首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
ABSTRACT

The chemical speciation of Ni in fly ash produced from ~0.85 wt % S residual (no. 6 fuel) oils in laboratory (7 kW)- and utility (400 MW)-scale combustion systems was investigated using X-ray absorption fine structure (XAFS) spectroscopy, X-ray diffraction (XRD), and acetate extraction [1 M NaOAc-0.5 M HOAc (pH 5) at 25 °C]-anodic stripping voltammetry (ASV). XAFS was also used to determine the Ni speciation of ambient particulate matter (PM) sampled near the 400-MW system. Based on XAFS analyses of bulk fly ash and their corresponding acetate extraction residue, it is estimated that >99% of the total Ni (0.38 wt %) in the experimentally produced fly ash occurs as NiSO4-xH2O, whereas >95% of the total Ni (1.70 and 2.25 wt %) in two fly ash samples from the 400-MW system occurs as NiSO4-xH2O and Ni-bearing spinel, possibly NiFe2O4. Spinel was also detected using XRD. Acetate extracts most of the NiSO4-xH2O and concentrates insoluble NiFe2O4 in extraction residue. Similar to fly ash, ambient PM contains NiSO4-xH2O and NiFe2O4;

however, the proportion of NiSO4-xH2O relative to NiFe2O4 is much greater in the PM. Results from this and previous investigations indicate that residual oil ash produced in the 7-kW combustion system lack insoluble Ni (e.g., NiFe2O4) but are enriched in soluble NiSO4-xH2O relative to fly ash from utility-scale systems. This difference in Ni speciation is most likely related to the lack of additive [e.g., Mg(OH)2] injection and residence time in the 7-kW combustion system.  相似文献   

2.
Representative duplicate fly ash samples were obtained from the stacks of 400- and 385-MW utility boilers (Unit A and Unit B, respectively) using a modified U.S. Environmental Protection Agency (EPA) Method 17 sampling train assembly as they burned 0.9 and 0.3 wt % S residual (No. 6 fuel) oils, respectively, during routine power plant operations. Residual oil fly ash (ROFA) samples were analyzed for Ni concentrations and speciation using inductively coupled plasma-atomic emission spectroscopy, X-ray absorption fine structure (XAFS) spectroscopy, and X-ray diffraction (XRD). ROFA deionized H2O extraction residues were also analyzed for Ni speciation using XAFS and XRD. Total Ni concentrations in the ROFAs were similar, ranging from 1.3-1.5 wt%; however, stack gas Ni concentrations in the Unit A were 0.990 microg/Nm3 compared with 0.620 microg/Nm3 for Unit B because of the greater residual oil feed rates employed at Unit A to attain higher 400-MW load conditions with a lower heating value oil. Ni speciation analysis results indicated that ROFAs from Unit A contain approximately 3 wt % NiSO4 x xH2O (where x is assumed to be 6 for calculation purposes) and appoximately 4.5 wt% of a Ni-containing spinel compound, similar in composition to (Mg,Ni)(Al,Fe)2O4. ROFAs from Unit B contain on average 2 wt% NiSO4 x 6 H20 and 1.1 wt% NiO. XAFS and XRD analyses did not detect any nickel sulfide compounds, including carcinogenic nickel subsulfide (Ni3S2) (XAFS detection limit is 5% of the total Ni concentration). In addition, XAFS measurements indicated that inorganic sulfate and organic thiophene species accounted for > 97% of the total S in the ROFAs. Unit A ROFAs contained much lower thiophene proportions because cyclone-separated ROFA reinjection is employed on this unit to collect and reburn the larger carbonaceous particles.  相似文献   

3.
Combustion experiments were carried out on four different residual fuel oils in a 732-kW boiler. PM emission samples were separated aerodynamically by a cyclone into fractions that were nominally less than and greater than 2.5 microns in diameter. However, examination of several of the samples by computer-controlled scanning electron microscopy (CCSEM) revealed that part of the PM2.5 fraction consists of carbonaceous cenospheres and vesicular particles that range up to 10 microns in diameter. X-ray absorption fine structure (XAFS) spectroscopy data were obtained at the S, V, Ni, Fe, Cu, Zn, and As K-edges and at the Pb L-edge. Deconvolution of the X-ray absorption near edge structure (XANES) region of the S spectra established that the dominant molecular forms of S present were sulfate (26-84% of total S) and thiophene (13-39% of total S). Sulfate was greater in the PM2.5 samples than in the PM2.5+ samples. Inorganic sulfides and elemental sulfur were present in lower percentages. The Ni XANES spectra from all of the samples agreed fairly well with that of NiSO4, while most of the V spectra closely resembled that of vanadyl sulfate (VO.SO4.xH2O). The other metals investigated (i.e., Fe, Cu, Zn, and Pb) also were present predominantly as sulfates. Arsenic was present as an arsenate (As+5). X-ray diffraction patterns of the PM2.5 fraction exhibit sharp lines due to sulfate compounds (Zn, V, Ni, Ca, etc.) superimposed on broad peaks due to amorphous carbons. All of the samples contain a significant organic component, with the loss on ignition (LOI) ranging from 64 to 87% for the PM2.5 fraction and from 88 to 97% for the PM2.5+ fraction. Based on 13C nuclear magnetic resonance (NMR) analysis, the carbon is predominantly condensed in graphitic structures. Aliphatic structure was detected in only one of seven samples examined.  相似文献   

4.
Speciation and mobility of cadmium in straw and wood combustion fly ash   总被引:3,自引:0,他引:3  
Two fly ashes from biomass combustion have been analysed regarding cadmium speciation and mobility. A fly ash from straw combustion contained 10 mg Cd/kg dry matter, and around 50% of the cadmium was leachable in water. The possible main speciation of cadmium in this fly ash was CdCl2. When adding this fly ash to agricultural soil a threat for groundwater contamination and plant uptake is existing. A fly ash from wood chip combustion had 28.6 mg Cd/kg dry matter. In this fly ash, the cadmium was bound more heavily, with only small amounts of cadmium leached in mild extractants. A possible speciation of cadmium in this fly ash was as oxide or as CdSiO3. Long-term effects and accumulation of cadmium could be a problem when adding this fly ash to agricultural or forest soils.  相似文献   

5.
Alkali borosilicate glass by fly ash from a coal-fired power plant   总被引:1,自引:0,他引:1  
Park JS  Taniguchi S  Park YJ 《Chemosphere》2009,74(2):320-324
The possibility of using coal fly ash as a silica source for alkali borosilicate glass was investigated. Alkali borosilicate glasses were prepared from the coal fly ash mixed with 30 wt.% reagents composed of Na(2)O and B(2)O(3) by susceptor-induction heating. Their densities ranged from 2.24 to 2.55 g cm(-3) and decreased as the amount of B(2)O(3) addition increased. However, the Vickers microhardness showed a different tendency with the density since the glass network connectivity improved by boron anomaly, which was identified by a nuclear magnetic resonance analysis. The Vickers microhardness of the glass product, with the addition of 15 wt.% B(2)O(3) and 15 wt.% Na(2)O, was about 4030 MPa. Furthermore, the changes in microstructure were consistent with those in the chemical stability by the toxicity characteristic leaching procedure (TCLP).  相似文献   

6.
A laboratory leaching test has been used to predict the potential mobility of As, Se, Pb and Cd in landfilled fly ash produced by coal combustion and refuse incineration. These waste residues also formed the basis of a speciation study in which the valency states of As and Se and the chemical forms of Pb and Cd have been determined. Selenium displayed the greatest leachability in each ash type, despite being present at relatively low concentrations in both materials. Substantial amounts of other trace elements were also leached, particularly Pb and Cd from refuse ash and As from coal ash. Chemical associations of Pb and Cd were examined by a sequential extraction procedure. In coal fly ash, both elements were mostly present in the residual fraction, while in refuse ash these elements were mainly associated with the exchangeable fraction. Water-soluble extracts of coal fly ash contained As exclusively as As(V); high background interference prevented the detection of water-soluble As in refuse ash. Selenium was present largely as Se(IV) in aqueous extracts of both ash types. The value of speciation techniques and leaching tests as predictors of environmental behaviour is discussed in conjunction with results of routine trace element determinations and plant uptake studies.  相似文献   

7.
The quantitative evaluation of chemical fraction of Co and Ni in the industrial fly ash by methods of five step sequential extraction was carried out in order to characterize metal mobility in environmental conditions. The research involved (i) water-soluble (pH=7), (ii) acid-soluble (pH=5), (iii) oxide, (iv) sulfide and (v) residue metal fractions. It was discovered, that the total extraction of the studied metals from fly ash to solutions take place in the following quantities Co - 35.5 and Ni - 153.0mgkg(-1). The investigations of chemical fractions proved that the subject metals occur mainly in fly ash as: oxide (Co - 7.0, Ni - 28.5mgkg(-1)) and residue (Co - 11.5, Ni - 42.5mgkg(-1)) as well as sulfide (Co - 8.5, Ni - 46.5mgkg(-1)). Low concentrations of metals for water-soluble fraction (Co - 0.7, Ni - 1.2mgkg(-1)) and acid-soluble fraction (Co - 4.5, Ni - 23.5mgkg(-1)) were observed. The fractions of Co and Ni leachable from the ash in environmental conditions contain: 24.0% (Co) and 23.3% (Ni) of metal total amount in the industrial fly ash. The obtained mobility parameter of Co and Ni can be applied to estimate the concentration increase of mobile and hardly mobile forms of these metals in soil polluted with the ash.  相似文献   

8.
Calcination is the second step in a washing-calcination-conversion system in which treated municipal solid waste incinerator fly ash and bottom ash can be reused as raw material in the cement industry and can decompose or stabilize hazardous compounds, reduce residue amounts, and alter residue characteristics. In this research, only fly ash is discussed. Chloride reduction is important if treated fly ash is to be reused in cement; however, the relationship between washed fly ash properties and chloride reduction by calcination is not well understood. This study used washed residues of three types of fly ash-raw fly ash (RFA) from the boiler or economizer of an incineration system, fly ash collected in a bag filter injected with calcium hydroxide (Ca(OH)2) for acid removal (CaFA), and fly ash collected in a bag filter injected with sodium bicarbonate (NaHCO3) for acid removal (NaFA)-in calcination experiments with varying temperature (400-1100 degrees C) and atmosphere (100% nitrogen [N2] at 25 mL/min or 10% oxygen [O2] [90% N2] at fluxes of 25, 50, and 75 mL/min). From the perspective of chloride reduction, heating to 1000 degrees C with 1-hr heating time, 1-hr holding time, and an atmosphere of 10% O2/90% N2 was most suitable for calcination. Under these conditions, chloride levels were reduced by 91, 52, and 96% in washed residues of RFA, CaFA, and NaFA, respectively. Among the washed residues, the weight of the washed residue of NaFA decreased the most.  相似文献   

9.
Recent awareness of suspected adverse health effects from ambient particulate matter (PM) emission has prompted publication of new standards for fine PM with aerodynamic diameter less than 2.5 microm (PM2.5). However, scientific data on fine PM emissions from various point sources and their characteristics are very limited. Source apportionment methods are applied to identify contributions of individual regional sources to tropospheric particulate concentrations. The existing industrial database developed using traditional source measurement techniques provides total emission rates only, with no details on chemical nature or size characteristics of particulates. This database is inadequate, in current form, to address source-receptor relationships. A source dilution system was developed for sampling and characterization of total PM, PM2.5, and PM10 (i.e., PM with aerodynamic diameter less than 10 pm) from residual oil and coal combustion. This new system has automatic control capabilities for key parameters, such as relative humidity (RH), temperature, and sample dilution. During optimization of the prototype equipment, three North American coal blends were burned using a 0.7-megawatt thermal (MWt) pulverized coal-fired, pilot-scale boiler. Characteristic emission profiles, including PM2.5 and total PM soluble acids, and elemental and carbon concentrations for three coal blends are presented. Preliminary results indicate that volatile trace elements such as Pb, Zn, Ti, and Se are preferentially enriched in PM2.5. PM2.5 is also more concentrated in soluble sulfates relative to total PM. Coal fly ash collected at the outlet of the electrostatic precipitator (ESP) contains about 85-90% PM10 and 30-50% PM2.5. Particles contain the highest elemental concentrations of Si and Al while Ca, Fe, Na, Ba, and K also exist as major elements. Approximately 4-12% of the materials exists as soluble sulfates in fly ash generated by coal blends containing 0.2-0.8% sulfur by mass. Source profile data for an eastern U.S. coal show good agreement with those reported from a similar study done in the United States. Based on the inadequacies identified in the initial sampling equipment, a new, plume-simulating fine PM measurement system with modular components for field use is being developed for determining coal combustion PM source profiles from utility boiler stacks.  相似文献   

10.
In the present research mortar pastes obtained by replacing a commercial cement with the equivalent mass of 5, 10, 20 and 30 wt.% of fly ash or bottom ash from fir chips combustion, were prepared and rheologically characterized. It was observed that the presence of ash modifies their rheological behaviour with respect to the reference blend due to the presence, in the ashes, of KCl and K2SO4 which cause precipitation of gypsum and portlandite during the first hydration stages of the pastes. Hydrated materials containing 5 wt.% of ash display compression strength and absorption at 28 d of same magnitude as the reference composition; conversely, progressive increase of ash cause a continuous decline of materials performances. Conversely, samples tested after 180 d display a marked decline of compression strength, as a consequence of potassium elution and consequent alkali-silica reaction against materials under curing.  相似文献   

11.
Environmental Science and Pollution Research - This study reports the enhanced chemical resistance of a blended concrete mix (CFNI) made with 40 wt.% fly ash, 2 wt.% nanoparticles, and 2 wt.%...  相似文献   

12.
The catalytic effects of copper and iron compounds were examined for their behavior in promoting formation of chlorine (Cl2), the major chlorinating agent of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), in an environment simulating that of municipal waste fly ash. Formation of Cl2 occurred as a result of a metal-catalyzed reaction of HCl with O2. Catalytic activity was greatest at a temperature of approximately 400 °C, supporting a theory of de novo synthesis of PCDDs and PCDFs on fly ash particles downstream of waste combustion.  相似文献   

13.
This work studied the speciation of copper species adsorbed onto the surface of fly ash using X-ray absorption spectroscopy (XAS). Experimental results verified that the chemical bond between Cu(II) and the surface of the fly ash was Cu-O. The data set was optimally fitted into the two atomic shells: the first shell containing O atoms and the second shell containing Cu atoms. The extended X-ray absorption fine structure (EXAFS) data also show that, in the first shell, about 2.03-2.41 nearest oxygen atoms surround the center Cu atom with a Cu-O bond distance of 1.96-1.99 A. The results further demonstrated that the bond distance slightly increased with an increasing carbon content of the fly ash.  相似文献   

14.
Primary sources of particulate matter (PM) were analyzed by suspending powdered samples into an aerosol laser ablation mass spectrometer (LAMS). PM sources studied included vehicle exhaust particulates, dust from a non-ferrous smelter, cement powder, incinerator fly ash, two coal fly ash samples, and two soils. Marker peaks signified certain PM source sectors: construction particles could be distinguished by abundant Ca and Ca compounds, fuel combustion was marked by elemental carbon clusters, and nonferrous industrial particles showed inorganic As, Cu, Pb, Zn, and SOx. In addition to the distinction between particles from these different source sectors, mass spectral results also showed that for a single source, different particle types existed, and among different sources within a sector, similar spectra were present. The aerosol LAMS results show the difficulty in differentiating among separate fly ash sources as well as among different soil samples. A particle class balance receptor model that measures the amount of specific particle types rather than the amount of a chemical component is suggested as a means of source apportionment when particle spectra with overlapping source possibilities occur. The assumptions and limitations of receptor modeling aerosol LAMS data are also described. In particular, methods need to be developed to account for the contribution of secondary sources.  相似文献   

15.
ABSTRACT

Combustion experiments were carried out on four different residual fuel oils in a 732-kW boiler. PM emission samples were separated aerodynamically by a cyclone into fractions that were nominally less than and greater than 2.5 |j.m in diameter. However, examination of several of the samples by computer-controlled scanning electron microscopy (CCSEM) revealed that part of the PM2.5 fraction consists of carbonaceous cenospheres and vesicular particles that range up to 10 |j.m in diameter. X-ray absorption fine structure (XAFS) spectroscopy data were obtained at the S, V, Ni, Fe, Cu, Zn, and As K-edges and at the Pb L-edge. Deconvolution of the X-ray absorption near edge structure (XANES) region of the S spectra established that the dominant molecular forms of S present were sulfate (26-84% of total S) and thiophene (13-39% of total S). Sulfate was greater in the PM2.5 samples than in the PM25+ samples. Inorganic sulfides and elemental sulfur were present in lower percentages. The Ni XANES spectra from all of the samples agreed fairly well with that of NiSO4, while most of the V spectra closely resembled that of vanadyl sulfate (VO?SO4?xH2O). The other metals investigated (i.e., Fe, Cu, Zn, and Pb) also were present predominantly as sulfates. Arsenic was present as an arsen-ate (As+5). X-ray diffraction patterns of the PM2.5 fraction exhibit sharp lines due to sulfate compounds (Zn, V, Ni, Ca, etc.) superimposed on broad peaks due to amorphous carbons. All of the samples contain a significant organic component, with the loss on ignition (LOI) ranging from 64 to 87% for the PM2.5 fraction and from 88 to 97% for the PM2.5+ fraction. Based on 13C nuclear magnetic resonance (NMR) analysis, the carbon is predominantly condensed in graphitic structures. Aliphatic structure was detected in only one of seven samples examined.  相似文献   

16.
A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury (Hg(o)) oxidation under SCR conditions. A low sulfur Powder River Basin (PRB) subbituminous coal combustion fly ash was injected into the entrained-flow reactor along with sulfur dioxide (SO2), nitrogen oxides (NOx), hydrogen chloride (HCl), and trace Hg(o). Concentrations of Hg(o) and total mercury (Hg) upstream and downstream of the SCR catalyst were measured using a Hg monitor. The effects of HCl concentration, SCR operating temperature, catalyst space velocity, and feed rate of PRB fly ash on Hg(o) oxidation were evaluated. It was observed that HCl provides the source of chlorine for Hg(o) oxidation under simulated PRB coal-fired SCR conditions. The decrease in Hg mass balance closure across the catalyst with decreasing HCl concentration suggests that transient Hg capture on the SCR catalyst occurred during the short test exposure periods and that the outlet speciation observed may not be representative of steady-state operation at longer exposure times. Increasing the space velocity and operating temperature of the SCR led to less Hg(o) oxidized. Introduction of PRB coal fly ash resulted in slightly decreased outlet oxidized mercury (Hg2+) as a percentage of total inlet Hg and correspondingly resulted in an incremental increase in Hg capture. The injection of ammonia (NH3) for NOx reduction by SCR was found to have a strong effect to decrease Hg oxidation. The observations suggest that Hg(o) oxidation may occur near the exit region of commercial SCR reactors. Passage of flue gas through SCR systems without NH3 injection, such as during the low-ozone season, may also impact Hg speciation and capture in the flue gas.  相似文献   

17.
Takasuga T  Makino T  Tsubota K  Takeda N 《Chemosphere》2000,40(9-11):1003-1007
Simplified thermal formation experiments have been conducted using dioxin-free fly ash as a catalyst with many kinds of combustible samples such as newspaper, kerosene, paraffin, PE (polyethylene), PP (polypropylene) and PVC. Chlorine sources were PVC, NaCl and HCl. The combustion of samples containing chlorine in the absence of dioxin-free fly ash produced dioxins at a low level although HCl was present in the gas stream. On the other hand, the combustion of samples without chlorine with dioxin-free fly ash increased dioxins formation to a level around 10 times higher than that upon heating dioxin-free fly ash alone. This result is considered to be due to the presence of metal chloride in the fly ash and hydrocarbons in the gas stream. The combustion of samples containing either an organic or inorganic chlorine source or using a HCl stream with dioxin-free fly ash increased dioxin level dramatically.  相似文献   

18.
In this paper results of various measurement campaigns at different municipal waste incineration (MWI) plants concerning the change of the PCDD/PCDF isomer distribution in the crude gas during transiently impaired combustion conditions are presented. The focus is on the Cl4DD isomer distributions exemplarily for all other homologue groups to demonstrate the change in PCDD/PCDF formation mechanism at transient combustion conditions. Additionally to crude gas samples, at one plant filter and boiler ash were investigated simultaneously to determine if there is any difference in the isomer distribution between the matrices. For the ash from an electrostatic precipitator (ESP ash), the boiler ash and the corresponding crude gas sample, nearly identical changes in the Cl4DD isomer distribution under transient combustion conditions in relation to the normal operation process could be detected. By comparing the Cl4DD isomer distributions from different incineration plants (two municipal waste incinerators and one little incinerator burning wood chips for heating domestic household) under transient combustion conditions, in all cases the 1,3,6,8- and 1,3,7,9-Cl4DD were dominating the isomer distribution, whereas under normal operation other isomers were predominant. Obviously PCDD/PCDF formation mechanisms under transient combustion conditions are independent from the type of incinerator and of the burned fuel, respectively. Data sets were analyzed with respect to the possible reaction mechanism via chlorophenols and a good correlation of 2,4,6-trichlorophenol during the second phase of a start-up process and during a CO experiment was found. To get more detailed information about possible formation mechanisms, at one plant the dependence of the PCDD/PCDF isomer distribution on the different matrices was studied. Separate analysis of fly ash collected at the boiler exit, subsequent gas phase, ESP ash and boiler ash under normal operation conditions showed that, apart from the fly ash, the Cl4DD isomer distributions are nearly the same in the different matrices. Surprisingly, the Cl4DD isomer distribution of the fly ash was more similar to the distributions found under transient combustion conditions.  相似文献   

19.
Jin GZ  Lee SJ  Kang JH  Chang YS  Chang YY 《Chemosphere》2008,70(9):1568-1576
Polyethylene (PE) and polyvinyl chloride (PVC) are the leading plastics in total production in the world. The incineration of plastic-based materials forms many chlorinated compounds, such as polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). In this study the addition of goethite (alpha-FeOOH) was investigated to determine its suppressing effect on the emission of PCDD/Fs and hexachlorobenzene (HCB) during the combustion of wastes containing PE and PVC. Goethite was being considered since it acts as a dioxin-suppressing catalyst during incineration. Results showed that incorporation of goethite greatly reduced the generation of PCDD/Fs and HCB in the exhaust gas and fly ash. The concentration of PCDD/Fs in flue gas decreased by 45% for lab-scale and 52% for small incinerator combustion experiments, where the goethite ratios in feed samples were 0.54% and 0.34%, respectively. Under the same conditions, the concentration of HCB in flue gas decreased by 88% and 62%, respectively. The present study showed a possible mechanism of the suppressing effect of the goethite for PCDD/F formation. It is likely that iron chlorides react with particulate carbon to form organo-chlorine compounds and promote PCDD/F formation in the gas phase. XRD analysis of combustion ash revealed that the goethite was partially dehydrated and converted to alpha-Fe(2)O(3) and Fe(3)O(4) but no iron chlorides formation. Therefore the goethite impregnated plastics can contribute the reduction of PCDD/Fs and HCB in the exhaust gas during incineration of MSW.  相似文献   

20.
PCDD/PCDF were determined in solid samples from wood combustion. The samples included grate ashes, bottom ashes, furnace ashes as well as fly and cyclone ashes. The solid waste samples were classified into bottom and fly ash from native wood and bottom and fly ash from waste wood. For each of the four classes concentration distribution patterns from individual congeners, the sums of PCDD/PCDF and the international toxicity equivalents (I-TEQ) values are given. The I-TEQ levels of fly ash from waste wood burning can be approximately up to two thousand times higher than the values from fly ashes of natural wood. The I-TEQ levels in bottom ashes from waste wood combustion systems are as low as the corresponding ashes from the combustion of native wood. Grate ash samples from waste wood combustion systems with low carbon burnout show high levels of PCDD/PCDF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号