首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact on an ecosystem of an environmental stress, such as climate change or air pollution, can be studied through experimentation, through comparisons of sites across a gradient of the stress, through long-term studies at a single site, or through theoretical or modelling approaches. Although the former three techniques often are used to develop and test models, it is much rarer to explicitly link experimental, comparative or long-term studies together. Here we present a concept for combining experimental and comparative research to assess the direction and rate of change, the expected long-term state, and the rate at which the long-term state is achieved after an ecosystem is exposed to an environmental stress. We do this by comparing the response of a forest in Denmark to experimentally increased N deposition with the expected long-term response based on a European database of forests exposed to different levels of N deposition over long time periods. The analysis suggests that if N deposition were to increase by 3-fold to about 50 kg N ha-1 a-1 at the Danish site, and remain at this level, the N concentration in needles would respond within 2–4 yr after the onset of the enhanced N deposition, and would rapidly plateau to an expected mean value of 18.0 mg N g-1 dry mass (95% confidence interval ± 2.5 mg g-1). The N concentration of new litter also would respond rapidly (1–2 yr) to reach an expected value of 16.6 mg N kg-1 dry mass (± 3). The N concentration of the organic layer in the soil would increase much more slowly, but a significant increase would be expected within 5–10 yr. Mineral soil pH would take more than 7 yr to change. Finally, the flux of dissolved inorganic N in leachate wouldbegin to increase immediately, but would take many years to reach the expected level of 22.4 kg N ha-1 a-1(± 4).  相似文献   

2.
During long-duration space missions that require recycling and regeneration of life support materials the major human wastes to be converted to usable forms are CO2, hygiene water, urine and feces. A Controlled Ecological Life Support System (CELSS) relies on the air revitalization, water purification and food production capabilities of higher plants to rejuvenate human wastes and replenish the life support materials. The key processes in such a system are photosynthesis, whereby green plants utilize light energy to produce food and oxygen while removing CO2 from the atmosphere, and transpiration, the evaporation of water from the plant. CELSS research has emphasized the food production capacity and efforts to minimize the area/volume of higher plants required to satisfy all human life support needs. Plants are a dynamic system capable of being manipulated to favour the supply of individual products as desired. The size and energy required for a CELSS that provides virtually all human needs are determined by the food production capacity. Growing conditions maximizing food production do not maximize transpiration of water; conditions favoring transpiration and scaling to recycle only water significantly reduces the area, volume, and energy inputs per person. Likewise, system size can be adjusted to satisfy the air regeneration needs. Requirements of a waste management system supplying inputs to maintain maximum plant productivity are clear. The ability of plants to play an active role in waste processing and the consequence in terms of degraded plant performance are not well characterized. Plant-based life support systems represent the only potential for self sufficiency and food production in an extra-terrestrial habitat.  相似文献   

3.
Solar energy driven physical, chemical and biological recycling of nutrients is the characteristic of the Earth-Sun system which permits life on earth to continue. Natural recycle of nutrients on Earth may literally require thousands or even millions of years to be complete, but for modern civilization to continue on Earth or in space, mankind must take charge of, and accelerate, the recycle of all essentials of life. In this paper we describe studies of two accelerated recycle systems; a solar powered energy system and an integrated feed lot. Both systems require special infrastructures permitting the accelerated physical, chemical and biological processing to occur. These systems do not integrate respiratory carbon dioxide as must be done in a complete closed ecological life support system (CELSS). The Algatron, a more complete system involving microalgal bacterial waste treatment with water, oxygen and carbon dioxide recycle was designed for use in Space Stations over 20 years ago.  相似文献   

4.
Manned missions to the Moon and Mars will produce waste, both in liquid and solid form, from the day-to-day life-support functions of the mission—even considering a “closed” physico-chemical life support approach. An “open” life support system configuration, even one reliant on in situ resources, would result in even more waste being produced. The solution for short term missions appears to be either to store these wastes on-site or to convert them to useful products needed by other systems such as methane, water and gases which could be used for propulsion. The solution for longer term missions appears to be to incorporate their use within the life support system itself by making them a part of a closed ecological life-support system where nearly all materials are recycled.This paper discusses briefly the extent and impact of the life-support system waste production problem for a lunar base for different life support system configurations, including the impact of using in situ resources to meet life support requirements. It then discusses in more detail trade-offs among six of the currently funded physico-chemical waste processing technologies being considered for use in space.  相似文献   

5.
President Bush has enunciated an unparalleled, open-ended commitment to human exploration of space called the Space Exploration Initiative (SEI). At the heart of the SEI is permanent human presence beyond Earth orbit, which implies a new emphasis on life science research and life support system technology. Proposed bioregenerative systems for planetary surface bases will require carefully designed waste processing elements whose development will lead to streamlined and efficient systems for applications on Earth.  相似文献   

6.
Permeable reactive barriers (PRBs) have traditionally been constructed via trenching backfilled with granular, long‐lasting materials. Over the last decade, direct push injection PRBs with fine‐grained injectable reagents have gained popularity as a more cost‐efficient and less‐invasive approach compared to trenching. A direct push injection PRB was installed in 2005 to intercept a 2,500 feet (760 meter) long carbon tetrachloride (CT) groundwater plume at a site in Kansas. The PRB was constructed by injecting EHC® in situ chemical reduction reagent slurry into a line of direct push injection points. EHC is composed of slow‐release plant‐derived organic carbon plus microscale zero‐valent iron (ZVI) particles, specifically formulated for injection applications. This project was the first full‐scale application of EHC into a flow‐through reactive zone and provided valuable information about substrate longevity and PRB performance over time. Groundwater velocity at the site is high (1.8 feet per day) and sulfate‐rich (~120 milligrams per liter), potentially affecting the rate of substrate consumption and the PRB reactive life. CT removal rates peaked 16 months after PRB installation with >99% removal observed. Two years post‐installation removal rates decreased to approximately 95% and have since stabilized at that level for the 12 years of monitoring data available after injection. Geochemical data indicate that the organic carbon component of EHC was mostly consumed after 2 years; however, reducing conditions and a high degree of chloromethane treatment were maintained for several years after total organic carbon concentrations returned to background. Redox conditions are slowly reverting and have returned close to background conditions after 12 years, indicating that the PRB may be nearing the end of its reactive life. Direct measurements of iron have not been performed, but stoichiometric demand calculations suggest that the ZVI component of EHC may, in theory, last for up to 33 years. However, the ZVI component by itself would not be expected to support the level of treatment observed after the organic carbon substrate had been depleted. A longevity of up to 5 years was originally estimated for the EHC PRB based on the maximum expected longevity of the organic carbon substrate. While the organic carbon was consumed faster than expected, the PRB has continued to support a high degree of chloromethane treatment for a significantly longer time period of over 12 years. Recycling of biomass and the contribution from a reduced iron sulfide mineral zone are discussed as possible explanations for the sustained reducing conditions and continued chloromethane treatment.  相似文献   

7.
Column leaching tests are closer to natural conditions than batch shaking tests and in the last years have become more popular for assessing the release potential of pollutants from a variety of solids such as contaminated soils, waste, recycling and construction materials. Uncertainties still exist regarding equilibration of the percolating water with the solids, that might potentially lead to underestimation of contaminant concentrations in the effluent. The intention of this paper is to show that equilibration of pore water in a finite bath is fundamentally different from release of a certain fraction of the pollutant from a sample and that equilibrium is reached much faster at low liquid-to-solid ratios typical for column experiments (<0.25) than in batch tests with much higher liquid-to-solid ratios (e.g. 2–10). Two mass transfer mechanisms are elucidated: First-order type release (film diffusion) and intraparticle diffusion. For the latter, mass transfer slows down with time and sooner or later non-equilibrium conditions are observed at the column outlet after percolation has been started. Time scales of equilibrium leaching can be estimated based on a comparison of column length with the length of the mass transfer zone, which is equivalent to a Damköhler number approach. Mass transfer and diffusion coefficients used in this study apply to mass transfer mechanisms limited by diffusion in water, which is typical for release of organic compounds but also for dissolution of soluble minerals such as calcite, gypsum or similar. As a conclusion based on these theoretical considerations column tests (a) equilibrate much faster than batch leaching tests and (b) the equilibrium concentrations are maintained in the column effluent even for slow intraparticle diffusion limited desorption for extended periods of time (>days). Since for equilibration the specific surface area is crucial, the harmonic mean of the grain size is relevant (small grain sizes result in high concentrations even after short pre-equilibration of a column). The absolute time scales calculated with linear sorption and aqueous diffusion aim at organic compounds and are not valid for sparingly soluble mineral phases (e.g. metal oxides and silicates). However, the general findings on how different liquid-to-solid ratios and specific surface area influence equilibration time scales also apply to other mass transfer mechanisms.  相似文献   

8.
Truck-based collection of municipal solid waste imposes significant negative externalities on cities and constrains the efficiency of separate collection of recyclables and organics and of unit-price-based waste-reduction systems. In recent decades, hundreds of municipal-scale pneumatic collection systems have been installed in Europe and Asia. Relatively few prior studies have compared the economic or environmental impacts of these systems to those of truck collection. A critical factor to consider when making this comparison is the extent to which the findings reflect the specific geographic, demographic, and operational characteristics of the systems considered. This paper is based on three case studies that consider the specific characteristics of three locations, comparing pneumatic systems with conventional collection on the basis of actual waste tonnages, composition, sources, collection routes, truck trips, and facility locations. In one case, alternative upgrades to an existing pneumatic system are compared to a potential truck-collection operation. In the other cases, existing truck operations are compared to proposed pneumatic systems which, to reduce capital costs, would be installed without new trenching or tunneling through the use of existing linear infrastructure. For the two proposed retrofit pneumatic systems, up to 48,000 truck kilometers travelled would be avoided and energy use would be reduced by up to 60% at an incremental cost of up to $400,000 USD per year over the total operating-plus-capital cost of conventional collection. In the location where a greenfield pneumatic system is already in operation, truck collection would be both less expensive and more energy-efficient than pneumatic collection. The results demonstrate that local geographic, demographic, and operational conditions play a decisive role in determining whether pneumatic collection will reduce energy requirements, produce more or fewer greenhouse gas emissions, and cost more or less over the long-term. These findings point to the local factors that will determine the relative economic and environmental costs and benefits in specific situations.  相似文献   

9.
Air-sea exchange rates for ozone were measured by the eddy correlation technique at a site on the north Norfolk coast in the UK. The average surface resistance to ozone uptake was found to be, rs(O3) = 1,000 ± 100 s m-1. Micrometeorological measurements of trace gas fluxes to ocean surfaces are rare but a review of available measurements suggests that we can constrain sea water surface resistance for ozone to between 1,000 (Regener (1974), and this work) and 1,890 s m-1 (Lenschow et al., 1982), yielding surface deposition velocities between 0.53 and 1.0 mm s-1. These values are more than an order of magnitude greater than can be explained by laboratory determined mass accommodation coefficients for ozone to water. The importance of dry deposition with respect to process air-sea exchange models is highlighted. A trend in surface deposition velocity with wind speed was also observed supporting a surface chemical enhancement mechanism of ozone uptake which in turn is enhanced by near surface mixing processes.  相似文献   

10.
Chemical interactions between ozone and phenol are studied to obtain more information about the optimum economics of phenol oxidations using ozone gas. Both decomposition of ozone and it's reaction with phenol rate constants are evaluated to be 0.1 and 0.33 min−1, at room temperature. Chemical mass-transfer coefficient is determined from a knowledge of the physical mass-transfer coefficient and effects of the chemical reactions on mass-transfer. A methodology is given for determining the enhancement of mass transfer by the chemical reaction, assuming pseudo first-order reaction rate, in agitated vessels.  相似文献   

11.
Fallout radionuclides have increasing value as tracers of pathways for pollutant transport through catchment/lake systems, in addition to their more traditional role in dating sediment records. The objectivesof this study, carried out within the EU MOLAR project, were tomeasure atmospheric fluxes of fallout 210Pb, 137Cs and 7Be at Redó, to establish mass balances for theseradionuclides, and test and validate models of pollutant transport through the lake and its catchment. This was achieved by comparing measured fluxes and concentrations in the water column with theoretical estimates using simple compartment models. Several interesting points emerged. Differences betweensoil core and rainwater measurements suggest that Saharan dust may be an important source of fallout 210Pb. Fluxes throughthe water column had a clear seasonal trend reflecting winter icecover. Significant concentrations of 137Cs are still presentin the water column, due to continued inputs from the catchment and/or remobilisation from the bottom sediments.  相似文献   

12.
Management of waste produced during manned space exploration missions will be an important function of advanced life support systems. Waste materials can be thrown away or recovered for reuse. The first approach relies totally on external supplies to replace depleted resources while the second approach regenerates resources internally. The selection of appropriate waste management processes will be based upon criteria which include mission and hardware characteristics as well as overall system considerations. Mission characteristics discussed include destination, duration, crew size, operating environment, and transportation costs. Hardware characteristics include power, mass and volume requirements as well as suitability for a given task. Overall system considerations are essential to assure optimization for the entire mission rather than for an individual system. For example, a waste management system designed for a short trip to the Moon will probably not be the best one for an extended mission to Mars. The purpose of this paper is to develop a methodology to identify and compare viable waste management options for selection of an appropriate waste management system.  相似文献   

13.
Vacuum evaporation consists in the boiling of a liquid substrate at negative pressure, at a temperature lower than typical boiling temperature at atmospheric conditions. Condensed vapor represents the so called condensate, while the remaining substrate represents the concentrate.This technology is derived from other sectors and is mainly dedicated to the recovery of chemicals from industrial by-products, while it has not been widely implemented yet in the field of agricultural digestate treatment. The present paper relates on experimental tests performed in pilot-scale vacuum evaporation plants (0.100 and 0.025 m3), treating filtered digestate (liquid fraction of digestate filtered by a screw-press separator). Digestate was produced by a 1 MWe anaerobic digestion plant fed with swine manure, corn silage and other biomasses. Different system and process configurations were tested (single-stage and two-stage, with and without acidification) with the main objectives of assessing the technical feasibility and of optimizing process parameters for an eventual technology transfer to full scale systems.The inputs and outputs of the process were subject to characterization and mass and nutrients balances were determined.The vacuum evaporation process determined a relevant mass reduction of digestate.The single stage configuration determined the production of a concentrate, still in liquid phase, with a total solid (TS) mean concentration of 15.0%, representing, in terms of mass, 20.2% of the input; the remaining 79.8% was represented by condensate. The introduction of the second stage allowed to obtain a solid concentrate, characterized by a content of TS of 59.0% and representing 5.6% of initial mass.Nitrogen balance was influenced by digestate pH: in order to limit the stripping of ammonia and its transfer to condensate it was necessary to reduce the pH. At pH 5, 97.5% of total nitrogen remained in the concentrate. This product was characterized by very high concentrations of total Kjeldhal nitrogen (TKN), 55,000 mg/kg as average.Condensate, instead, represented 94.4% of input mass, containing 2.5% of TKN. This fraction could be discharged into surface water, after purification to meet the criteria imposed by Italian regulation. Most likely, condensate could be used as dilution water for digestion input, for cleaning floor and surfaces of animal housings or for crop irrigation.The research showed the great effectiveness of the vacuum evaporation process, especially in the two stage configuration with acidification. In fact, the concentration of nutrients in a small volume determines easier transportation and reduction of related management costs. In full scale plants energy consumption is estimated to be 5–8 kWhe/m3 of digestate and 350 kWht/m3 of evaporated water.  相似文献   

14.
Volatile substances and gases resulting e.g. from degradation processes of chemicals in soils emit into the atmosphere and no chemical mass balance is complete without considering this path. Closed soil chambers allow the evaluation of this transfer to the atmosphere. This study deals with the influence of soil chambers with a glass plate cover on physical soil conditions in the chambers and the possibility to simulate the exterior conditions within the chambers. The water content immediately at the soil surface is an important factor for the microbial activity and the transfer of gaseous compounds to the atmosphere as well. It is monitored by specially designed water content sensors in 1 cm depth in the chamber and as control outside. Funnels with a cross section equal to the soil surface area of the chamber collect the rain water and channel it into the soil chamber. This results in soil water content in the chambers very similar to that outside. For the purpose of analysing 14CO2 and volatile 14C-compounds, air is permanently pumped through the chamber. In order to simulate natural conditions, the wind speed is measured 1 cm above the soil surface outside the chambers. A control circuit adjusts the air flow through the chamber to a value corresponding to the wind speed outside. Temperature measurements in 1 cm depth verify that there is no significant difference between the soil chamber and the control outside.  相似文献   

15.
A compilation of generation rates and chemical compositions of potential waste streams in a typical crewed space habitat was made in connection with the waste-management aspect of NASA's Physical/Chemical Closed-Loop Life Support Program. Waste composition definitions are needed for the design of waste-processing technologies involved in closing major life support functions in future, long-duration, human space missions. Data for the constituents and chemical formulae of the following waste streams are presented and/or discussed: human urine, feces, hygiene (laundry and shower) water, cleansing agents, trash, humidity condensate, dried sweat, and trace contaminants. Data on dust generation are also presented and discussed.  相似文献   

16.
汪鹏  王学海  刘忠生 《化工环保》2012,40(4):425-430
以蜂窝堇青石陶瓷为载体,采用浸渍法负载氧化铝涂层和活性组分,制备了蜂窝状Ce/Cr掺杂Cu基催化剂。运用BET,XRD,XPS,H2-TPR技术对催化剂进行了表征,并对其乙烷催化燃烧活性进行了评价。表征结果显示,Ce/Cr掺杂提高了催化剂表面化学吸附氧的含量,提升了催化剂在较低温度下的氧化还原性能。实验结果表明:在入口乙烷质量浓度2 000 mg/m3、反应空速20 000 h-1的条件下,Cu-Ce催化剂较Cu催化剂的T50和T90(乙烷转化率为50%和90%时的反应温度)分别降低了46 ℃和101 ℃,降幅高于Cu-Cr催化剂的38 ℃和78 ℃;较高反应空速(30 000 h-1)对催化反应不利,乙烷浓度对催化剂活性的影响不明显;550 ℃下Cu-Ce催化剂对乙烷的转化率100 h内保持在99%以上,表现出良好的稳定性。  相似文献   

17.
Because of the tremendous task of designing, testing, building and maintaining the waste systems for Space Station Freedom, different methods of managing these systems are now being developed. This paper summarizes some of those methods. The first task for the design engineer is to develop systems and hardware to handle waste in the special conditions of the space station. Different closed and open loop systems, along with the development of new hardware in these loops, are being tested to meet this task. Some of the new hardware to be discussed are water and air monitors, hazardous material handling, and plumbing hardware such as commodes, showers and clothes washers. The second task is to develop methods to manage the process of developing these systems. Some of the areas to manage are testing information, materials, facilities, people, budgets, time, safety, legal responsibilities and testing standards. The last task is to incorporate the new technologies for other areas besides space stations. Other areas would include long-duration space missions, lunar stations and other non-space applications.  相似文献   

18.
Many modern waste treatment processes and waste management systems are able to treat many different types of waste at the same time, and deliver a number of useful outputs (secondary materials, energy) as well. These systems are thus increasingly multi-functional. As such, in life cycle assessment studies, they create problems related to multi-functionality and allocation. Especially in LCAs of waste management systems, the solution in the form of system expansion or avoided burdens approach dominates the practice, and the partitioning approach plays a minor role. In this paper, we analyse the logic and problems of these two approaches. It appears that for the avoided burdens approach, the number of 'what-if' assumptions is so large that LCAs on the same topic lead to quite diverging results. Since 'what-if' questions cannot be answered in an unambiguous way, such questions should preferably be left outside of a primarily scientific tool. The partitioning approach is not free from arbitrary choices as well, but, in contrast to the 'what-if' approaches, it does not claim to predict what happens or what would have happened.  相似文献   

19.
A combination of cosmogenic and artificial 35S was used to assess the movement of sulfur in a steep Central European catchment affected by spruce die-back. The Jeze?í catchment, Kru?né Hory Mts. (Czech Republic) is characterized by a large disproportion between atmospheric S input and S output via stream discharge, with S output currently exceeding S input three times. A relatively high natural concentration of cosmogenic 35S (42 mBq L-1) was found in atmospheric deposition into the catchment in winter and spring of 2000. In contrast, stream discharge contained only 2 mBq L-1. Consequently, more than 95% of the deposited S is cycled or retained within the catchment for more than several months, while older S is exported via surface water. In spring, when the soil temperature is above 0 °C, practically no S from instantaneous rainfall is exported, despite the steepness of the slopes and the relatively short mean residence time of water in the catchment (6.5 months). Sulfur cycling in the soil includes not just adsorption of inorganic sulfate and biological uptake, but also volatilization of S compounds back into the atmosphere. Laboratory incubations of an Orthic Podzol from Jeze?í spiked with 720 kBq of artificial 35S showed a 20% loss of the spike within 18 weeks under summer conditions. Under winter conditions, the 35S loss was insignificant (<5%). This missing S flux was interpreted as volatilized hydrogen sulfide resulting from intermittent dissimilatory bacterial sulfate reduction. The missing S flux is comparable to the estimated uncertainty in many catchment S mass balances (±10%), or even larger, and should be considered in constructing these mass balances. In severely polluted forest catchments, such as Jeze?í, sulfur loss to volatilization may exceed 13 kg ha-1 a-1, which is more than the current total atmospheric S input in large parts of North America and Europe.  相似文献   

20.
A recently designed two-chamber-lysimeter-test-system allows the detailed investigation of degradation, transport and transfer processes of 14C-labeled substances in soil–plant–atmosphere-systems under outdoor conditions. With this test system it is feasible to distinguish between 14C-emissions from soil surfaces and 14C-emissions from plant surfaces in soil monoliths under real environmental conditions. Special soil humidity sensors allow the measurement of soil water content near to the soil surface, in 1 and 5 cm depth. The behavior of organic chemicals can be followed for a whole vegetation period and a mass balance for the applied chemical can be established. Some selected results of the herbicides isoproturon and glyphosate – using the two-chamber-lysimeter-test-system – are presented to demonstrate its applicability for the identification and quantification of the processes that govern pesticide behavior in soil–plant-systems. Mineralization of 14C-isoproturon was very different in four different soils; the mineralization capacity of the soils ranged from 2 to 60%. Leaching of isoproturon in general was very low, but depending on the soil type and environmental conditions isoproturon and its metabolites could be leached via preferential flow, especially shortly after application. For the herbicide 14C-glyphosate no accumulation of residues in the soil and no leaching of the residues to deeper soil layers could be observed after three applications. Glyphosate was rapidly degraded to AMPA in the soil. Glyphosate and AMPA were accumulated in soy bean nodules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号