首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Growth and development rates were determined for nauplii of Calanus finmarchicus (Gunnerus) in the near-shore waters of a western Norwegian fjord from in situ mesocosm incubations. The major food source for the nauplii was diatoms, but Phaeocystis sp., dinoflagellates and ciliates were also part of the diet. At local temperatures ranging from 4.8 to 5.2 °C the cumulative median development time from hatching to Nauplius VI was 19 d. The time taken to molt to the next naupliar stage was approximately constant (3 d) from Stages IV to VI, but Stage III needed the longest development time (5 d). The instantaneous growth rate in terms of body carbon was negative from hatching to Nauplius Stage II, but as high as 0.25 to 0.30 d−1 from Stage III to V. Enhancement of food resources by nutrient addition led to no significant change in specific growth rates. Additionally, the cohorts from different nutrient regimes showed almost equal development time, size and body carbon within stages. Length–weight relationships of nauplii from the two different food resources were: W low resources = 4.17 × 10−6 × L 2.03 (r 2 = 0.84) and W high resources = 4.29 × 10−6 × L 2.05 (r 2 = 0.92), where weight (W) is in micrograms of C and body length (L) in micrometers. The natural body morphology of naupliar stages I to VI is illustrated with digital images, including the final molt from Nauplius VI to Copepodid Stage I. In general, development of the nauplii was faster than that of the copepodids of C. finmarchicus, and structural growth was exponential from naupliar stages III to VI. This study validates our earlier results that nauplii of C. finmarchicus can obtain high growth and nearly maximal developmental rates at relatively low food levels (∼50 μg C l−1), suggesting that nauplii exhibit far less dependence on food supply than copepodids. Received: 30 July 1999 / Accepted: 7 March 2000  相似文献   

2.
The variation in the concentration and fatty acid composition of lipid classes during the molting cycle of the prawn Penaeus japonicus was investigated. The lipid concentration of the whole body reached a maximum at mid-premolt (Stage D2) and then decreased to low level at late premolt (Stage D3–4). The accumulation of lipids during the premolt period seemed to be attributable to the increase of both polar and neutral lipids. The increase of neutral lipids at Stage D2 was derived from not only triglycerides but also free sterols and free fatty acids. Regarding the fatty acid composition of every lipid class, a marked variation occurred mainly at the intermolt (Stage C). In this stage, the polar lipids were rich in monoenoic acids such as 18:1 and poor in polyenoic acids such as 20:53 and 22:63. The triglycerides were rich in polyenoic acids at Stage C, but poor in monoenoic acids such as 16:1 and 18:1. The steryl esters contained large amounts of saturated acids such as 16:0 and 18:0 throughout the molting cycle, however the level of polyenoic acids increased at Stage C.  相似文献   

3.
Larvae of Callichirus major (Say) and C. islagrande (Schmitt) were given unconditioned water with sand, water conditioned by previous exposure to adults (AW) without sand, or the combination of both AW and sand to determine if these factors served as settlement cues. Shrimp were first given stimuli upon reaching the last zoeal stage (ZIV), the decapodid stage (D), or the first juvenile stage (J1). Once initiated, exposure of shrimp to stimuli was maintained until termination of␣the experiment. Stage duration, burrowing activity of decapodids and early juveniles and location of exuviae were observed daily. Exposure to sand and AW did not decrease duration of the decapodid stage in either species. However duration of ZIV in C. major appeared to decrease when these stimuli were offered at this stage; this suggests that molting to Stage D may be delayed without such cues. When stimuli were examined separately, AW was found to have a significant effect on the duration of ZIV, while the effect of sand with unconditioned water and effects of simultaneously offered stimuli were not significant. Shrimp that received stimuli at ZIV subsequently burrowed more at D and J1 than individuals that did not receive stimuli at ZIV. Location of exuviae was recorded as on top of sand (not burrowed during molt) or within sand (burrowed during molt) for each shrimp's molt from Stages D to J1 (D molt), and from J1 to J2 (J1 molt). In C. major, the percentage of D exuviae and J1 exuviae found within sand as opposed to on top of sand was significantly higher in individuals which received stimuli at ZIV than for those that first received them at D or J1. When stimuli were examined separately in C. major, the effect of sand on burrowing activity was highly significant, while AW and the stimuli in combination had weaker effects. For C. major, AW appeared to accelerate development to D, while sand triggered settlement. Neither stimulus altered stage duration or burrowing activity of C. islagrande. Received: 7 December 1997 / Accepted: 24 July 1998  相似文献   

4.
A key regulatory mechanism underlying the switch between aerobic and anaerobic metabolism amongst anoxia-tolerant marine molluscs is reversible protein phosphorylation. To assess the role of cAMP-dependent protein kinase (PKA) in aerobic–anaerobic transitions, the effects of anoxia on the activity and subcellular distribution of PKA were assessed in foot and hepatopancreas of the marine periwinkle, Littorina littorea. Exposure to N2 gas at 5 °C caused a rapid decline in the percentage of total enzyme present as the free catalytic subunit (PKAc) in both tissues; the percentage of PKAc fell from ∼30% in controls to 3% after 1 h anoxia and remained low over 72 h. Total PKA also fell by 30% after 72 h anoxia in hepatopancreas but rebounded during aerobic recovery. Freezing at −8 °C elicited parallel results for both percentage of PKAc and total PKA, suggesting that PKA responses to freezing were stimulated by the ischemia that develops when hemolymph freezes. Anoxia also led to a shift in PKA subcellular distribution in hepatopancreas (but not in foot), the percentage of total PKA activity associated with the nuclear fraction dropping from 25% in controls to 8% in 12 h anoxic snails with opposite changes in the cytosolic fraction. The catalytic subunit (PKAc) of foot PKA was purified to a final specific activity of 63.5 nmol phosphate transferred per minute per milligram protein. Enzyme properties included a molecular weight of 33 to 35 kDa, an activation energy from Arrhenius plots of 65.1 ± 4.8 kJ mol−1, and substrate affinity constants of 151 ± 6 μM for the phosphate acceptor, Kemptide, and 72 ± 9 μM for Mg.ATP. Activity was strongly reduced by mammalian PKA inhibitors (H-89, PKA-I), by neutral chloride salts (I50 values 165 to 210 mM) and by NaF (I50 62 mM). Reduced PKA activity under anoxic or freezing conditions would facilitate the observed suppression of the activities of numerous enzymes that are typically PKA-activated and thereby contribute to the overall anoxia-induced metabolic rate depression. Received: 19 November 1997 / Accepted: 30 September 1998  相似文献   

5.
 The influence of moulting and ovarian maturation on cadmium accumulation in the tissues of female shore crabs Carcinus maenas exposed to 1 mg Cd l−1 in the water was investigated. Cadmium accumulation in all tissues examined was markedly increased in crabs in the postmoult stages (A and B) compared to crabs in all other moult stages. During the moult cycle, average cadmium accumulation in the midgut gland ranged from 29 μg Cd g−1 dw at premoult stage (D2) to 589 μg Cd g−1 dw at postmoult stage (A). Average cadmium concentrations in the haemolymph ranged from 0.56 μg Cd ml−1 at intermoult stage (C4) to 4.6 μg Cd ml−1 at postmoult stage (A), while the gills accumulated from 103 μg Cd g−1 dw in intermoult stage (C3) to 352 μg Cd g−1 dw in postmoult stage (A). Cadmium concentration in gills and haemolymph was also significantly higher in crabs in late premoult stage (D3) compared to C4-crabs, while midgut gland cadmium concentration remained elevated in C1- and C3- intermoult stages relative to C4. During ovarian maturation the cadmium accumulation in midgut gland, gills, ovaries and haemolymph decreased. Average cadmium concentration in the midgut gland decreased from 63 μg g−1 dw in ovarian Stage I to 19 μg g−1 dw in ovarian Stage VI. The same pattern was observed for gills, haemolymph and ovaries. The present study demonstrates that cadmium accumulation in the female shore crab strongly depends on the physiological status of the animal. A possible association between physiological calcium requirements and cadmium accumulation during moulting is discussed. Received: 20 January 2000 / Accepted: 20 July 2000  相似文献   

6.
For crustaceans with a well-defined annual molting season, such as adult female Dungeness crabs (Cancer magister Dana), setal molt staging can, in principle, be used to predict molting destiny of individual crabs. Size-specific predictions of molting probability could, in turn, be useful for estimating mortalities due to molting. Female Dungeness crabs were collected January–March 1997 at depths of 10–30 m off the California coast, USA (41°N). Intermolt stage A1–C4 and premolt stages D0, D1, D1, D1 and D2 were described based on features of the branchial epipod. Laboratory experiments suggested that stage D1 was the earliest stage beyond which eventual molting was inevitable so that molting destiny could be determined. Estimated mean number of days from the beginning of stage D1 to molting was 85. Estimated individual stage durations, based on laboratory experiments, were 24, 51, –4, 18, and 20 days, respectively, for stages D0, D1, D1, D1, and >D2. The estimated –4 days for stage D1 suggests that this stage must be very brief and raises a question of its utility in designation of molt stages. Molt staging of three field samples, 300–600 crabs in each, collected prior to the 1997 annual molting season, indicated an increase in the size and frequency of crabs staged D1 or later as the time to molt approached, although crabs of 150 mm carapace width and larger showed few signs of molt preparation. Because the duration of the molting season (approximately 120 days) for adult female C. magister in northern California exceeds the estimated maximum duration of reliable prediction of molting destiny (85 days), it does not appear that molt staging can be used to predict molting destiny in this population. However, the procedures that we have used in this paper for application to female C. magister might be used with success for other crustaceans if the duration of stages D1 to molting exceeds the duration of the molting season, and furthermore may be used for describing temporal molting trends.Communicated by J.P. Grassle, New Brunswick  相似文献   

7.
The crustacean molt cycle manifests extensive behavioral changes in addition to physiological and integumentary modifications. The paucity of quantitative studies led us to characterize molt stage dependent alterations in rhythmic locomotor, feeding, and agonistic behavior of subadult spiny lobster Panulirus argus held grouped and solitarily in simulated natural conditions. Non-disruptively determined molt stages were defined as proportions of intermolt duration. Significant nocturnal rhythmicity persisted through the full molt cycle, though daily form varied as a function of activity level and molt stage. A distinct early evening peak signaled initiation of foraging and walking behavior. Thereafter, rhythm amplitude either declined progressively (low activity: unimodal pattern), remained high (high activity: nocturnal plateau), or exhibited a secondary early morning peak (intermediate activity: bimodal and polymodal patterns). Activity ceased at or immediately prior to sunrise. Ecdysis was predominantly nocturnal, probably reflecting species specific spatiotemporal movement patterns and social behavior. A selective advantage of nocturnal ecdysis was postulated concerning avoidance of cannibalism and diurnal predators. Locomotor activity and feeding rates were not equivalent through the molt cycle, though both peaked in stages B2-C1. Locomotor activity remained high in metecdysis, decreased sharply at proecdysis initiation (D0), reaching lowest levels in D1-D3, then increased in D3 through B1. Activity dropped steeply at ecdysis, though lobsters were capable of intense and coordinated activity. Feeding decreased slowly through metecdysis after the B2-C1 maximum, then increased temporarily in C4 and D0, indicating heightened feeding motivation. This contrasts with the locomotor activity decrease at proecdysis. Food consumption declined rapidly in D1 and D2 and ceased at the D2-D3 transition. Feeding resumed in B1 or B2, intensifying to maximum in late B2. Feeding remained relatively constant within stages, whereas locomotor activity varied greatly, though both correlated with metabolic needs. Grouped and solitary lobsters displayed similar patterns of foraging and walking, equivalent to those of locomotor activity and feeding of solitary individuals. Frequency of agonistic interactions (not aggression per se) remained relatively constant through the cycle, peaking in metecdysis, though the highest relative proportion occurred near ecdysis. Lobsters then were submissive and avoided physical contact with conspecifics. Clearly, locomotor activity, feeding, and social behavior of P. argus are not simply determined. Indeed, behavior is distinctly phase coordinated with varying metabolic requirements dependent on the proximity to ecdysis and ecological pressures.  相似文献   

8.
In the Antarctic krill Euphausia superba two forms of the chitinolytic enzyme N-acetyl-β-d-glucosaminidase (NAGase, EC 3.2.1.52) have been described, previously identified as NAGase B and NAGase C. Here, we demonstrate the organ-specific distribution and physiological relevance of both forms using a polyclonal antibody preparation which allows them to be distinguished immunologically. While NAGase B was localized in the integument and displayed a pattern of activity related to the moult cycle, the activity of NAGase C was independent of the moult cycle and was predominantly found in the gastrointestinal tract. Accordingly, NAGase B played a significant role in chitin degradation during the krill's moult, whereas NAGase C participated in the digestion of chitin-containing dietary components. Chromatographic elution profiles of isolated organs confirmed the immunological results by displaying characteristic organ-specific patterns in NAGase activity. The molecular characteristics of the moulting form, NAGase B, may further indicate a vesicular transport of moulting enzymes from the epidermis into the ecdysial space. Based on our results we develop a hypothesis explaining the concurrent processes of simultaneous chitin degradation and chitin synthesis occurring during moult. Received: 30 December 1998 / Accepted: 23 April 1999  相似文献   

9.
 The effects of cadmium exposure and dietary status on cadmium accumulation, fatty acid (FA) content and profiles were investigated in two colour forms of the shore crab Carcinus maenas. Groups of shore crabs were either starved or fed with blue mussels, Mytilus edulis, during a 40 d exposure period to 2 or 6 μM Cd2+ (as CdCl2). Starved green individuals accumulated more cadmium in haemolymph and hepatopancreas than did red crabs and green crabs fed during the experiments. In the red colour form, no difference in cadmium accumulation was observed between starved and fed individuals. In both colour forms, hepatopancreas contained more FA than gills and muscle. The FAs often present in the largest amounts in the tissues were 16:0, 16:1ω7, 18:1ω7, 18:1ω9, 20:4ω6, 20:5ω3 and 22:6ω3. However, saturated (SAFA) and mono-unsaturated fatty acids (MUFAs) were dominant in hepatopancreas, whereas poly-unsaturated fatty acids (PUFAs) were dominant in gills and muscles. At the beginning of the experiment, the total FA content in the hepatopancreas was 111.6 mg g−1 (dry weight) for red crabs and 78.4 mg g−1 for green shore crabs. During the experiment, however, the FA content decreased in red crabs. This decrease was more pronounced for starved individuals than for fed individuals. Also, the decrease in FA content was more pronounced in crabs exposed to 6 μM cadmium compared to crabs exposed to 2 μM or crabs not exposed to cadmium. No change in FA content was observed in green shore crabs, irrespective of diet and cadmium exposure. For both colour forms, no change in FA content was observed for gills and muscle. In red crabs, a decrease was observed for all FAs in the hepatopancreas. This decrease, however, was more pronounced for SAFAs and MUFAs than for PUFAs, indicating that the metabolism of FAs during starvation and cadmium exposure is selective. The experiments indicate that green colour forms of shore crabs are more tolerant of natural stress such as starvation and anthropogenic stress, e.g. cadmium exposure, than are red colour forms of shore crabs. Received: 23 September 1999 / Accepted: 29 April 2000  相似文献   

10.
 The relationship between intermoult duration (coloration), sex, size and seasonal variations in fatty acid (FA) profiles was studied in a population of shore crabs, Carcinus maenas, inhabiting the Isefjord, Denmark. For male shore crabs, the total hepatopancreas FA content was high in July and December (12.7 to 16.0 mg g−1 dry weight, dw) but lower in May and September (7.3 to 10.0 mg g−1). This indicates that male shore crabs are in relatively good condition before winter, when the crabs migrate off shore, but in relatively poor condition when they return to shallow waters during spring. The hepatopancreas FA content also decreased over the mating season. After the mating season the hepatopancreas FA content of males had decreased to approximately 60% of that prior to the mating season. Female shore crabs had significantly higher hepatopancreas FA levels than males in May (11.7 mg g−1 dw), September (12.6 mg g−1 dw) and December (17.9 mg g−1 dw) but lower levels in July (9.5 mg g−1 dw). This indicates that the spawning season is the most energy-demanding part of the female reproductive cycle. For all seasons, the hepatopancreas FA content of green shore crabs was significantly higher than that of red shore crabs. For both colour forms, the amount of polyunsaturated fatty acids (PUFAs) was significantly higher than that of saturated fatty acids (SAFAs) and monounsaturated fatty acids (MUFAs), with the relative proportion of PUFAs increasing when the total hepatopancreas FA content decreased. For both genders and colour forms, the most dominating SAFA was palmitic acid (16:0). Palmitoleic acid (16:1ω7), vaccenic acid (18:1ω7) and oleic acid (18:1ω9) were the three MUFAs found in highest concentrations. The most dominating PUFA was eicosapentaenoic acid (EPA, 20:5ω3). Docosahexaenoic acid (DHA, 22:6ω3) and arachidonic acid (AA, 20:4ω6) were also abundant in all samples. The results demonstrated that season, sex, size and intermoult duration all influence the amount of FAs present in the hepatopancreas of shore crabs. Received: 23 September 1999 / Accepted: 29 April 2000  相似文献   

11.
Postlarval lobsters Homarus americanus Milne Edwards hatched from three females collected in 1989 from Block Island Sound, Rhode Island were reared individually in the laboratory under nine treatment combinations of temperature (15, 18 and 21°C) and feeding (starved, low ration and full ration). Total RNA, DNA (mgind.-1), RNA:DNA ratios and molt stage were determined for individuals sampled at daily intervals. Postlarval lobsters had high resistance to starvation. A majority of the lobsters survive 12 d of food deprivation, with some surviving up to 24–29 d. During starvation, cell biomass (estimated from protein:DNA) decreased to a minumum size, whereas cell number (based on total DNA) was generally conserved. The molt cycle was arrested at molt stage C in the starved postalrvae. Instar duration was inversely related to temperature. However, the duration of the postlarval instar did not differ between the low and full ration treatments. Uncoupling of cell growth and the molt cycle was evident in the full and low ration treatments. In the full ration treatments, the postmolt through early premolt was characterized by a rapid increase in total RNA and DNA. Maximum cell biomass was attained by molt stage C or D0. In the low ration treatments, total RNA and DNA were less than those in the full ration treatments and the maximum cell biomass was attained only at molt stage D2-3. Notably, different feeding regimes resulted in different patterns in RNA:DNA ratios over the molt cycle during the postlarval instar. RNA:DNA ratio was a sensitive indicator of recent (2 to 3 d) food deprivation. However, this ratio was positively related to the level of feeding only at molt stages C to D1 and was inversely related to temperature regime. These results indicate that the use of RNA:DNA ratios to estimate the relative nutritional state of postlarval tobsters must be qualified with respect to the period of the molt cycle and the temperature regime.  相似文献   

12.
Oxygen and pH microelectrodes were used to investigate the microenvironment of the planktonic foraminifer Orbulina universa and its dinoflagellate endosymbionts. A diffusive boundary layer surrounds the foraminiferal shell and limits the O2 and proton transport from the shell to the ambient seawater and vice versa. Due to symbiont photosynthesis, high O2 concentrations of up to 206% air saturation and a pH of up to 8.8, i.e. 0.5 pH units above ambient seawater, were measured at the shell surface of the foraminifer at saturating irradiances. The respiration of the host–symbiont system in darkness decreased the O2 concentration at the shell surface to <70% of the oxygen content in the surrounding air-saturated water. The pH at the shell surface dropped to 7.9 in darkness. We measured a mean gross photosynthetic rate of 8.5 ± 4.0 nmol O2 h−1 foraminifer−1. The net photosynthesis averaged 5.3 ± 2.7 nmol O2 h−1. In the light, the calculated respiration rates reached 3.9 ± 1.9 nmol O2 h−1, whereas the dark respiration rates were significantly lower (1.7 ± 0.7 nmol O2 h−1). Experimental light–dark cycles demonstrated a very dynamic response of the symbionts to changing light conditions. Gross photosynthesis versus scalar irradiance curves (P vs E o curves) showed light saturation irradiances (E k) of 75 and 137 μmol photons m−2 s−1 in two O. universa specimens, respectively. No inhibition of photosynthesis was observed at irradiance levels up to 700 μmol photons m−2 s−1. The light compensation point of the symbiotic association was 50 μmol photons m−2 s−1. Radial profile measurements of scalar irradiance (E o) inside the foraminifera showed a slight increase at the shell surface up to 105% of the incident irradiance (E d). Received: 26 January 1998 / Accepted: 11 April 1998  相似文献   

13.
The genetic relationships among South-East Asian populations of the scad mackerels Decapterus macarellus, D. macrosoma and D. russelli (Pisces: Carangidae) were investigated. In 1995 and 1996, 216 fish were sampled in seven localities spanning the seas of Indonesia and were examined for restriction-site polymorphisms using ten restriction enzymes for the mitochondrial (mt) DNA control region, amplified by the polymerase chain-reaction. The inferred phylogeny of haplotypes led to the recognition of three distinct mitochondrial lineages or phylads consistent with the distinctions of current taxonomy. All 15 mtDNA haplotypes found in D. macarellus and all 9 haplotypes found in D. macrosoma were arranged as star-like clusters, suggesting recent evolutionary history. In contrast, the phylad formed by 6 haplotypes in D. russelli from the Sulawesi Sea exhibited diffuse topology, suggesting that ancestral lineages of this species have been retained to the present. Average nucleotide-divergence estimates between haplotypes of different phylads were between 0.042 and 0.135, suggesting ancient separation, in consistency with published allozyme data. High levels of haplotype diversity, but no geographical heterogeneity, was detected within D. macarellus from the Molucca Sea and the Banda Sea. Populations of D. macrosoma exhibited both significant differences between adjacent regions (Sunda Strait and Java Sea), and broadscale genetic homogeneity from the South China Sea to the Sulawesi Sea via the Java Sea and Makassar Strait. The geographic isolation of the D. macrosoma population sampled in the Sunda Strait suggests that this region constitute a sharp transition zone between the Indian Ocean and the Sunda Shelf. Near-monomorphism of haplotypes and low nucleotide diversity (d X) were observed in the samples of D. macrosoma from the continental shelf (haplotype-diversity estimates, h, = 0.00 to 0.25 ± 0.08 and d X = 0.000 to 0.002). This was in contrast to the comparatively high haplotype and nucleotide diversities observed in other pelagic fish species including D. macarellus (h = 0.82 ± 0.05, d X = 0.012 to 0.015) and D. russelli (h = 0.63 ± 0.12, d X = 0.016), and in the oceanic D. macrosoma population sampled in the Sunda Strait (h = 0.67 ± 0.31, d X = 0.005). We hypothesise that this may be the consequence of recent and perhaps repeated bottleneck events that have affected the D. macrosoma population sampled on the continental shelf. Received: 29 September 1997 / Accepted: 3 September 1999  相似文献   

14.
Phenoloxidase (PO) from the colonial ascidian Botryllus schlosseri was purified using two different chromatographic strategies. A three-step purification was developed in order to maintain enzyme activity, whereas an easier purification procedure was adopted to obtain enough PO for the production of specific polyclonal antibodies. The enzyme showed optimal pH and temperature values of 7.0 to 7.5 and 35 °C, respectively, and a K m value of 4.62 ± 0.76 mM was estimated using l-DOPA as substrate. A molecular weight of 160 kDa was determined after SDS-PAGE under non-reducing conditions. The addition of the reducing agent β-mercaptoethanol caused the disappearance of the 160 kDa band and the appearance of a new band at 80 kDa, suggesting that active PO is a dimer and the two subunits are linked by disulphide bridges. Received: 14 December 1998 / Accepted: 24 August 1999  相似文献   

15.
Profiles of diarrhetic shellfish poisoning (DSP) toxins produced throughout the growth cycle and the cell cycle of the toxigenic marine dinoflagellate Prorocentrum lima were studied in triplicate unialgal batch cultures. Cells were pre-conditioned at 18 ± 1 °C, under a photon flux density (PFD) of 90 ± 5 μmol m−2 s−1 on a 14 h light:10 h dark photoperiod. In exponential growth phase, cultures were synchronized in darkness for 17 d. After dark synchronization, cultures were transferred back to the original photoperiod regime. Cells were harvested for DSP toxin analysis by LC-MS (liquid chromatography with mass spectrometry), and double-stranded (nuclear) DNA was quantified by flow cytometry. The cell populations became asynchronous within approximately 3 d after transition from darkness to the 14 h light:10 h dark photoperiod. This may be due to the prolonged division cycle (5 to 7 d) that is not tightly phased by the photoperiod. Unlike other planktonic Prorocentrum spp., cytokinesis in P. lima occurred early in the dark and ceased by “midnight”. Cellular levels of the four principal DSP toxins, okadaic acid (OA), OA C8-diol-ester (OA-D8), dinophysistoxin-1 (DTX1) and dinophysistoxin-4 (DTX4), ranged from 0.37 to 6.6, 0.02 to 1.5, 0.04 to 2.6, and 1.8 to 7.8 fmol cell−1, respectively. No toxin production was evident during the extended period of dark synchronization nor during the initial period when NH4 was consumed as the major nitrogen source. Soon after the cells were returned to the 14 h light:10 h dark cycle and they began to take up NO3, cellular levels of all four toxins gradually increased. This increase in DSP toxins usually occurred in the light, marked by a rise in DTX4 levels that preceded an increase in the cellular concentration of OA and DTX1 (delayed by 3 to 6 h). Thus, DTX4 synthesis is initiated in the G1 phase of the cell cycle and persists into S phase (“morning” of the photoperiod), whereas OA and DTX1 production occurs later during S and G2 phases (“afternoon”). No toxin production was measured during cytokinesis, which happened early in the dark. The evidence indicates that toxin synthesis is restricted to the light period and is coupled to cell cycle events. Received: 3 September 1998 / Accepted: 30 March 1999  相似文献   

16.
Interval between reproductive events is an important factor for iteroparous animals because it determines the number of clutches throughout life. This study examined whether female size, clutch size, shell size and prenuptial molting affected the clutch interval in the hermit crab Pagurus nigrivittatus. Precopulatory guarding pairs of P. nigrivittatus were sampled in the field and kept in the laboratory until the female extruded eggs. The clutch interval of each female was assessed as one of two types of relatively “short” and “long” intervals by checking whether the guarded female had eggs and/or egg cases from the preceding brood or not when the guarding pair was collected. The clutch interval was longer in females with prenuptial molting than those without molting and these females usually grew larger at the prenuptial molt. This suggests that female P. nigrivittatus with a long interval might allocate energy into growth at the expense of the number of clutches during the current reproductive season. The allocation to growth is theoretically predicted to decrease with female size. Gastropod shell size is also known to affect the reproductive activity in hermit crabs. However, female size did not significantly affect the clutch interval in P. nigrivittatus, and the effect of gastropod shell size on clutch interval was not consistent with previous empirical studies. These results may be caused by differences in the gastropod species of shell occupied by the females of P. nigrivittatus.  相似文献   

17.
An experiment under laboratory conditions was conducted to test the hypothesis that development and growth of copepodite stages in Calanus chilensis are temperature-dependent and not subject to food shortage in the upwelling area of the Humboldt Current, northern Chile. Field data obtained from June 1994 to May 1995 in Bahía Mejillones (23°S) were used to define four combinations of temperature and food under which copepodites were reared from Stage CIII to adulthood. The high temperature was 18.1 °C and the low temperature 13.1 °C, whereas the high food level was in the range of 6.8 to 24.8 μg l−1 chlorophyll a and the low level 1.0 to 6.8 μg l−1 chlorophyll a. As food a mixture of three unknown species of phytoflagellates and the diatom Navicula cryptocephala was used. This phytoplankton was initially obtained from the same sampling sites as copepods and kept in f/2 media at stable levels and composition throughout the experiment. The development rate (1/t), estimated from the time (t) elapsing between Stage CIV and adult, was significantly affected by both temperature and food, although low-food effects were much more remarkable. Low-food conditions also significantly reduced body length and “structural” (lipid-discounted) body mass at adulthood, while temperature only affected body length. The weight-specific growth rate was also affected by food and temperature, but again food effects were much more drastic. The results indicate that C. chilensis is a highly sensitive species to lack of food, and is possibly subject to food shortage during its annual cycle in the coastal upwelling area of northern Chile. Food limitation may help explain the seasonal pattern of adult size reported by previous studies in the area and the lack of consistence between the number of generations predictable from a temperature-dependent model and that observed in the field during the annual cycle. Received: 10 September 1996 / Accepted: 29 October 1996  相似文献   

18.
We tested the influence of limiting access to prey on larval development of the crabs Cancer magister and Hemigrapsus oregonensis by raising their Stage 1 larvae in the laboratory on different prey densities and with various periods of access to prey. Experiments were conducted in 1995 and 1996 at the Shannon Point Marine Center in Anacortes, Washington, USA. Our results show that crab larvae do not require continuous access to prey for optimal development nor do they appear to require light for prey capture. Survival and duration of Stage 1 C. magister fed continuously on only one-fourth the amount of the control density of prey and those fed at the control density for only 6 h per day were the same as for larvae fed continuously at the control density (20 ml−1). Larvae with cyclic access to prey at the control density for 24 h and then starved for 72 h showed significantly lower survival and longer instar duration to Stage 2. Experiments on Stage 1 H. oregonensis which investigated a combination of prey density, period of access to prey and light/dark conditions during feeding revealed that survival decreased with decreasing prey density or with decreasing feeding period, but no differences were observed during periods of limited prey availability as a function of light or dark conditions. Stage duration was not affected by reduced prey density nor by the light/dark condition at the time of feeding, but it was prolonged when the period of access to prey was limited. The period of access to prey did not affect the weight of Day 1 Stage 2 larvae. Larvae fed high densities of prey for 4 h followed by 20 h of reduced-density diet exhibited the same survival and stage duration as controls that were continuously fed high-density prey. Our results define sub-optimal diets that can be used experimentally to determine the nutritional contributions made by naturally-occurring prey organisms during larval development in the two species. In nature, larvae may satisfy nutritional requirements through periodic encounters with dense prey patches during vertical migrations by day or night. Received: 12 August 1997 / Accepted: 5 February 1998  相似文献   

19.
On the eastern shore of Nova Scotia late summer atmospheric systems cause upwelling of shelf water; the associated temperature variations of 10 °C with a 6 to 8 d period are comparable in magnitude to the seasonal variation. A laboratory study was undertaken to assess the effects of these temperature fluctuations on sea scallop (Placopecten magellanicus) growth and metabolism. In a factorial design, scallops were subjected to constant (10 °C) or a variable (6 to 15 °C) 8 d temperature cycle, and either a low (seston in filtered seawater) or high (seston supplemented with cultured phytoplankton) food diet. During the 48 d experiment scallop mortality was low and growth positive in all treatments. Shell and total tissue growth rate did not differ between temperature treatments, but growth in the high food treatments was 40 to 50% higher than in the low food treatments. However, soft tissue (excluding adductor) growth did show a temperature treatment effect; growth rates were significantly higher in the fluctuating temperature treatment, due in part to greater gonad development. Weight-standardized rates of scallop oxygen consumption (V sO2 , μmol O2 g−1 h−1) were 20 to 25% higher in high food than in low food treatments, consistent with the expected increase in respiration due to the higher growth rates. Scallop metabolism did not acclimate to the fluctuating temperature cycle; V sO2 and ammonium excretion (V sNH+ 4, μmol O2 g−1 h−1) remained dependent on ambient temperature throughout the experiment. V sNH+ 4 Q10 (2.77) was higher than V sO2 Q10 (2.01) which was reflected in a decrease in the O:N ratio at 15 °C, indicating a shift toward increased protein catabolism and a stressed state. At 10 °C, V sO2 and V sNH+ 4 in the variable temperature treatments were 15 to 18% lower than in the constant temperature treatments, a difference that was not detected in growth measurements. Results demonstrate that the metabolism of Placopecten magellanicus, unlike some bivalve species, is tightly coupled to fluctuations in ambient temperature. Although an absence of compensatory acclimation had a minimal effect on growth in this study, if high temperatures were combined with low food conditions a reduction in scallop production could result. Received: 23 June 1998 / Accepted: 8 February 1999  相似文献   

20.
The euphausiids Thysanoessa inermis (Kroyer 1846), Thysanoessa spinifera (Holmes 1900), and Euphausia pacifica (Hansen 1911) are key pelagic grazers and also important prey for many commercial fish species in the Gulf of Alaska (GOA). To understand the role of the euphausiids in material flows in this ecosystem their growth rates were examined using the instantaneous growth rate (IGR) technique on the northern GOA shelf from March through October in 2001–2004. The highest mean molting increments (over 5% of uropod length increase per molt) were observed during the phytoplankton bloom on the inner shelf in late spring for coastal T. inermis, and on the outer shelf in summer for T. spinifera and more oceanic E. pacifica, suggesting tight coupling with food availability. The molting rates were higher in summer and lower in spring, for all species and were strongly influenced by temperature. Mean inter-molt periods calculated from the molting rates, ranged from 11 days at 5°C to 6 days at 8°C, and were in agreement with those measured directly during long-term laboratory incubations. Growth rate estimates depended on euphausiid size, and were close to 0 in early spring, reaching maximum values in May (0.123 mm day−1 or 0.023 day−1 for T. inermis) and July (0.091 mm day−1 or 0.031 day−1 for T. spinifera). The growth rates for E. pacifica remained below 0.07 mm day−1 (0.016 day−1) throughout the season. The relationship between T. inermis weight specific growth rate (adjusted to 5°C) and ambient chlorophyll-a concentration fit a Michaelis–Menten curve (r 2 = 0.48) with food saturated growth rate of 0.032 day−1 with half saturation occurring at 1.65 mg chl-a m−3, but such relationships were not significant for T. spinifera or E. pacifica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号