首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Active biomonitoring with wet and dry moss bags was used to examine trace element atmospheric deposition in the urban area of Belgrade. The element accumulation capability of Sphagnum girgensohnii Russow was tested in relation to atmospheric bulk deposition. Moss bags were mounted for five 3-month periods (July 2005-October 2006) at three representative urban sites. For the same period monthly bulk atmospheric deposition samples were collected. The concentrations of Al, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, and Pb were determined by instrumental neutron activation analyses and atomic absorption spectrometry. Significant accumulation of most elements occurred in the exposed moss bags compared with the initial moss content. High correlations between the elements in moss and bulk deposits were found for V, Cu, As, and Ni. The enrichment factors of the elements for both types of monitor followed the same pattern at the corresponding sites.  相似文献   

2.
A biomonitoring of airborne trace elements was performed in 2006 in Naples urban area through the exposure of devitalised Hypnum cupressiforme for 10 weeks at 4 m height. In one street, the moss was exposed at different heights to assess vertical gradients of element concentrations. Results were compared with those of a 1999 biosurvey. Correlations among Al, Fe and Ti suggested a soil particles contribution to element uptake. Cu, Mo and Fe were related with traffic flows. Long-range transport contributed to Cd, Cu and Mo accumulation in moss at higher heights. As in 1999, the airborne element load was higher in coastal sites, more affected by marine aerosols and traffic. In all sites, contents of Cd, Fe, Pb, Ni and V in moss were remarkably lower than in 1999, indicating a positive effect of actions set up in recent years to reduce the traffic and to improve the city air quality.  相似文献   

3.
Data from a Norwegian survey on atmospheric deposition, including 33 elements in 495 moss samples collected in 1990, are presented. The biomonitor moss used was Hylocomium splendens, and the analyses were carried out by ICP-MS. Principal component analysis is used to identify possible sources of the elements determined in the mosses. Dominant factors represent long-range atmospheric transported elements (Bi, Pb, Sb, Mo, Cd, V, As, Zn, Tl, Hg, Ga), windblown mineral particles (Y, La, Al, Li, U, Th, Ga, Fe, V, Cr), local emission sources (Ni, Cu, Co, and As; Zn, Cd, and Hg; Fe, Cr, and Al), transport from the marine environment (Mg, B, Na, Sr, Ca), and contribution from higher plants (Cs, Rb, Ba, Mn). Comparison of the results with similar surveys from 1977 and 1985 show a decreasing contribution of most long-range transported elements to southern Norway.  相似文献   

4.
In order to better understand the spatial and temporal distribution pattern of metals and sulfur present in Shanghai, moss bags with Haplocladium microphyllum (Hedw.) Broth. were suspended at 14 local monitoring stations from April through June 2006 in Shanghai, the largest city in China. The results showed that the concentrations of S, Cu, Pb, and Zn in the moss bags after exposure were higher at the sites in the industrial district and most urban districts and lower at the sites in suburban areas, and well correlated with SO2 API and PM10 API in the air both in terms of space and time. The present study provided evidence that the moss H. microphyllum is suitable for bio-monitoring air pollution with moss bags and further confirmed that the moss-bag method is a simple, inexpensive and useful technique.  相似文献   

5.
This study compared the heavy metal bioaccumulation capacity in the epiphytic moss Scorpiurum circinatum and the epiphytic lichen Pseudevernia furfuracea, exposed in bags for 3 months in the urban area of Acerra (S Italy). The content of Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Ti, V, and Zn was measured by ICP-MS. The results showed that both species accumulated all the heavy metals assayed. The moss had the highest bioaccumulation capacity for all metals and showed a more constant and linear accumulation trend than the lichen. Intra-tissue heavy metal bioaccumulation was assessed by X-ray microanalysis applied to ESEM operated in high and low vacuum and ESEM modes.  相似文献   

6.
Environmental Science and Pollution Research - Concentrations of 22 essential and non-essential trace elements (Be, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Sb, Ba, Tl, Pb, Th, U, and...  相似文献   

7.
One monitoring station is insufficient to characterize the high spatial variation of traffic-related heavy metals within cities. We tested moss bags (Hylocomium splendens), deployed in a dense network, for the monitoring of metals in outdoor air and characterized metals’ long-term spatial distribution and its determinants in Girona, Spain. Mosses were exposed outside 23 homes for two months; NO2 was monitored for comparison. Metals were not highly correlated with NO2 and showed higher spatial variation than NO2. Regression models explained 61-85% of Cu, Cr, Mo, Pb, Sb, Sn, and Zn and 72% of NO2 variability. Metals were strongly associated with the number of bus lines in the nearest street. Heavy metals are an alternative traffic-marker to NO2 given their toxicological relevance, stronger association with local traffic and higher spatial variability. Monitoring heavy metals with mosses is appealing, particularly for long-term exposure assessment, as mosses can remain on site many months without maintenance.  相似文献   

8.
This study investigated the influence of angular exposure and distance from vehicular traffic on the diversity of epiphytic lichens and the bioaccumulation of traffic-related elements in a town of central Italy. An Index of Lichen Diversity (ILD) was calculated on the street-facing and the opposite side of road-lining trees and in a urban park 250 m away, and the content of selected trace elements (Al, Ba, Ce, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sb, V, and Zn) was determined in samples of the lichen Punctelia borreri (Sm.) Krog growing on tree bark, both on the exposed and opposite sides. ILD increases with distance from traffic emissions. However, at the site with vehicle traffic, non-nitrophilous lichens decreased while nitrophilous ones increased. The concentration of the traffic-related elements Ba, Cr, Cu, Mn, Sb, and Zn accumulated in thalli of P. borreri was higher on roadside trees than in trees from the urban park. ILD was not affected by the angular exposure to the road and the bioaccumulation of traffic-related elements was similar in lichens from the side of the bole exposed to traffic emissions and particulate resuspension and from the opposite side. The angular exposure in respect to the traffic source does not influence trace element accumulation. These results are important when using lichens for biomonitoring purposes, both for planning future studies and for the reliability of the interpretation of past surveys that do not report information about the angular exposure of the collected lichen material.  相似文献   

9.
Native and transplanted mosses of the species Scleropodium purum were used to study the possible adaptation of the former to atmospheric contamination. A total of seven assays were carried out with transplanted moss exposed at sites around a thermal power station for 28 and 56 days, and native moss collected from the sites at the same time. Irrigated moss bags were used in order to maintain stable conditions throughout the exposure periods. Determinations were made of levels of Co, Cr, Cu, K, Ni, Pb, Se and Zn in the mosses. No significant differences were found, throughout the exposure time studied, in metal bioconcentration in the native mosses, whereas in the transplanted mosses the differences were significant for all metals except Ni. The degree of bioconcentration was higher at the start of the exposure period and later became more stable. The high levels of Se found in the native mosses compared to the transplanted mosses indicates a possible mechanism of adaptation by detoxification.  相似文献   

10.
A systematic study was carried out to investigate air deposition and to explore the natural distribution and enrichment (contamination) with trace elements in the small area (cca. 13 km2) of an antimony-arsenic-thallium mineralization outcrop at an abandoned mine “Allchar.” The mine is located on the northwestern part of Ko?uf Mount, Republic of Macedonia. The locality of Allchar is unique in its mineral composition; besides a very intriguing mineral, lorandite, there are 45 other minerals, some of which are rare. The distribution of 53 elements (with special attention to As, Sb, and Tl) were detected in 69 moss samples from eight various species collected from this area. Moss samples were analyzed following microwave digestion by inductively coupled plasma–mass spectrometry and inductively coupled plasma–atomic emission spectrometry. It was found that the atmospheric deposition for As in the moss samples on or around the Allchar mine is >6.5 times higher and for Tl is 19 times higher compared to values for the samples from the rest of the Allchar area. By the application of multivariate cluster and R-mode factor analyses (FA), five geochemical associations were determined. Cluster and R-mode FA were used to identify and characterize element associations, and five associations of elements were determined by the method of multivariate statistics. F1 (Co, Cr, Fe, Sc, Li, V, Ga, Y, Ni, Mn, Al, La-Lu, Cu, Ge, Be, Bi, and Hf); F2 (As, Tl, Sb, and Mg); F3 (Rb, Cs, and Mo); F4 (Sr, Ba, Hf, Zr, La-Lu, and Bi), and F5 (Cd, Zn, Ag, and Cu).  相似文献   

11.
This paper presents the results of a bioaccumulation study of trace elements in the Naples urban area based on the use of the moss Sphagnum capillifolium (Ehrh.) Hedw. and the lichen Pseudevernia furfuracea (L.) Zopf exposed in bags in 23 sites. Moss and lichen bags were exposed for 4 months starting from the beginning of July 1999. Bags gathering was carried out after 10 weeks of exposure, at the end of the dry season, and after 17 weeks, during the wet season. The elements Al, As, Ca, Cd, Cr, Co, Cu, Fe, K, Mg, Mn, Mo, Ni, Pb, Ti, V and Zn were analysed by inductively coupled plasma-mass spectrometry ICP-MS in both biomonitors. For the majority of the elements the total amounts found in S. capillifolium were higher than in P. furfuracea whether considering the whole period of exposure or the weekly uptake. It was observed that there was a much greater difference in metal accumulation by P. furfuracea between the dry and wet seasons compared with S. capillifolium. In the wet period, the lichen seems to accumulate a larger quantity of metals. With the exception of Mn, trace element concentrations did not appear to be significantly affected by the washing away of rainfall. K loss during exposure suggested cell membrane damage in both organisms. For P. furfuracea the K leakage was limited to the dry period of exposure. A clear distinction between "lithophilic" and "anthropogenic" elements was achieved by cluster analysis. Significant correlations were found among Fe-Cu-Cr-Ni, Pb-Cd-Co, V-Cr-Ni, Zn-Ni-Pb, suggesting a common source for each group of elements.  相似文献   

12.
Mature specimens of Parasol Mushroom were collected annually in the outskirts of the Siemiany (2000-2003) and Rafa (2001-2003) sites in the northern part of Poland to examine temporal variations and similarities in the composition of 20 chemical elements. Analysis was done under the same condition and using well-validated analytical methods. Elements were determined by inductively coupled plasma-atomic emission spectroscopy and cold vapour-atomic absorption spectroscopy (Hg). The ranges of Ag, Al, Ba, Ca, Cd, Co, Cu, Cr, Fe, Hg, K, Mg, Mn, Na, Ni, P, Pb, Rb, Sr and Zn concentrations in the caps of fruiting bodies were similar (p > 0.05; Mann-Whitney U test) for both geographically distant sites, and these specimens from Rafa were more contaminated with Pb (p < 0.05; Mann-Whitney U test). The annual collections of caps in the Siemiany site varied in Ag, Al, Ba, Ca, Cd, Co, Cu, Fe, Hg, Na, Rb and Sr and contents (0.05 < p < 0.001), while they were similar in Cr, K, Mg, Mn, Ni, P, Pb and Zn (p > 0.05; Mann-Whitney U test). The annual collections of specimens from the Rafa site varied in contents of Ag, Al, Ba, Ca, Fe, Hg, K, Mg, Mn, P, Rb and Zn (p > 0.05), while they were similar in Cd, Co, Cr, Cu, Na, Ni, Pb and Sr (p < 0.05). The results of this study imply that metallic elements content of Parasol Mushroom collected at the same undisrupted sites, and hence keeping the same geochemical condition for mushroom development and fructification (the same stands and probably the same mycelia), can fluctuate over the years or the life-span of mycelium. Hence, when assessing the nutritional value of essential metallic elements and status of non-essential or toxic metallic elements in Parasol's Mushroom caps (and probably also of other mushrooms species) to man, the possible fluctuation in contents over time have to be taken into account.  相似文献   

13.
Net primary production (NPP) of the forest moss Hylocomium splendens increased significantly along an elevational gradient in the southern Alps of Italy. Extracellularly bound metals (Al, Ca, Co, Cr, Fe, Ni, Mo, Ni, Pb) showed declining concentrations in moss tissue with increasing altitude, presumably because the amount of exchange sites on the cell wall increases less than total biomass. Concentrations of intracellular elements did not vary (Cd, Cu, Mg, Na, Zn), or even increased (K) with altitude. The observed patterns were always independent of precipitation amount and soil concentrations of exchangeable elements. A higher soil nutrient status only enhanced K uptake by the moss. We concluded that variations in moss NPP, associated with elevational gradients, may significantly affect estimates of atmospheric deposition based on moss analysis in mountainous regions.  相似文献   

14.
Results concerning the levels and elemental compositions of daily PM10 samples collected at four air quality monitoring sites in Palermo (Italy) are presented. The highest mean value of PM10 concentrations (46 μg m−3, with a peak value of 158 μg m−3) was recorded at the Di Blasi urban station, and the lowest at Boccadifalco station (25 μg m−3), considered as a sub-urban background station. Seventeen elements (Al, As, Ba, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Sb, Sr, U, V, Zn) were measured by ICP-MS. Al and Fe showed the highest concentrations, indicating the significant contribution of soil and resuspended mineral particles to atmospheric PM10. Ba, Cr, Cu, Mn, Mo, Ni, Pb, Sb, V and Zn had higher concentrations at the three urban sampling sites than at the sub-urban background station. Besides soil-derived particles, an R-mode cluster analysis revealed a group of elements, Mo, Cu, Cr, Sb and Zn, probably related to non-exhaust vehicle emission, and another group, consisting of Ba, As and Ni, which seemed to be associated both with exhaust emissions from road traffic, and other combustion processes such as incinerators or domestic heating plants. The results also suggest that Sb, or the association Sb–Cu–Mo, offers a way of tracing road traffic emissions.  相似文献   

15.
For the first time until now, the results from a prediction model (Atmospheric Dispersion Modelling System (ADMS)-Road) of pollutant dispersion in a street canyon were compared to the results obtained from biomonitors. In particular, the instrumental monitoring of particulate matter (PM10) and the biomonitoring of 14 polycyclic aromatic hydrocarbons (PAHs) and 11 metals by Quercus ilex leaves and Hypnum cupressiforme moss bags, acting as long- and short-term accumulators, respectively, were carried out. For both PAHs and metals, similar bioaccumulation trends were observed, with higher concentrations in biomonitors exposed at the leeward canyon side, affected by primary air vortex. The major pollutant accumulation at the leeward side was also predicted by the ADMS-Road model, on the basis of the prevailing wind direction that determines different exposure of the street canyon sides to pollutants emitted by vehicular traffic. A clear vertical (3, 6 and 9 m) distribution gradient of pollutants was not observed, so that both the model and biomonitoring results suggested that local air turbulences in the street canyon could contribute to uniform pollutant distribution at different heights.  相似文献   

16.
The main sources contributing to heavy metal content in mosses in Lithuania were examined by a comparison of heavy metal concentrations in moss and corresponding deposition levels calculated from bulk deposition analysis. Bulk deposition was collected in open areas as well as under the canopy of trees. Uptake efficiencies in moss were calculated for Cd, Cr, Cu, Fe, Mn, Ni, V and Zn. All elements in moss except Pb and Cd appeared to be more or less influenced by sources other than air pollution. The general order of this influence on the heavy metal content in moss was observed as follows: Ni < V < Cr < Zn < Fe < Mn. The contents of Mn and Zn in moss were greatly influenced by leaching from the canopy while Pb was the only element which showed a net metal retention by the canopy. Concentrations of Fe and Cr in moss were dominating due to contribution from soil dust.  相似文献   

17.
Road dust contributes a large percentage of the atmosphere's suspended particles in Taiwan. Three road dust samples were collected from downtown, electrical park, and freeway tunnel areas. A mechanical sieve separated the road dust in the initial stage. Particles > 100 microm were 75%, 70%, and 60% (wt/wt), respectively, of the samples. Those particles < 37 microm were resuspended in another mixing chamber and then collected by a Moudi particle sampler. The largest mass fraction of resuspended road dust was in the range of 1-10 microm. Ultrafine particles (< 1 microm) composed 33.7, 17, and 7.4% of the particle samples (downtown, electrical park, and freeway tunnel, respectively). The road dust compositions were analyzed by inductively coupled plasma (ICP)-atomic emissions spectroscopy and ICP-mass spectrometry. The highest concentration fraction contained more aluminum (Al), iron (Fe), calcium (Ca), and potassium than other elements in the road dust particle samples. Additionally, the sulfur (S) content in the road dust from the electrical park and freeway tunnel areas was 2.1 and 3.4 times the downtown area sample, respectively. The sulfur originated from the vehicle and boiler oil combustion and industrial manufacturing processes. Furthermore, zinc (Zn) concentration in the tunnel dust was 2.6 times that of the downtown and electrical park samples, which can be attributed to vehicle tire wear and tear. Resuspended road dusts (< 10 microm) from the downtown and freeway tunnel areas were principally 2.5-10 microm Al, barium (Ba), Ca, copper (Cu), Fe, magnesium (Mg), sodium (Na), antimony (Sb), and Zn, whereas arsenic (As), chromium (Cr), and nickel (Ni) were predominant in the ultrafine particle samples (< 1 microm). Al, Ba, and Ca are the typical soil elements in coarse particles; and As, and Cr and Ni are the typical fingerprint of oil combustion and vehicle engine abrasion in ultrafine particles. There was a special characteristic of resuspension road dust at electrical park, that is, many elements, including As, Ba, Ca, cadmium, Cr, Cu, Fe, manganese (Mn), Ni, lead (Pb), S, vanadium (V), and Zn, were major in ultrafine particles. These elements should be attributed to the special manufacturing processes of electric products.  相似文献   

18.
Abstract

Road dust contributes a large percentage of the atmosphere’s suspended particles in Taiwan. Three road dust samples were collected from downtown, electrical park, and freeway tunnel areas. A mechanical sieve separated the road dust in the initial stage. Particles >100 μm were 75%, 70%, and 60% (wt/wt), respectively, of the samples. Those particles <37 μm were resuspended in another mixing chamber and then collected by a Moudi particle sampler. The largest mass fraction of resuspended road dust was in the range of 1–10 μm. Ultrafine particles (<1 μm) composed 33.7, 17, and 7.4% of the particle samples (downtown, electrical park, and freeway tunnel, respectively). The road dust compositions were analyzed by inductively coupled plasma (ICP)-atomic emissions spectroscopy and ICP-mass spectrometry. The highest concentration fraction contained more aluminum (Al), iron (Fe), calcium (Ca), and potassium than other elements in the road dust particle samples. Additionally, the sulfur (S) content in the road dust from the electrical park and freeway tunnel areas was 2.1 and 3.4 times the downtown area sample, respectively. The sulfur originated from the vehicle and boiler oil combustion and industrial manufacturing processes. Furthermore, zinc (Zn) concentration in the tunnel dust was 2.6 times that of the downtown and electrical park samples, which can be attributed to vehicle tire wear and tear. Resuspended road dusts (<10 μm) from the downtown and freeway tunnel areas were principally 2.5–10 μm Al, barium (Ba), Ca, copper (Cu), Fe, magnesium (Mg), sodium (Na), antimony (Sb), and Zn, whereas arsenic (As), chromium (Cr), and nickel (Ni) were predominant in the ultrafine particle samples (<1 μm). Al, Ba, and Ca are the typical soil elements in coarse particles; and As, and Cr and Ni are the typical fingerprint of oil combustion and vehicle engine abrasion in ultrafine particles. There was a special characteristic of resuspension road dust at electrical park, that is, many elements, including As, Ba, Ca, cadmium, Cr, Cu, Fe, manganese (Mn), Ni, lead (Pb), S, vanadium (V), and Zn, were major in ultrafine particles. These elements should be attributed to the special manufacturing processes of electric products.  相似文献   

19.
The use of mosses as environmental metal pollution indicators   总被引:13,自引:0,他引:13  
The possibility of using mosses as environmental indicators of metal pollution has been investigated. Mosses of the species Bryum argenteum were collected from different parts of Piedmont (Italy), ranging from highly polluted areas to nearly uncontaminated mountain areas. Periodical samplings were planned in every site on a monthly base, in order to check variations of metal uptake throughout one year; correlations with pluviometric and thermal patterns were investigated for all sampling stations. On every moss sample 20 elements, ranging from major (K, P, Al, Ca, Fe and Mg) to minor (Mn, Na, Ti and Zn) and trace (As, Ba, Cd, Co, Cr, Cu, Li, Ni, Pb and Sr), were quantitatively determined by inductively coupled plasma-atomic emission spectrometry or graphite furnace-atomic absorption spectrometry, depending on the needed sensitivity. Statistical analyses, carried out with principal component analysis and cluster analysis methods, revealed that a good correlation exists between metal content in mosses and pollution degree in the areas sampled.  相似文献   

20.
Trace metal composition of winter snowpack, snow-melt filter residues and top-soil samples were determined along three transects through industrial towns in the Usa basin, North-East Russia: Inta, Usinsk and Vorkuta. Snow was analysed for Ag, Al, As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr and Zn using ICP-MS (Ca and K by F-AAS for Vorkuta only), pH and acidity/alkalinity. Filter residues were analysed for: Al, Ba, Ca, Cd, Cu, K, Mg, Mn, Ni, Pb, Sr and Zn using F-AAS and GF-AAS; top-soil samples were analysed for Ba, Cu, Mg, Mn, Na, Ni, Pb, Sr, Zn using F-AAS. Results indicate elevated concentrations of elements associated with alkaline combustion ash around the coal mining towns of Vorkuta and Inta. There is little evidence of deposition around the gas and oil town of Usinsk. Atmospheric deposition in the vicinity of Vorkuta, and to a lesser extent Inta, added significantly to the soil contaminant loading as a result of ash fallout. Acid deposition was associated with pristine areas whereas alkaline combustion ash near to emission sources more than compensated for the acidity caused by SO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号