首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gap filling of flux data is necessary to assist with periodic interruptions in the measurement data stream. The gap-filling model (GFM), first described in Xing et al. [Xing, Z., Bourque, C.P.-A., Meng, F.-R., Zha, T.-S., Cox, R.M., Swift, E., 2007. A simple net ecosystem productivity model for gap filling of tower-based fluxes: an extension of Landsberg's equation with modifications to the light interception term. Ecol. Model. 206, 250–262], was modified to account for the day-to-day control of net ecosystem productivity (NEP) by incorporating air and soil temperature as new controlling variables in the calculation of NEP. To account for the multiple-phase influences of air and soil temperature on plant growth we model ecosystem respiration as a function of soil and canopy respiration. The paper presents model development in an incremental fashion in order to quantify the contribution of individual model enhancements to the prediction of NEP during periods when air and soil temperature variations are important.  相似文献   

2.
Peatlands contain approximately 25% of the global soil carbon (C), despite covering only 3% of the earth's land surface. In order to evaluate the role of peatlands in global C cycling, models of ecosystem biogeochemistry are required, but peatland ecosystems present a number of unique challenges, particularly how to deal with the large variability that occurs at scales of one to several metres. In models, spatial variability is considered either explicitly for each individual unit and the outputs averaged, referred to as flux upscaling, or implicitly by weighting model parameters by the fractional occurrence of the individual units, referred to as parameter upscaling. The advantage of parameter upscaling is that it is much more computationally efficient: a requirement for hemispheric scale simulations. In this study we determined the differences between modelling a raised bog peatland with hummock-hollow microtopography using flux and parameter upscaling. We used the McGill Wetland Model (MWM), a process-based ecosystem C model for peatlands, configured for hummocks and hollows separately and then a weighted mixture of both. The simulated output based on flux and parameter upscaling was compared with eddy-covariance tower measurements. We found that net ecosystem production (NEP) for hollows was much larger than that for hummocks because total ecosystem respiration (TER) for hummocks was greater while gross primary production (GPP) did not differ significantly between the two topographic features. However, despite differences in components of NEP between hummocks and hollows, there was no statistically significant difference between the NEP based on flux and parameter upscaling using the MWM. Both flux and parameter upscaling show equivalent capability to capture the magnitude, direction, seasonality and inter-annual variability. The root-mean-square-errors (RMSE) are 0.66, 0.45, and 0.49 g C m−2 day−1, respectively for GPP, TER and NEP based on the flux upscaling, while 0.67, 0.44, and 0.48 g C m−2 day−1, respectively based on the parameter upscaling. The degree of agreement (d*) is 0.96, 0.97, and 0.88, respectively for GPP, TER and NEP based on the flux upscaling, while 0.96, 0.97, and 0.89, respectively based on the parameter upscaling. This result suggests that differences in processes caused by peatland microtopography scale linearly, which means an ecosystem-level model set-up (i.e. parameter upscaling scheme), is sufficient to simulate the C cycling.  相似文献   

3.
Water vapor flux and carbon dioxide (CO2) exchange in croplands are crucial to water and carbon cycle research as well as to global warming evaluation. In this study, a standard three-layer feed-forward back propagation neural network technique associated with the Bayesian technique of automatic relevance determination (ARD) was employed to investigate water vapor and CO2 exchange between the canopy of summer maize and atmosphere in responses to variations of environmental and physiological factors. These factors, namely the photosynthetically active radiation (PAR), air temperature (T), vapor pressure deficient (VPD), leaf-area index (LAI), soil water content in root zone (W), and friction velocity (U*), were used as inputs in neural network analysis. Results showed that PAR, VPD, T and LAI were the primary factors regulating both water vapor and CO2 fluxes with VPD and W more critical to water vapor flux and PAR and T more crucial to CO2 exchange. Furthermore, two time variables “day of the year (DOY)” and “time of the day (TOD)” could also improve the simulation results of neural network analysis. The important factors identified by the neural network technique used in this study were in the order of PAR > T > VPD > LAI > U* > TOD for water vapor flux and in the order of VPD > W > LAI > T > PAR > DOY for CO2 exchange. This study suggests that neural network technique associated with ARD could be a useful tool for identifying important factors regulating water vapor and CO2 fluxes in terrestrial ecosystem.  相似文献   

4.
We describe and apply a method of using tree-ring data and an ecosystem model to reconstruct past annual rates of ecosystem production. Annual data on merchantable wood volume increment and mortality obtained by dendrochronological stand reconstruction were used as input to the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) to estimate net ecosystem production (NEP), net primary production (NPP), and heterotrophic respiration (Rh) annually from 1975 to 2004 at 10 boreal jack pine (Pinus banksiana Lamb.) stands in Saskatchewan and Manitoba, Canada. From 1975 (when sites aged 41-60 years) to 2004 (when they aged 70-89 years), all sites were moderate C sinks except during some warmer than average years where estimated Rh increased. Across all sites and years, estimated annual NEP averaged 57 g Cm−2 yr−1 (range −31 to 176 g Cm−2 yr−1), NPP 244 g Cm−2 yr−1 (147-376 g Cm−2 yr−1), and Rh 187 g Cm−2 yr−1 (124-270 g Cm−2 yr−1). Across all sites, NPP was related to stand age and density, which are proxies for successional changes in leaf area. Regionally, warm spring temperature increased NPP and defoliation by jack pine budworm 1 year previously reduced NPP. Our estimates of NPP, Rh, and NEP were plausible when compared to regional eddy covariance and carbon stock measurements. Inter-annual variability in ecosystem productivity contributes uncertainty to inventory-based assessments of regional forest C budgets that use yield curves predicting averaged growth over time. Our method could expand the spatial and temporal coverage of annual forest productivity estimates, providing additional data for the development of empirical models accounting for factors not presently considered by these models.  相似文献   

5.
The objective of this study was to describe the trophic structure and energy flow in a lentic ecosystem in South Korea. Physicochemical water conditions were evaluated along with the reservoir ecosystem health using a multimetric IBI model. Nutrient analyses of the reservoir showed a nutrient rich and hypereutrophic system. Guild analysis revealed that tolerant and omnivorous species dominated the ecosystem. Tolerant fish, as a proportion of the number of individuals, were associated (R2 > 0.90, p < 0.01) with TN and TP, the key indicators of trophic state in lentic ecosystems. The mean Reservoir Ecosystem Health Assessment (REHA) score was 19.3 during the study, which was judged as in ‘fair to poor’ condition. A trophic analysis of the reservoir estimated by the ECOPATH model shows that most activity in terms of energy flow occurred in the lower part of the trophic web, where there was intensive use of primary producers as a food source. Consequently, of the 10 consumer groups, nine fell within trophic levels <2.8. Trophic levels (TL) estimated from the weighted average of prey trophic levels varied from 1.0 for phytoplankton, macrophytes, and detritus to 3.25 for the top predator, Pseudobagrus fulvidraco. Our integrated approach to trophic network analysis may provide a key tool for determining the effects of nutrient influx on energy flow pathways in lentic ecosystems.  相似文献   

6.
Land use change, natural disturbance, and climate change directly alter ecosystem productivity and carbon stock level. The estimation of ecosystem carbon dynamics depends on the quality of land cover change data and the effectiveness of the ecosystem models that represent the vegetation growth processes and disturbance effects. We used the Integrated Biosphere Simulator (IBIS) and a set of 30- to 60-m resolution fire and land cover change data to examine the carbon changes of California's forests, shrublands, and grasslands. Simulation results indicate that during 1951-2000, the net primary productivity (NPP) increased by 7%, from 72.2 to 77.1 Tg C yr−1 (1 teragram = 1012 g), mainly due to CO2 fertilization, since the climate hardly changed during this period. Similarly, heterotrophic respiration increased by 5%, from 69.4 to 73.1 Tg C yr−1, mainly due to increased forest soil carbon and temperature. Net ecosystem production (NEP) was highly variable in the 50-year period but on average equalled 3.0 Tg C yr−1 (total of 149 Tg C). As with NEP, the net biome production (NBP) was also highly variable but averaged −0.55 Tg C yr−1 (total of -27.3 Tg C) because NBP in the 1980s was very low (-5.34 Tg C yr−1). During the study period, a total of 126 Tg carbon were removed by logging and land use change, and 50 Tg carbon were directly removed by wildland fires. For carbon pools, the estimated total living upper canopy (tree) biomass decreased from 928 to 834 Tg C, and the understory (including shrub and grass) biomass increased from 59 to 63 Tg C. Soil carbon and dead biomass carbon increased from 1136 to 1197 Tg C.Our analyses suggest that both natural and human processes have significant influence on the carbon change in California. During 1951-2000, climate interannual variability was the key driving force for the large interannual changes of ecosystem carbon source and sink at the state level, while logging and fire were the dominant driving forces for carbon balances in several specific ecoregions. From a long-term perspective, CO2 fertilization plays a key role in maintaining higher NPP. However, our study shows that the increase in C sequestration by CO2 fertilization is largely offset by logging/land use change and wildland fires.  相似文献   

7.
Multi-metric evaluation of the models WARM,CropSyst, and WOFOST for rice   总被引:1,自引:0,他引:1  
WARM (Water Accounting Rice Model) simulates paddy rice (Oryza sativa L.), based on temperature-driven development and radiation-driven crop growth. It also simulates: biomass partitioning, floodwater effect on temperature, spikelet sterility, floodwater and chemicals management, and soil hydrology. Biomass estimates from WARM were evaluated and compared with the ones from two generic crop models (CropSyst, WOFOST). The test-area was the Po Valley (Italy). Data collected at six sites from 1989 to 2004 from rice crops grown under flooded and non-limiting conditions were split into a calibration (to estimate some model parameters) and a validation set. For model evaluation, a fuzzy-logic based multiple-metrics indicator (MQI) was used: 0 (best) ≤ MQI ≤ 1 (worst). WARM estimates compared well with the actual data (mean MQI = 0.037 against 0.167 and 0.173 with CropSyst and WOFOST, respectively). On an average, the three models performed similarly for individual validation metrics such as modelling efficiency (EF > 0.90) and correlation coefficient (R > 0.98). WARM performed best in a weighed measure of the Akaike Information Criterion: (worst) 0<wk<10<wk<1 (best), considering estimation accuracy and number of parameters required to achieve it (mean wk=0.983wk=0.983 against 0.007 and ∼0.000 with CropSyst and WOFOST, respectively). WARM results were sensitive to 30% of the model parameters (ratio being lower with both CropSyst, <10%, and WOFOST, <20%), but appeared the easiest model to use because of the lowest number of crop parameters required (10 against 15 and 34 with CropSyst and WOFOST, respectively). This study provides a concrete example of the possibilities offered using a range of assessment metrics to evaluate model estimates, predictive capabilities, and complexity.  相似文献   

8.
A process-based crop growth model (Vegetation Interface Processes (VIP) model) is used to estimate crop yield with remote sensing over the North China Plain. Spatial pattern of the key parameter—maximum catalytic capacity of Rubisco (Vcmax) for assimilation is retrieved from Normalized Difference of Vegetation Index (NDVI) from Terra-MODIS and statistical yield records. The regional simulation shows that the agreements between the simulated winter wheat yields and census data at county-level are quite well with R2 being 0.41-0.50 during 2001-2005. Spatial variability of photosynthetic capacity and yield in irrigated regions depend greatly on nitrogen input. Due to the heavy soil salinity, the photosynthetic capacity and yield in coastal region is less than 50 μmol C m−2 s−1 and 3000 kg ha−1, respectively, which are much lower than that in non-salinized region, 84.5 μmol C m−2 s−1 and 5700 kg ha−1. The predicted yield for irrigated wheat ranges from 4000 to 7800 kg ha−1, which is significantly larger than that of rainfed, 1500-3000 kg ha−1. According to the path coefficient analysis, nitrogen significantly affects yield, by which water exerts noticeably indirect influences on yield. The effect of water on yield is regulated, to a certain extent, by crop photosynthetic capacity and nitrogen application. It is believed that photosynthetic parameters retrieved from remote sensing are reliable for regional production prediction with a process-based model.  相似文献   

9.
More complex models of forest ecosystems are required to understand how land-cover changes can impact vegetation dynamics and spatial pattern. In order to document spatio-temporal modelling abilities, the observations conducted in the declined climax mountain Norway spruce forest during the recovery period (1995-2006) are used for simulation and spatial analysis in the GIS environment. The developed spatio-temporal model is used for simulation of forest vegetation dynamics in a mountain spruce forest in the framework of regeneration processes after stress from air pollution. In order to explore the spatial and temporal phenomena of regeneration processes, the spatio-temporal model is based on a large set of ordinary differential equations that solve dynamic processes in sets of microsites arranged in grids for each ground vegetation species and each age group of Norway spruce seedlings. The spatial extent of the explored site is composed of a set of 50 × 50 microsites. Each microsite is represented by a square with dimensions of 1 m × 1 m. The presented simulation studies are mainly focused on seedlings from the seed year 1992, in order to explore the longest monitored time series of survival. It is based on exponential growth models that are related to the environmental conditions for each microsite. The canopy gaps based on estimates of the local crown projected area, the soil type layer, and the dominant grass density are used to provide case simulation studies. The first case study simulates the influence of microsite positions in relation to the local tree crown projections on the survival of spruce seedlings. It is assumed that the density of the trees is the main factor that determines the light and heat supply to the ground level of the Norway spruce seedlings. The second case study extends the previous study to include terms that determine the growth ratio in dependence on the crown projection area. The third case study provides further extensions in order to simulate growth ratio relations to the local soil type. The fourth case study demonstrates the local influence of the dominant grasses, such as Avenella flexuosa and Calamagrostis villosa, on the natural regeneration of Norway spruce. Starting from the conditions at the sites before the recovery period, the case simulation studies are able to project the short-term succession for a regeneration decade and the approximate long-term development. In addition to the standard simulation procedures based on solution of ordinary differential equations, spatio-temporal modelling in the GIS environment is able to provide spatial data management, analysis and visualization of the data.  相似文献   

10.
This article describes a new forest management module (FMM) that explicitly simulates forest stand growth and management within a process-based global vegetation model (GVM) called ORCHIDEE. The net primary productivity simulated by ORCHIDEE is used as an input to the FMM. The FMM then calculates stand and management characteristics such as stand density, tree size distribution, tree growth, the timing and intensity of thinnings and clear-cuts, wood extraction and litter generated after thinning. Some of these variables are then fed back to ORCHIDEE. These computations are made possible with a distribution-based modelling of individual tree size. The model derives natural mortality from the relative density index (rdi), a competition index based on tree size and stand density. Based on the common forestry management principle of avoiding natural mortality, a set of rules is defined to calculate the recurrent intensity and frequency of forestry operations during the stand lifetime. The new-coupled model is called ORCHIDEE-FM (forest management).The general behaviour of ORCHIDEE-FM is analysed for a broadleaf forest in north-eastern France. Flux simulation throughout a forest rotation compare well with the literature values, both in absolute values and dynamics.Results from ORCHIDEE-FM highlight the impact of forest management on ecosystem C-cycling, both in terms of carbon fluxes and stocks. In particular, the average net ecosystem productivity (NEP) of 225 gC m−2 year−1 is close to the biome average of 311 gC m−2 year−1. The NEP of the “unmanaged” case is 40% lower, leading us to conclude that management explains 40% of the cumulated carbon sink over 150 years. A sensitivity analysis reveals 4 major avenues for improvement: a better determination of initial conditions, an improved allocation scheme to explain age-related decline in productivity, and an increased specificity of both the self-thinning curve and the biomass-diameter allometry.  相似文献   

11.
Antarctic lakes with simple plankton ecosystems are believed to be sensitive biological indicators of climate change. Models of the physical environment, in particular the ice layer, support understanding of how the ecosystems respond to meteorological variables. This paper describes how data from a previously reported automatic measuring probe and meteorological data from Davis station were used to develop a detailed thermodynamic model of the ice layer on Crooked Lake, one of the largest and deepest freshwater lakes in Antarctica. The general model structure is similar to a previously reported model of sea ice but with modifications specific to the Antarctic freshwater lake case informed by the data. The model inputs are atmospheric variables as well as water temperature, ice albedo and the radiation extinction coefficient for the ice. Heat and radiation fluxes at the ice–air and ice–water boundaries are calculated using equations chosen for their suitability for the Antarctic. In the case of shortwave radiation, equations were fitted to data from the automatic probe. Using the heat fluxes to establish boundary conditions, and incorporating the known thermodynamic properties of ice, the temperature profile within the ice and the resulting growth and melt of the ice can be calculated. The model uses a largely mechanistic approach, with most equations taken from established thermodynamic theories or empirical studies and only one adjustable parameter related to the sensible heat flux from the water, which is not easily calculated from the available data. It was found to accurately reproduce ice temperature and ice thickness data for the year 2003, with r2 = 0.89, n = 2005. Finally, the model was simplified to run with air temperature as the only input variable and was shown to perform well—this suggests that freshwater lake ice is affected more by air temperature than any other variable, and is therefore a useful indicator of climate change in its own right.  相似文献   

12.
We present a modelling framework that combines machine learning techniques and Geographic Information Systems to support the management of an important aquaculture species, Manila clam (Ruditapes philippinarum). We use the Venice lagoon (Italy), the first site in Europe for the production of R. philippinarum, to illustrate the potential of this modelling approach. To investigate the relationship between the yield of R. philippinarum and a set of environmental factors, we used a Random Forest (RF) algorithm. The RF model was tuned with a large data set (n = 1698) and validated by an independent data set (n = 841). Overall, the model provided good predictions of site-specific yields and the analysis of marginal effect of predictors showed substantial agreement among the modelled responses and available ecological knowledge for R. philippinarum. The most influent environmental factors for yield estimation were percentage of sand in the sediment, salinity, and water depth. Our results agree with findings from other North Adriatic lagoons. The application of the fitted RF model to continuous maps of all the environmental variables allowed estimates of the potential yield for the whole basin. Such a spatial representation enabled site-specific estimates of yield in different farming areas within the lagoon. We present a possible management application of our model by estimating the potential yield under the current farming distribution and comparing it to a proposed re-organization of the farming areas. Our analysis suggests a reduction of total yield is likely to result from the proposed re-organization.  相似文献   

13.
A simulation study was carried out to investigate simultaneously the effects of eco-physiological parameters on competitive asymmetry, self-thinning, stand biomass and NPP in a temperate forest using an atmosphere–vegetation dynamics interactive model (MINoSGI). In this study, we selected three eco-physiological relevant parameters as foliage profiles (i.e. vertical distribution of leaf area density) of individual trees (distribution pattern is described by the parameter η), biomass allocation pattern in individual tree growth (χ) and the maximum carboxylation velocity (Vmax). The position of the maximal leaf area density shifts upward in the canopy with increasing η. For scenarios with η < 4 (foliage concentrated in the lowest canopy layer) or η > 12 (foliage concentrated in the uppermost canopy layer), a low degree of competitive asymmetry was produced. These scenarios resulted in the survival of subordinate trees due to a brighter lower canopy environment when η < 4 or the generation of spatially separated foliage profiles between dominant and subordinate trees when η > 12. In contrast, competition between trees was most asymmetric when 4 ≤ η ≤ 12 (vertically widespread foliage profile in the canopy), especially when η = 8. In such cases, vertically widespread foliage of dominant trees lowered the opportunity of light acquisition for subordinate trees and reduced their carbon gain. The resulting reduction in carbon gain of subordinate trees yielded a higher degree of competitive asymmetry and ultimately higher mortality of subordinate trees. It was also shown that 4 ≤ η ≤ 12 generated higher self-thinning speed, smaller accumulated NPP, litter-fall and potential stand biomass as compared with the scenarios with η < 4 or η > 12. In contrast, our simulation revealed small effects of χ or Vmax on the above-mentioned variables as compared with those of η. In particular, it is notable that greater Vmax would not produce greater potential stand biomass and accumulated NPP although it has been thought that physiological parameters relevant to photosynthesis such as Vmax influence dynamic changes in forest stand biomass and NPP (e.g. the greater the Vmax, the greater the NPP). Overall, it is suggested that foliage profiles rather than biomass allocation or maximum carboxylation velocity greatly govern forest dynamics, stand biomass, NPP and litter-fall.  相似文献   

14.
Climate variability is increasingly recognized as an important regulatory factor, capable of influencing the structural properties of aquatic ecosystems. Lakes appear to be particularly sensitive to the ecological impacts of climate variability, and several long time series have shown a close coupling between climate, lake thermal properties and individual organism physiology, population abundance, community structure, and food web dynamics. Thus, understanding the complex interplay among meteorological forcing, hydrological variability, and ecosystem functioning is essential for improving the credibility of model-based water resources/fisheries management. Our objective herein is to examine the relative importance of the ecological mechanisms underlying plankton seasonal variability in Lake Washington, Washington State (USA), over a 35-year period (1964–1998). Our analysis is founded upon an intermediate complexity plankton model that is used to reproduce the limiting nutrient (phosphate)–phytoplankton–zooplankton–detritus (particulate phosphorus) dynamics in the lake. Model parameterization is based on a Bayesian calibration scheme that offers insights into the degree of information the data contain about model inputs and allows obtaining predictions along with uncertainty bounds for modeled output variables. The model accurately reproduces the key seasonal planktonic patterns in Lake Washington and provides realistic estimates of predictive uncertainty for water quality variables of environmental management interest. A principal component analysis of the annual estimates of the underlying ecological processes highlighted the significant role of the phosphorus recycling stemming from the zooplankton excretion on the planktonic food web variability. We also identified a moderately significant signature of the local climatic conditions (air temperature) on phytoplankton growth (r = 0.41), herbivorous grazing (r = 0.38), and detritus mineralization (r = 0.39). Our study seeks linkages with the conceptual food web model proposed by Hampton et al. [Hampton, S.E., Scheuerell, M.D., Schindler, D.E., 2006b. Coalescence in the Lake Washington story: interaction strengths in a planktonic food web. Limnol. Oceanogr. 51, 2042–2051.] to emphasize the “bottom-up” control of the Lake Washington plankton phenology. The posterior predictive distributions of the plankton model are also used to assess the exceedance frequency and confidence of compliance with total phosphorus (15 μg L−1) and chlorophyll a (4 μg L−1) threshold levels during the summer-stratified period in Lake Washington. Finally, we conclude by underscoring the importance of explicitly acknowledging the uncertainty in ecological forecasts to the management of freshwater ecosystems under a changing global environment.  相似文献   

15.
Forest productivity is strongly affected by seasonal weather patterns and by natural or anthropogenic disturbances. However weather effects on forest productivity are not currently represented in inventory-based models such as CBM-CFS3 used in national forest C accounting programs. To evaluate different approaches to modelling these effects, a model intercomparison was conducted among CBM-CFS3 and four process models (ecosys, CN-CLASS, Can-IBIS and 3PG) over a 2500 ha landscape in the Oyster River (OR) area of British Columbia, Canada. The process models used local weather data to simulate net primary productivity (NPP), net ecosystem productivity (NEP) and net biome productivity (NBP) from 1920 to 2005. Other inputs used by the process and inventory models were generated from soil, land cover and disturbance records. During a period of intense disturbance from 1928 to 1943, simulated NBP diverged considerably among the models. This divergence was attributed to differences among models in the sizes of detrital and humus C stocks in different soil layers to which a uniform set of soil C transformation coefficients was applied during disturbances. After the disturbance period, divergence in modelled NBP among models was much smaller, and attributed mainly to differences in simulated NPP caused by different approaches to modelling weather effects on productivity. In spite of these differences, age-detrended variation in annual NPP and NEP of closed canopy forest stands was negatively correlated with mean daily maximum air temperature during July-September (Tamax) in all process models (R2 = 0.4-0.6), indicating that these correlations were robust. The negative correlation between Tamax and NEP was attributed to different processes in different models, which were tested by comparing CO2 fluxes from these models with those measured by eddy covariance (EC) under contrasting air temperatures (Ta). The general agreement in sensitivity of annual NPP to Tamax among the process models led to the development of a generalized algorithm for weather effects on NPP of coastal temperate coniferous forests for use in inventory-based models such as CBM-CFS3: NPP′ = NPP − 57.1 (Tamax − 18.6), where NPP and NPP′ are the current and temperature-adjusted annual NPP estimates from the inventory-based model, 18.6 is the long-term mean daily maximum air temperature during July-September, and Tamax is the mean value for the current year. Our analysis indicated that the sensitivity of NPP to Tamax was nonlinear, so that this algorithm should not be extrapolated beyond the conditions of this study. However the process-based methodology to estimate weather effects on NPP and NEP developed in this study is widely applicable to other forest types and may be adopted for other inventory based forest carbon cycle models.  相似文献   

16.
Contemporary shallow lakes theory proposes that these ecosystems may experience abrupt regime shifts due to small changes in controlling variables or triggers. So far, these triggers have been related mostly to nutrients as the immediate driver. During May 2004 the río Cruces wetland, a Ramsar site located in Southern Chile, underwent a major regime shift, from a clear water state, vastly dominated by the invasive macrophyte Egeria densa, to a turbid water state. In this article we show, through the analysis of long-term meteorological data that late fall 2004 was anomalous due to the presence of a high-pressure cell that persisted most of the month of May over Southern Chile. This climatic event caused an almost complete absence of precipitations and lower temperatures during this period, including several freezing nights. Eco-physiological experiments showed that 6 h exposure to desiccation kill the macrophyte. We developed a simple-biology dynamic model, under Stella Research 9.1, to show that the climatic anomaly of May 2004, plus the increased sedimentation of the wetland's floodplains, and the associated response of E. densa, explains its sudden disappearance from río Cruces wetland.  相似文献   

17.
In order to simulate forest growth response to pre-commercial thinning (PCT), TRIPLEX1.0 - a process-based model designed to predict forest growth as well as carbon (C) and nitrogen (N) dynamics - was modified and improved to also simulate managed forest ecosystem thinning practices. A three-parameter Weibull distribution model was integrated to simulate thinning treatments within the newly developed TRIPLEX-Management model. The thinning intensity component within the model allows users to simulate thinning treatments by applying basal area, stand density and volume to quantify thinning intensity. Natural mortality decreased following thinning due to an increase in growing space for residual stems. Predicted litterfall pools also increased after thinning events took place. The TRIPLEX-Management model was tested against published observational data for Jack Pine (Pinus banksiana Lamb.) stands subjected to PCT in Northwestern Ontario, Canada. The coefficients of determination (R2) between the predicted and observed variables including stand density, mean DBH (diameter at breast height), the quadratic mean DBH, total volume and merchantable volume as well as belowground, aboveground, and total biomass ranged from 0.50 to 0.88 (n = 20, P < 0.001) with the exception of mean tree height (R2 = 0.25, n = 20, P < 0.05). Overall, the Willmott index of agreement between predicted and observed variables ranged from 0.97 to 1.00. Results show that the TRIPLEX-Management model is generally capable of simulating growth response to PCT for Jack Pine stands.  相似文献   

18.
Dispersal kernels in grid-based population models specify the proportion, distance and direction of movements within the model landscape. Spatial errors in dispersal kernels can have large compounding effects on model accuracy. Circular Gaussian and Laplacian dispersal kernels at a range of spatial resolutions were investigated, and methods for minimizing errors caused by the discretizing process were explored. Kernels of progressively smaller sizes relative to the landscape grid size were calculated using cell-integration and cell-center methods. These kernels were convolved repeatedly, and the final distribution was compared with a reference analytical solution. For large Gaussian kernels (σ > 10 cells), the total kernel error was <10−11 compared to analytical results. Using an invasion model that tracked the time a population took to reach a defined goal, the discrete model results were comparable to the analytical reference. With Gaussian kernels that had σ ≤ 0.12 using the cell integration method, or σ ≤ 0.22 using the cell center method, the kernel error was greater than 10%, which resulted in invasion times that were orders of magnitude different than theoretical results. A goal-seeking routine was developed to adjust the kernels to minimize overall error. With this, corrections for small kernels were found that decreased overall kernel error to <10−11 and invasion time error to <5%.  相似文献   

19.
Restoration of abandoned and degraded ecosystems through enhanced management of mature remnant patches and naturally regenerating (regrowth) forests is currently being used in the recovery of ecosystems for biodiversity protection and carbon sequestration. Knowledge of long-term dynamics of these ecosystems is often very limited. Vegetation models that examine long-term forest growth and succession of uneven aged, mixed-species forest ecosystems are integral to the planning and assessment of the recovery process of biodiversity values and biomass accumulation. This paper examined the use of the Ecosystem Dynamics Simulator (EDS) in projecting growth dynamics of mature remnant brigalow forest communities and recovery process of regrowth brigalow thickets. We used data from 188 long-term monitored plots of remnant and regrowth forests measured between 1963 and 2010. In this study the model was parameterised for 34 tree and shrub species and tested with independent long-term measurements. The model closely approximated actual development trajectories of mature forests and regrowth thickets but some inaccuracies in estimating regeneration through asexual reproduction and mortality were noted as reflected in stem density projections of remnant plots that had a mean of absolute relative bias of 46.2 (±12.4)%. Changes in species composition in remnant forests were projected with a 10% error. Basal area values observed in all remnant plots ranged from 6 to 29 m2 ha−1 and EDS projections between 1966 and 2005 (39 years) were 68.2 (±10.9)% of the observed basal area. Projected live aboveground biomass of remnant plots had a mean of 93.5 (±5.9) t ha−1 compared to a mean of 91.3 (±8.0) t ha−1 observed in the plots. In regrowth thicket, the model produced satisfactory projections of tree density (91%), basal area (89%), height (87%) and aboveground biomass (84%) compared to the observed attributes. Basal area and biomass accumulation in 45-year-old regrowth plots was approximately similar to that in remnant forests but recovery of woody understorey was very slow. The model projected that it would take 95 years for the regrowth to thin down to similar densities observed in original or remnant brigalow forests. These results indicated that EDS can produce relatively accurate projections of growth dynamics of brigalow regrowth forests necessary for informing restoration planning and projecting biomass accumulation.  相似文献   

20.
Potential evapotranspiration (PET) is an important component of water cycle. For traditional models derived from the principle of aerodynamics and the surface energy balance, its calculation always includes many parameters, such as net radiation, water vapor pressure, air temperature and wind speed. We found that it can be acquired in an easier way in specific regions. In this study, a new PET model (PETP model) derived from two empirical models of soil respiration was evaluated using the Penman-Monteith equation as a standard method. The results indicate that the PETP model estimation concur with the Penman-Monteith equation in sites where annual precipitation ranges from 717.71 mm to 1727.37 mm (R2 = 0.68, p = 0.0002), but show large discrepancies in all sites (R2 = 0.07, p = 0.1280). Then we applied our PETP model at the global scale to the regions with precipitation higher than 700 mm using 2.5° CMAP data to obtain the annual PET for 2006. As expected, the spatial pattern is satisfactory overall, with the highest PET values distributed in the lower latitudes or coastal regions, and with an average of 1292.60 ± 540.15 mm year−1. This PETP model provides a convenient approach to estimate PET at regional scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号