首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Grazing pressure on macroalgae in littoral communities may vary with algal species, the age of an algal individual and grazer identity. Previous studies on alga–grazer interactions have shown that grazer preference for an algal species may release another one from interspecific competition. We measured the impacts of four common grazer taxa and the natural grazer guild on macroalgal communities at both their colonization and adult stages, and compared the impacts to grazer exclosures. The grazer effects were stronger on colonizing than on adult macroalgae; grazers did not reduce the total density of adult algae. Grazers both feed on propagules and indirectly facilitate other algae, depending on the grazer or algal species. Hydrobia species increased the settlement of spores of the red alga Ceramium tenuicorne. Similarly, the gastropod Theodoxus fluviatilis tended to facilitate one crustose algal species, but decreased the propagule density of annual filamentous algae, suggesting a preference for one species to the advantage of another. Effects of crustacean mesograzers on the studied macroalgae were weak. These results indicate that northern Baltic macroalgae are limited to grazing mainly during their colonization stage.  相似文献   

2.
Surfaces from the habitat of adult Haliotis rubra were tested as inducers of larval settlement to determine the cues that larvae may respond to in the field. Settlement was high on the green algal species Ulva australis and Ulva compressa (Chlorophyta), the articulated coralline algae Amphiroa anceps and Corallina officinalis, and encrusting coralline algae (Rhodophyta). Biofilmed abiotic surfaces such as rocks, sand and shells did not induce settlement. Ulvella lens was also included as a control. Treatment of U. australis, A. anceps and C. officinalis with antibiotics to reduce bacterial films on the surface did not reduce the settlement response of H. rubra larvae. Similarly, treatment of these species and encrusting coralline algae with germanium dioxide to reduce diatom growth did not significantly reduce larval settlement. These results suggest that macroalgae, particularly green algal species, may play an important role in the recruitment of H. rubra larvae in the field and can be used to induce larval settlement in hatchery culture.  相似文献   

3.
The South African abalone Haliotis midae is a commercially valuable species, but its numbers are seriously depleted due to illegal fishing. Overfishing not only affects the targeted species, but also potentially influences the integrity and functioning of the ecosystem through associated changes in community composition. We assessed the herbivorous effects of H. midae on the benthos through a 6-month field experiment involving exclusion/inclusion plots. This showed that benthic community composition remained largely unchanged whether H. midae was present or absent and specifically revealed no evidence that H. midae diminishes algal biomass, probably because in the region where we worked, it feeds mainly by trapping drift kelp rather than grazing on attached algae. The absence of responses to the removal of abalone was additionally evident in comparison with indices of abundance and diversity, functional groups and individual species. In the absence of abalone, there were subtle increases in the green alga Codium stephensiae and the crustose brown alga Zeacarpa leiomorpha and decreases in the four species of foliose macroalgae, but none of these effects were significant. The presence of H. midae thus had no negative grazing effects on any elements of the epilithic community composition. It does, however, have other influences, including occupation of space and provision of habitat in the form of its shell, which supports a community significantly different from the surrounding rocks.  相似文献   

4.
Settlement sites of marine invertebrate larvae are frequently influenced by positive or negative cues, many of which are chemical in nature. Following from the observation that many shallow-water, Hawai'ian marine macroalgae are free of fouling by sessile invertebrates, we predicted that the algae are chemically protected and dependent on either surface-bound or continuously released soluble compounds to deter settling invertebrate larvae. To address the importance of waterborne algal compounds, we experimentally determined whether larvae of two of Hawai'i's dominant hard-surface fouling organisms, the polychaete tube worm Hydroides elegans and the bryozoan Bugula neritina, would settle in the presence of waters conditioned by 12 species of common Hawai'ian macroalgae (representing the Phaeophyta, Chlorophyta, Rhodophyta and Cyanophyta). The results included a full spectrum of biological responses by each larval species to waterborne algal compounds. Larval responses to conditioned water were consistent for each algal species, but the outcomes were not predictable based on the taxonomic relationships of the algae. For example, among the species of Phaeophyta examined, different conditioned waters were: (1) toxic, (2) inhibited settlement, (3) simulated settlement, or (4) had no effect, compared to larvae in control dishes containing filtered seawater. Additionally, larval responses to aged (24 h) conditioned waters could not be predicted from the results of assays run with conditioned waters utilized immediately after preparation. Finally, settlement by larvae of one species did not predict outcomes of tests for the other species. Four of 12 shallow-reef Hawai'ian macroalgae tested released compounds into surrounding waters that immediately killed or inhibited settlement by both H. elegans and B. neritina (toxic: Dictyota sandvicensis; inhibitory: Halimeda discoidea, Sphacelaria tribuloides, Ulva reticulata); the remaining 8 algal species prevented settlement by one of these fouling organisms but for the other had no effect or, in some cases, even stimulated settlement  相似文献   

5.
Large quantities of floating macroalgae are traveling in coastal waters of the SE Pacific and in other temperate climate zones. While afloat, these algae are potentially exposed to full solar radiation, including UVA and UVB, which can have profound effects on their physiological and growth performance. Latitudinal variations in UV-radiation (UVR) are hypothesized to affect floating algae differently with higher impacts at low latitudes than at high latitudes. In addition, UVR together with grazing might accelerate the demise of floating kelps. This hypothesis was tested with outdoor laboratory experiments in which sporophytes of the giant kelp Macrocystis pyrifera (L.) C. Agardh were exposed to a combination of different UVR regimes (PAR only, PAR + UV) and grazing at three sites along the Chilean coast (20°S, 30°S, and 40°S). A latitudinal trend in irradiance was detected with increasing values from 40°S to 20°S. Surprisingly, floating M. pyrifera responded with a high acclimation potential within this latitudinal UVR gradient. At 20°S, floating kelps were slightly sensitive to UVR, which was reflected in reduced blade growth. At 30°S, physiological responses were hardly affected by the prevailing irradiance but sporophyte growth and thus persistence mainly depended on the presence or absence of amphipod grazers. At high latitudes, grazing had only minor impacts on algal biomass and blade growth, and kelps thrived well under all tested environmental conditions. Overall, our results reveal that floating M. pyrifera was only slightly affected by UVR and that sporophytes can efficiently acclimate over a latitudinal UVR gradient that spans from 20°S to 40°S. Given this high acclimation potential, we suggest that these (and possibly other) positively buoyant algae are important dispersal agents over a wide range of temperate latitude conditions.  相似文献   

6.
The invasive red alga Gracilaria vermiculophylla has quickly spread across Europe, but it is unclear whether its success is based on a high tolerance to variations in environmental conditions or to the absence of native grazers that feed on this alga. We tested whether native invertebrate grazers prefer native algae to G. vermiculophylla. Feeding preferences of three common herbivores were quantified when offered G. vermiculophylla and native Fucus vesiculosus, Ceramium virgatum, and Ulva intestinalis in no-, two- and multiple-choice trials. Herbivore growth was measured when fed each of the algae separately. Grazers consumed G. vermiculophylla in no-choice trials, but avoided generally this alga when having a choice. U. intestinalis was always preferred over G. vermiculophylla, and grazers fed with U. intestinalis grew faster than those fed with G. vermiculophylla. We conclude that grazers avoid G. vermiculophylla to most native algae, which may benefit G. vermiculophylla in northern European estuaries.  相似文献   

7.
Terrestrial plants have long been known to induce resistance towards herbivores in response to direct grazing, and strong evidence of inter-plant information transfer through volatile signals has been reported recently. Still, little is known about information exchange in aquatic plant–herbivore interactions. In this study, 12 Swedish seaweed species were exposed either to direct grazing by a generalist crustacean herbivore (Idotea granulosa), or to waterborne signals produced by actively feeding herbivores for 1 week. In order to test for the presence of induced chemical resistance in the different seaweed species, the dried and homogenized seaweed tissues were incorporated into an agar matrix, and herbivores were allowed to choose between the resulting control and induced artificial diets in two different two-choice feeding trials. The herbivores were actively feeding from all seaweed species in the induction experiments, although the amount of seaweed tissue consumed differed significantly between species. A chemically based induced herbivore resistance was found in response to direct grazing in four of the tested seaweed species (two red, one brown, and one green seaweed species). Furthermore, four seaweeds (one red, two brown, and one green seaweed species) induced resistance towards further grazing in response to waterborne chemical signals. Several seaweed species responded differently when exposed to different herbivore-related cues, indicating that both cues and responses can be highly specific. The results show that herbivore-induced resistance is present in 7 of 12 of the tested Swedish seaweed species, but that different signals (i.e., direct grazing and waterborne cues) elicit complex responses in the seaweeds.  相似文献   

8.
Despite the plentiful diversity of macroalgae in coastal environments, few studies have examined the in vivo absorption features of common marine macrophytes. Here we report on results of a survey of 12 central California common intertidal and subtidal taxa, representing Chlorophyta, Phaeophyta and Rhodophyta carried out in the summer of 1988. Computer-assisted analyses were used to obtain fourth-derivative spectra from in vivo absorption spectra determined at room temperature to obtain spectral diagnostics for the different algal divisions and to provide a means to determine whether spectral features could be used to identify stress responses among these plants. Among the Chlorophyta, characteristic maxima for chlorophylls a and b were resolved in all species examined, and a spectral component attributable to siphonaxanthin-like carotenoid(s) was observed in two Ulva species and the coenocytic alga Derbesia marina. Representatives of the Phaeophyta were characterized by similar maxima for chlorophyll a and c, and for fucoxanthin. Among the Rhodophyta, maxima for chlorophyll a, as well as B- and R-type phycoerythrin were resolved. Differences in in vivo absorption features were detected for two tidal populations of Porphyra perforata and Mastocarpus papillatus. High-tidal thalli absorb less green light in regions characterized by phycoerythrin, but have enhanced carotenoid absorption compared with lowtidal thalli. Resolution of spectra by fourth-derivative analysis revealed significant differences in phycoerythrin and carotenoid contents. The spectral changes observed appear to reflect environmental and possibly populational characteristics of these algae. The spectral analyses described here provide robust, non-invasive means to characterize subtle responses of macroalgae to environment in ways not possible previously. Additional merits of these fourth-derivative analyses for use in environmental studies are discussed.This contribution is dedicated to the memory of Professor L. R. Blinks, a pioneer in photosynthesis research and algal physiology  相似文献   

9.
Chemical defense is assumed to be costly and therefore algae should allocate defense investments in a way to reduce costs and optimize their overall fitness. Thus, lifetime expectation of particular tissues and their contribution to the fitness of the alga may affect defense allocation. Two brown algae common to the SE Pacific coasts, Lessonia nigrescens Bory and Macrocystis integrifolia Bory, feature important ontogenetic differences in the development of reproductive structures; in L. nigrescens blade tissues pass from a vegetative stage to a reproductive stage, while in M. integrifolia reproductive and vegetative functions are spatially separated on different blades. We hypothesized that vegetative blades of L. nigrescens with important future functions are more (or equally) defended than reproductive blades, whereas in M. integrifolia defense should be mainly allocated to reproductive blades (sporophylls), which are considered to make a higher contribution to fitness. Herein, within-plant variation in susceptibility of reproductive and vegetative tissues to herbivory and in allocation of phlorotannins (phenolics) and N-compounds was compared. The results show that phlorotannin and N-concentrations were higher in reproductive blade tissues for both investigated algae. However, preferences by amphipod grazers (Parhyalella penai) for either tissue type differed between the two algal species. Fresh reproductive tissue of L. nigrescens was more consumed than vegetative tissue, while the reverse was found in M. integrifolia, thus confirming the original hypothesis. This suggests that future fitness function might indeed be a useful predictor of anti-herbivore defense in large, perennial kelps. Results from feeding assays with artificial pellets that were made with air-dried material and extract-treated Ulva powder indicated that defenses in live algae are probably not based on chemicals that can be extracted or remain intact after air-drying and grinding up algal tissues. Instead, anti-herbivore defense against amphipod mesograzers seems to depend on structural traits of living algae.  相似文献   

10.
The short-spined toxopneustid sea urchin Tripneustes gratilla feeds on a wide variety of algal species and on sea grasses. However, the urchin does show preferences when offered a selection of macroalgal species, which it encounters in nature. Preferences among macroalgae were evident in field-collected urchins exposed to pair-wise tests where the variable was either the consumption rate of the algae or observation of which algal species the urchins chose to touch with their lantern teeth. Exposure of lab-housed urchins to one of five species of macroalgae for 5 months did not seem to alter preferences of urchins in three of the exposure groups, but those exposed to Padina sanctae-crucis seemed to show an enhanced preference for this species when offered a choice of the five species of macroalgae at the end of the exposure period, and those exposed to Gracilaria salicornia seemed to avoid the species when offered the choice of the five species. Perhaps more ecologically important than their preferences were two other observations on these urchins: first, when offered only a single species of algae, the urchins on four of five diets ate the same quantity per day. Second, when simultaneously offered the choice among the five macroalgal species, the urchins consumed more macroalgae per day than when offered only one species. These urchins move about a meter a day. They probably encounter food resources in a relatively coarse-grained fashion and have evolved to eat what is available. Because of their limited movements, their habitat overlap with grazing fishes, their acceptance of a wide variety of macroalgae and their preference for macroalgae, these native urchins are thought to have the potential to serve as biological control agents of alien and invasive macroalgae, which have come to dominate some reef zones normally occupied by corals in Hawaii.  相似文献   

11.
We studied the interacting roles of nutrient availability and herbivory in determining the macroalgal community in a rocky littoral environment. We conducted a factorial field experiment where we manipulated nutrient levels and herbivory at two sublittoral depths and measured macroalgal colonization and the following young assemblage during the growing season. At the community level, grazing reduced algal colonization, though the effect varied with depth and its interaction with nutrient availability varied in time. In shallow water, the total density of macroalgae increased in response to nutrient enrichment, but the ability of grazers to reduce macroalgal density also increased with the nutrient enrichment, and thus, the community could not escape from the top-down control. In deep water, the algal density was lower, except in July when nutrient enrichment caused a very dense algal growth. Grazing at the greater depth, though effective, was generally of smaller magnitude, and in July it could not limit algal recruitment and growth. Species richness peaked at the intermediate nutrient level in deep but not in shallow water during most of the growing season. Grazing had no effect on diversity of the algal community at either depth and only a minor effect on species richness at the greater depth. Opportunistic and ephemeral algae benefited from the nutrient enrichment but were also grazed to very low densities. Slowly growing and/or perennial species colonized poorly in the nutrient enriched treatments, and depending on the species, either suffered or indirectly benefited from herbivory. For all species, effects of nutrients on colonization depended on depth; usually both nutrient and herbivory effects were more pronounced at the shallow depth. We conclude that grazers are able to reduce macroalgae over a large range of nutrient availabilities, up to 12-fold nutrient enrichment in the current experiment, and that the sublittoral depth gradient generates variation in the algal community control exerted by both herbivory and nutrient availability. Thus temporal and spatial variability in both top-down and bottom-up control and in their interaction, especially along the depth gradient, may be crucially important for producer diversity and for the successional dynamic in a rocky sublittoral environment.  相似文献   

12.
For small tube-building amphipods that live on the algae they consume, food and habitat are tightly linked. This study compared two closely related amphipods to determine whether the species’ algal preferences are based on the food value of the algae or on some other aspect of their algal habitat. Ampithoe lacertosa and Peramphithoe humeralis are both abundant on Shannon Point beach (Anacortes, Washington, USA; 48°30.542′ N, 122°41.070′ W) but specialize on different algae. In observations and laboratory experiments conducted July–September 1997, 2007, and 2008, the two species exhibited markedly different choices of food and habitat when offered six common macroalgae. Ampithoe lacertosa ate all algae offered, but preferentially built tubes on the green alga Ulva lactuca. Survival was relatively low among juveniles maintained on single species diets, except when they were fed Mazzaella splendens. Conversely, P. humeralis consumed primarily the brown kelp Saccharina latissima, Alaria marginata, and Desmarestia ligulata and preferred those species for tube building. Juvenile P. humeralis could not survive on a diet of U. lactuca or M. splendens. While A. lacertosa builds simple, temporary tubes and relocates frequently, P. humeralis is a highly thigmotactic species that builds long-term, complex tubes on the alga it prefers to eat. Feeding and habitat preferences of the two species were not clearly linked to nitrogen content of the algae, C:N ratio, or toughness of the algal tissue. Instead, preferences of the species may be related to their mobility and the permanence of the tubes they build. Ampithoe lacertosa and P. humeralis also use different feeding strategies; the former appears to mix algae to produce a high-quality diet, while the latter is more selective and has a capacity for compensatory feeding. The species are abundant on the same protected rocky shores, but specialize on different algae for habitat and food. Results suggest that the nutritional requirements of these sympatric mesograzers differ considerably and even closely related species can exhibit divergent behavioral strategies.  相似文献   

13.
Mesograzers are thought to play a critical role in seagrass beds by preventing overgrowth of ephemeral algae. On the Swedish west coast, eelgrass Zostera marina has decreased in recent decades as a result of eutrophication and increased growth of macroalgal mats (mainly filamentous Ulva spp. and Ectocarpales), with no indication of grazer control of the algae. The aim of this study was to investigate the ability of the amphipod Gammarus locusta to control algal blooms during nutrient-enriched and ambient conditions, using a combination of laboratory, field and model studies. Laboratory experiments demonstrated that juvenile and adult G. locusta could consume both Ulva spp. and Ectocarpales, but that consumption of Ulva spp. was significantly higher. Cannibalism was common in individual treatments involving multiple size-classes of G. locusta, but only large, male gammarids consumed smaller juveniles in the presence of Ulva spp. as an alternative food source. However, no negative effects of cannibalism were found on total grazing impact. A model using size-specific grazing rates and growth rates of G. locusta and of Ulva spp. suggests that approximately 62 young juvenile, or 27 adult G. locusta are needed per gram DW of Ulva spp. to control the algal growth during ambient nutrient conditions, and approximately 2.6 times as many gammarids during enhanced nutrient conditions. On the Swedish west coast, densities and mean sizes of G. locusta in eelgrass beds are below these critical values, suggesting that the gammarids will not be able to control the growth of the filamentous macroalgae. However, in the field cage experiment, immigration of juveniles and reproduction of encaged adult G. locusta resulted in unexpectedly high densities of G. locusta (>4,000 individual m−2), and very low biomass of Ulva spp. in both ambient and nutrient-enriched treatments. Although the high numbers of juveniles in all cages precluded any significant treatment effects, this suggests that in the absent of predators, the population of G. locusta can grow significantly and control the biomass of Ulva spp. Furthermore, low grazing of Ectocarpales in the laboratory and high biomass of these filamentous brown algae in the field indicate a preference for the more palatable green algae Ulva spp. This study indicates that the high grazing capacity of G. locusta, in combination with high reproduction and growth rates, would allow the amphipod to play a key role in Z. marina ecosystems by controlling destructive blooms of filamentous green algae. However, high predation pressure appears to prevent large populations of G. locusta in eelgrass beds on the Swedish west coast today.  相似文献   

14.
Caribbean coral reefs are increasingly dominated by macroalgae instead of corals due to several factors, including the decline of herbivores. Yet, virtually unknown is the role of crustacean macrograzers on coral reef macroalgae. We examined the effect of grazing by the Caribbean king crab (Mithrax spinosissimus) on coral patch reef algal communities in the Florida Keys, Florida (USA), by: (1) measuring crab selectivity and consumption of macroalgae, (2) estimating crab density, and (3) comparing the effect of crab herbivory to that of fishes. Mithrax prefers fleshy macroalgae, but it also consumes relatively unpalatable calcareous algae. Per capita grazing rates by Mithrax exceed those of most herbivorous fish, but Mithrax often occurs at low densities on reefs and its foraging activities are reduced in predator-rich environments. Therefore, the effects of grazing by Mithrax tend to be localized and when at low density contribute primarily to spatial heterogeneity in coral reef macroalgal communities.  相似文献   

15.
The lined chiton Tonicella lineata (Wood, 1815) is found on enerusting coralline algae in the lower rocky intertidal zone of Oregon and San Juan Island, Washington, USA. An encrusting coralline alga is the major food item of this chiton. Experiments were performed to test the settling response of T. lineata larvae to various algae and other substrata. In these experiments, the larvae would settle only on pieces of encrusting coralline algae and piecesof ceramic roofing tile soaked in a coralline algal extract. The settling stimulus is probably chemical in nature, and is inactivated by boiling. In laboratory cultures, normal development stops at the trochophore stage (110 to 160 h, depending on the temperature). Metamorphosis and further development will take place only after stttlement on encrusting coralline algae.  相似文献   

16.
Microarthropods are known as vectors for soil microorganisms, predominantly fungi. This laboratory study uses the widespread unicellular green algae Chlorella vulgaris as model to assess the role of Collembola in algal dispersal and to determine the effects of gut passage on propagation. Living algal cells were observed in 70 % of the faecal pellets of Folsomia candida, Heteromurus nitidus and Protaphorura fimata. Moreover, marker fatty acids for green algae, i.e. 16:2ω6,9 and 16:3ω3,6,9, were consistently detected in the pellets. Compared to the algal diet, the high content of methyl-branched total lipid fatty acid (TLFA) with hydroxyl substitution indicated microbial colonisation during gut passage. The TLFA profile of faeces revealed no species-specific differences but similar changes in microbial communities over the duration of feeding, indicating comparable indigenous bacteria and colonisation mechanisms during gut passage. In sum, faecal pellets of soil microarthropods such as Collembola can act as a vector for both dietary algae and specific gut-associated microorganisms, with the latter likely involved in resource degradation inside and outside the gut habitat.  相似文献   

17.
Phylloplane algae of standing dead Spartina alterniflora   总被引:1,自引:0,他引:1  
Phylloplane (leaf surface) algae on leaves from standing dead Spartina alterniflora Loisel in Sapelo Island marshes were enumerated by epifluorescence microscopy. The green alga Pseudendoclonium submarinum Wille dominated algal biovolume on both short-and tall-form plants during summer and winter. Intra-leaf and intra-plant patterns of algal biovolume and diversity indicated that desiccation stress may be an important selective factor. Observed epiphyte densities are 10- to 200-fold lower than values reported for communities on continuously submerged aquatic vegetation. Algal biovolume was less than 10% of that contained in the saprophytic (fungal and bacterial) community.  相似文献   

18.
The use of algae to control heavy metals in the environment   总被引:1,自引:0,他引:1  
Aqueous effluents from a lead mining and milling operation located in southeastern Missouri, USA, caused a degradation of stream quality despite treatment by a large tailings pond. The receiving stream was choked with algal mats which accumulated unexpectedly large amounts of manganese, lead and zinc. A wastewater treatment system was designed to utilize algae and benthic macrophytes to remove metals from the tailings pond effluent. The system has proved successful and water quality in the receiving stream has been improved to drinking water standards.Experiments were conducted to understand more fully the phenomenon of heavy metal accumulation by algae. Radionuclides (210Pb,203Hg,65Zn,109Cd) were used in conjunction with commercially available microculture apparatus to screen several species of algae for heavy metal accumulation. It was found that all species of algae studied concentrated mercury, green algae were more efficient accumulators of cadmium than blue-green algae, one alga (Chlamydomonas) proved best at removing lead from solution and no alga studied removed zinc.  相似文献   

19.
Summary. Plant responses to herbivory might directly affect the herbivore (“direct” defences) or might benefit the plant by promoting the effectiveness of natural antagonists of the herbivores (“indirect” defences). Brussels sprouts attacked by Pieris brassicae larvae release volatiles that attract a natural antagonist of the herbivores, the parasitoid Cotesia glomerata, to the damaged plant. In a previous study, we observed that feeding by caterpillars on the lower leaves of the plant triggers the systemic release of volatiles detectable by the parasitoids from upper leaves of the same plant.?The role of these systemically induced volatiles as indirect defence and the dynamics of their emission were investigated in wind-tunnel dual choice tests with C. glomerata. The systemically induced emission of volatiles varied depending on leaf age and on plant age. Systemic induction affected parasitoid effectiveness, as induced plants could be more easily located by parasitoids than non-induced ones.?The role of the systemic induction as a direct defence was investigated through behavioural and feeding tests with P. brassicae. In dual choice assays, 1st instar larvae preferred to feed and fed more on systemically induced than on non-induced leaves. In single choice assays, the leaf area consumed by caterpillars was larger on systemically induced leaves than on non-induced control leaves. However, caterpillars fed on systemically induced leaves attained the same weight as those feeding on non-induced controls. In addition, P. brassicae pupae whose larvae were fed on systemically induced leaves had longer developmental times than those of larvae fed on non-induced leaves. Adult oviposition behavior was not influenced by systemic induction.?We conclude that systemically induced responses in cabbage might reduce P. brassicae fitness both directly, by affecting their development and feeding behavior and indirectly by making caterpillars and pupae more vulnerable to attack by carnivores. The occurrence of a possible relationship between direct and indirect defence is discussed. Received 24 January 2001; accepted 3 May 2001.  相似文献   

20.
The effects of small and large-scale roughness, overstory development, competition for space with sessile animals, and grazing on algal community development in a subtidal Macrocystis pyrifera forest were examined using specially prepared concrete blocks as substrata. Variation in small-scale roughness (crevices and grooves in the order of 0.1 to 3 mm width and depth) had no significant effects on community composition. However, M. pyrifera colonization, algal diversity, and sessile animal biomass were higher near the upper horizontal edges of blocks and concrete prisms. This “edge” effect may result from a combination of increased spore and larval settlement and enhanced growth of plants and animals associated with the turbulent eddies formed around these obstructions. Natural and experimentally produced variations in the algal overstory demonstrated that the presence of an overstory can reduce algal diversity and cover beneath. Caging experiments suggest that predatory fishes and sea-stars indirectly affect the algal community by removing sessile animals (primarily bryozoans) which compete with the algae for space. The exclusion of grazers resulted in increased growth of Gigartina spp. Selective grazing on this genus may account for its reduced abundance in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号