonably well the seasonal course of ET, the calculation time steps of different processes in the model should be homogenized in the future to increase the prediction accuracy.  相似文献   

13.
《Ecological modelling》2003,161(3):213-238
Anumerical deterministic model for a seagrass ecosystem (Zostera noltii meadows) has been developed for the Thau lagoon. It involves both above- and belowground seagrass biomasses, nitrogen quotas and epiphytes. Driving variables are light intensity, wind speed, rain data and water temperature. This seagrass model has been coupled to another biological model in order to simulate the relative contributions of each primary producer to: (i) the total ecosystem production, (ii) the impact on inorganic nitrogen and (iii) the fluxes towards the detritus compartment. As a first step in the modelling of seagrass beds in the Thau lagoon, the model has a vertical structure based on four boxes (a water box on top of three sediment boxes) and the horizontal variability is neglected until now. This simple box structure is nevertheless representative for the shallow depth Z. noltii meadows, spread over large areas at the lagoon periphery.After calibration, simulation results have been compared with in situ measurements and have shown that the model is able to reproduce the general pattern of biomasses and nitrogen contents seasonal dynamics. Moreover, results show that, in such shallow ecosystems, seagrasses remain the most productive compartment when compared with epiphytes or phytoplankton productions, and that seagrasses, probably due to their ability in taking nutrients in the sediment, have a lower impact on nutrient concentration in the water column than the phytoplankton. Furthermore, in spite of active mechanisms of internal nitrogen redistribution and reclamation, the occurrence of a nitrogen limitation of the seagrass growth during summer, already mentioned in the literature, have also been pointed out by the model. Finally, simulations seems to point out that epiphytes and phytoplankton could compete for nitrogen in the water column, while a competition for light resources seems to be more likely between epiphytes and seagrasses.  相似文献   

14.
Environmental conditions act above and below ground, and regulate carbon fluxes and evapotranspiration. The productivity of boreal forest ecosystems is strongly governed by low temperature and moisture conditions, but the understanding of various feedbacks between vegetation and environmental conditions is still unclear. In order to quantify the seasonal responses of vegetation to environmental factors, the seasonality of carbon and heat fluxes and the corresponding responses for temperature and moisture in air and soil were simulated by merging a process-based model (CoupModel) with detailed measurements representing various components of a forest ecosystem in Hyytiälä, southern Finland. The uncertainties in parameters, model assumptions, and measurements were identified by generalized likelihood uncertainty estimation (GLUE). Seasonal and diurnal courses of sensible and latent heat fluxes and net ecosystem exchange (NEE) of CO2 were successfully simulated for two contrasting years. Moreover, systematic increases in efficiency of photosynthesis, water uptake, and decomposition occurred from spring to summer, demonstrating the strong coupling between processes. Evapotranspiration and NEE flux both showed a strong response to soil temperature conditions via different direct and indirect ecosystem mechanisms. The rate of photosynthesis was strongly correlated with the corresponding water uptake response and the light use efficiency. With the present data and model assumptions, it was not possible to precisely distinguish the various regulating ecosystem mechanisms. Our approach proved robust for modeling the seasonal course of carbon fluxes and evapotranspiration by combining different independent measurements. It will be highly interesting to continue using long-term series data and to make additional tests of optional stomatal conductance models in order to improve our understanding of the boreal forest ecosystem in response to climate variability and environmental conditions.  相似文献   

15.
Most fish farming waste output models provide gross waste rates as a function of stocked or produced biomass for a year or total culture cycle, but without contemplating the temporality of the discharges. This work aims to ascertain the temporal pattern of waste loads by coupling available growth and waste production models and developing simulation under real production rearing conditions, considering the overlapping of batches and management of stocks for three widely cultured species in the Mediterranean Sea: gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax) and Atlantic bluefin tuna (Thunnus thynnus). For a similar annual biomass production, the simulations showed that waste output and temporal dumping patterns differ between the three species as a result of the disparities in growth velocity, nutrient digestibility, maintenance metabolic budget and husbandry. The simulations allowed the temporal patterns including the periods of maximum discharge and the dissolved and particulate nitrogen and phosphorus content in the wastes released to be determined, both of which were seen to be species-specific.  相似文献   

16.
Growth dynamics of Saccharina latissima in a Danish embayment (56°03.793N, 10°16.148E) were investigated through an annual cycle (March 1999–March 2000) and related to patterns found in previous studies covering the distribution range of the species. The kelps exhibited meristematic growth as well as distal tissue loss all year around. Elongation rate peaked in spring (March–May, 0.75 cm day?1), whereas maximum biomass growth occurred in May–July at higher insolation. S. latissima accumulated nitrogen (N) in November–March, when ambient N levels were high and the fast growth in March–July was followed by a depletion of these reserves. Light regimes and seasonal fluctuations of nutrients were, thus, major factors explaining the seasonal growth pattern of S. latissima in this temperate bay. Differences in light and exposure along depth gradients affected the growth, loss and storage product dynamics. High losses of N and carbon (C) through summer abscission of distal tissue question the efficiency of translocation, especially at shallower depths, where losses are accelerated by, e.g., high temperature. A large-scale comparison further highlighted that warming advanced the timing, increased the level of peak growth and also seemed to expand the growth period. Growth rates of the studied Danish population fell in the low end of the range for similar latitudes and temperatures, probably due to sub-optimal salinities (avg. 23.3 psu) in combination with periodically high summer temperatures (max. 21.1 °C).  相似文献   

17.
18.
The present study examines for the first time the effects of increased salinity on water relations and osmolyte (carbohydrates and amino acids) concentrations in two Mediterranean seagrass species, Posidonia oceanica and Cymodocea nodosa, which are adapted to growth in environments with contrasting salinity and have a known differential sensitivity to alterations in ambient salinity. The specific aim was to obtain insights into their respective capacities to cope with natural or anthropogenically induced (e.g. desalination plants) hypersaline stress and its ecological implications. To this end, large plant fragments of both seagrass species were maintained for 47 days in a laboratory mesocosm system under ambient salinity (37 psu; control) and three chronic hypersaline conditions (39, 41 and 43 psu). Analyses of leaf-tissue osmolality indicated that both species followed a dehydration avoidance strategy, decreasing their leaf water potential (Ψw) as the external salinity increased, but using different physiological mechanisms: whereas P. oceanica leaves exhibited a reduction in osmotic potential (Ψπ), C. nodosa leaves maintained osmotic stability through a decrease in turgor pressure (Ψp) probably mediated through cell-hardening processes. Accordingly, the concentrations of soluble sugars and some amino acids (mainly Pro and Gly) suggested the activation of osmoregulatory processes in P. oceanica leaves, but not in C. nodosa leaves. Osmotic adjustments probably interfered with leaf growth and shoot survival of P. oceanica under hypersaline stress, whereas C. nodosa showed a more efficient physiological capacity to maintain plant performance under the same experimental conditions. These results are consistent with the more euryhaline ecological behaviour of C. nodosa and contribute to understanding the high vulnerability shown by P. oceanica to even mild increments in seawater salinity.  相似文献   

19.
Changes in carbon use efficiency (CUE), which is defined as the ratio of net primary production (NPP) to gross primary production (GPP), were analyzed for Abies veitchii Lindl. forests with respect to stand development by developing a simple mathematical model incorporating data on physiological variables and leaf mass ratio. A decrease in CUE with stand development was successfully expressed as a function of stand biomass (y) based on the following three assumptions: (1) a power-law relationship between mean respiration and mean individual tree mass, (2) a power-functional relationship between mean gross primary production and mean individual tree mass, and (3) self-thinning relationship between stand biomass and density. Based on this model, a parameter of CUE–y relationship was defined, and it was clarified that CUE decrease with stand development is caused not by the ratio of specific respiration rate to specific gross photosynthetic rate, but by leaf mass ratio. Since CUE is high in young forests, helpful information on selecting woody species when planting seedlings was provided from the viewpoints of reducing CO2 in the atmosphere and global warming.  相似文献   

20.
The photoacclimation capacity of the seagrass Cymodocea nodosa was evaluated considering temporal (i.e. seasonal) and spatial (i.e. depth and within-leaf position) factors of variation. Changes along the leaf were measured in a population growing along a depth gradient (from intertidal to subtidal) in Cadiz Bay (Southern Spain) from 2004 to 2005. Photoacclimation was evaluated by photosynthesis (PE curves), pigment content and leaf morphology. Plants of Cymodocea nodosa showed large physiological and morphological plasticity (mean %CV = 35.8 ± 3.4) according to the three factors considered. Seasonal patterns appeared for photosynthesis, respiration, pigment content and morphology. Nevertheless, seasonal patterns were not consistent with depth or leaf portions. The resulting data set offered different information depending on the analysis conducted; when only one factor (season, depth or leaf portion) was considered, some tendencies observed in the 3-way full design were masked. Accordingly, considering spatio–temporal variability is crucial when describing photoacclimation and estimating productivity in seagrass meadows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号