首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
采用溴化十六烷基吡啶(CPB)对天然沸石进行改性制备得到了CPB改性沸石,通过批量吸附实验考察了CPB改性沸石对水中阴离子染料甲基橙的去除作用。结果表明,天然沸石对水中甲基橙的吸附能力很差,而CPB改性沸石则可以有效吸附去除水中的甲基橙。CPB改性沸石对水中甲基橙的吸附能力随CPB负载量的增加而增加,CPB负载量最大的改性沸石对水中甲基橙的吸附能力最强。双分子层CPB改性沸石对水中甲基橙的去除率随吸附剂投加量的增加而增加,而CPB改性沸石对水中甲基橙的单位吸附量则随吸附剂投加量的增加而降低。双分子层CPB改性沸石对水中甲基橙的吸附平衡数据可以采用Langmuir等温吸附模型加以描述。根据Langmuir模型计算得到的CPB负载量为341 mmol/(kg沸石)的双分子层CPB改性沸石对水中甲基橙的最大吸附容量为63.7 mg/g(303 K和pH 7)。准二级动力学模型适合用于描述双分子层CPB改性沸石对水中甲基橙的吸附动力学过程。pH和反应温度对双分子层CPB改性沸石吸附水中甲基橙的影响较小。以上结果说明,双分子层CPB改性沸石适合作为一种吸附剂用于去除废水中的甲基橙。  相似文献   

2.
This paper investigates the adsorption characteristics of palm oil boiler mill fly ash (POFA) derived from an agricultural waste material in removing Cd(II) and Cu(II) from aqueous solution via column studies. The performance of the study is described through the breakthrough curves concept under relevant operating conditions such as column bed depths (1, 1.5, and 2 cm) and influent metal concentrations (5, 10, and 20 mg/L). The Cd(II) and Cu(II) uptake mechanism is particularly bed depth- and concentration-dependant, favoring higher bed depth and lower influent metal concentration. The highest bed capacity of 34.91 mg Cd(II)/g and 21.93 mg Cu(II)/g of POFA was achieved at 20 mg/L of influent metal concentrations, column bed depth of 2 cm, and flow rate of 5 mL/min. The whole breakthrough curve simulation for both metal ions were best described using the Thomas and Yoon–Nelson models, but it is apparent that the initial region of the breakthrough for Cd(II) was better described using the BDST model. The results illustrate that POFA could be utilized effectively for the removal of Cd(II) and Cu(II) ions from aqueous solution in a fixed-bed column system.  相似文献   

3.
The adsorption of crystal violet from aqueous solution by NaOH-modified rice husk was investigated in a laboratory-scale fixed-bed column. A two-level three factor (23) full factorial central composite design with the help of Design Expert Version 7.1.6 (Stat Ease, USA) was used for optimisation of the dynamic dye adsorption process and evaluation of interaction effects of different operating parameters: initial dye concentration (100–200 mg L?1), flow rate (10–30 mL min?1) and bed height (5–25 cm). A correlation coefficient (R 2) value of 0.999, model F value of 1,936.59 and its low p value (<0.0001) along with lower value of coefficient of variation (1.38 %) indicated the fitness of the response surface quadratic model developed during the present study. Numerical optimisation applying desirability function was used to identify the optimum conditions for a targeted breakthrough time of 12 h. The optimum conditions were found to be initial solution pH?=?8.00, initial dye concentration?=?100 mg L?1, flow rate?=?22.88 mL min?1 and bed height?=?18.75 cm. A confirmatory experiment was performed to evaluate the accuracy of the optimised procedure. Under the optimised conditions, breakthrough appeared after 12.2 h and the column efficiency was determined as 99 %. The Thomas model showed excellent fit to the dynamic dye adsorption data obtained from the confirmatory experiment. Thereby, it was concluded that the current investigation gives valuable insights for designing and establishing a continuous wastewater treatment plant.  相似文献   

4.
Activated carbons (ACs) were developed from bio-waste materials like rice husk and peanut shell (PS) by various physicochemical activation methods. PS char digested in nitric acid followed by treatment at 673 K resulted in high surface area up to ~585 m2/g. The novelty of the present study is the identification of oxygen functional groups formed on the surface of activated carbons by infrared and X-ray photoelectron spectroscopy and quantification by using temperature programmed decomposition (TPD). Typical TPD data indicated that each activation method may lead to varying amounts of acidic and basic functional groups on the surface of the adsorbent, which may be a crucial factor in determining the adsorption capacity. It was shown that ACs developed during the present study are good adsorbents, especially for the removal of a model textile dye methylene blue (MB) from aqueous solution. As MB is a basic dye, H2O2-treated rice husk showed the best adsorption capacity, which is in agreement with the acidic groups present on the surface. Removal of the dye followed Langmuir isotherm model, whereas MB adsorption on ACs followed pseudo-second-order kinetics.  相似文献   

5.
Arsenic contamination of groundwater is a major threat to human beings globally. Among various methods available for arsenic removal, adsorption is fast, inexpensive, selective, accurate, reproducible and eco-friendly in nature. The present paper describes removal of arsenate from water on zirconium oxide-coated sand (novel adsorbent). In the present work, zirconium oxide-coated sand was prepared and characterised by infrared and X-ray diffraction techniques. Batch experiments were performed to optimise different adsorption parameters such as initial arsenate concentration (100–1,000 μg/L), dose (1–8 g/L), pH of the solution (2–14), contact time (15–150 min.), and temperature (20, 30, 35 and 40 °C). The experimental data were analysed by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. Furthermore, thermodynamic and kinetic parameters were evaluated to know the mode of adsorption between ZrOCMS and As(V). The maximum removal of arsenic, 97 %, was achieved at initial arsenic concentration of 200 μg/L, after 75 min at dosage of 5.0 g/L, pH?7.0 and 27?±?2 °C. For 600 μg/L concentration, the maximum Langmuir monolayer adsorption capacity was found to be 270 μg/g at 35 °C. Kinetic modelling data indicated that adsorption process followed pseudo-second-order kinetics. The mechanism is controlled by liquid film diffusion model. Thermodynamic parameter, ΔH°, was ?57.782, while the values of ΔG° were ?9.460, ?12.183, ?13.343 and ?13.905 kJ/mol at 20, 30, 35 and 40 °C, respectively, suggesting exothermic and spontaneous nature of the process. The change in entropy, ΔS°?=??0.23 kJ/mol indicated that the entropy decreased due to adsorption of arsenate ion onto the solid adsorbent. The results indicated that the reported zirconium oxide-coated marine sand (ZrOCMS) was good adsorbent with 97 % removal capacity at 200 μg/L concentration. It is interesting to note that the permissible limit of arsenic as per World Health Organization is 10 μg/L, and in real situation, this low concentration can be achieved through this adsorbent. Besides, the adsorption capacity showed that this adsorbent may be used for the removal of arsenic from any natural water resource.  相似文献   

6.
It is well known that adsorption is an efficient method of removal of various pollutants from wastewater. The present study examines the phenol removal from water by adsorption on a new material, based on zeolitic volcanic tuff. This compound contains zeolitic tuff and cellulose, another known adsorbent, in a mass ratio of 4 to 1. The performances of the new adsorbent composite were compared with those of a widely used adsorbent material, zeolitic volcanic tuff. The adsorbent properties were tested on batch synthetic solutions containing 1–10 mg L?1 (1–10 ppm) phenol, at room temperature without pH adjustment. The influence of the adsorbent dose, pH and contact time on the removal degree of phenol from water was investigated. The experimental data were modeled using the Langmuir, Freundlich, and Temkin adsorption isotherms. The Langmuir model was found to best represent our data revealing a monolayer adsorption with a maximum adsorption capacity between 0.12 and 0.53 mg g?1 at 25 °C, for 2.00 g of adsorbent, depending on the initial phenol concentration. The adsorption kinetic study was performed using a pseudo-first- and pseudo-second-order kinetic models illustrating that phenol adsorption on zeolite composite is well described by pseudo-first kinetic equations. Our results indicated that phenol adsorption on the new adsorbent composite is superior to that on the classic zeolite.  相似文献   

7.
探讨了改性松针(GXLsp)作为吸附剂对水体中铅离子的吸附性能,考察了吸附时间、溶液pH值、吸附剂用量、盐离子浓度、Pb(II)初始浓度及温度对改性松针吸附Pb(II)的影响。利用Langmuir和Freundlich等温线模型对实验数据进行非线性拟合分析,结果表明,Freundlich等温线模型能很好地描述松针对Pb(II)的吸附过程。热力学参数表明吸附是一个自发的吸热过程。改性松针对铅的吸附行为符合拟二级动力学方程,表明吸附过程是以化学吸附为主。在293K时松针对Pb(II)的饱和吸附量为318.3 mg/g,因此,GXLsp可作为一种高效低值生物质吸附剂以去除水体中重金属Pb(II)的污染。  相似文献   

8.
Natural adsorbent (Cinnamomum camphora sawdust) modified by organic acid (oxalic acid, citric acid, and tartaric acid) was investigated as a potential adsorbent for the removal of hazardous malachite green (MG) dye in aqueous media in a batch process. The extent of MG adsorption onto modified sawdust increased with increasing organic acid concentrations, pH, contact time, and temperature but decreased with increasing adsorbent dosage and ionic strength. Kinetic study indicated that the pseudo-second-order kinetic model could best describe the adsorption kinetics of MG. Equilibrium data were found to fit well with the Langmuir model, and the maximum adsorption capacity of the three kinds of organic acid-modified sawdust was 280.3, 222.8, and 157.5 mg/g, respectively. Thermodynamic parameters suggested that the sorption of MG was an endothermic process. The adsorption mechanism, the application of adsorbents in practical wastewater, the prediction of single-stage batch adsorption system, and the disposal of depleted adsorbents were also discussed.  相似文献   

9.
This study explores the possibility of using iron-loaded sepiolite, obtained by recovering iron from polluted water, as a catalyst in the electro-Fenton oxidation of organic pollutants in textile effluents. The removal of iron ions from aqueous solution by adsorption on sepiolite was studied in batch tests at iron concentrations between 100 and 1,000 ppm. Electro-Fenton experiments were carried out in an electrochemical cell with a working volume of 0.15 L, an air flow of 1 L/min, and 3 g of iron-loaded sepiolite. An electric field was applied using a boron-doped diamond anode and a graphite sheet cathode connected to a direct current power supply with a constant potential drop. Reactive Black 5 (100 mg/L) was selected as the model dye. The adsorption isotherms proved the ability of the used adsorbent. The removal of the iron ion by adsorption on sepiolite was in the range of 80–100 % for the studied concentration range. The Langmuir and Freundlich isotherms were found to be applicable in terms of the relatively high regression values. Iron-loaded sepiolite could be used as an effective heterogeneous catalyst for the degradation of organic dyes in the electro-Fenton process. Successive batch processes were performed at optimal working conditions (5 V and pH 2). The results indicate the suitability of the proposed combined process, adsorption to iron remediation followed by the application of the obtained iron-loaded sepiolite to the electro-Fenton technique, to oxidize polluted effluents.  相似文献   

10.
The objective of this study was to examine the effects of adsorbability and number of sulfonate group on solar photocatalytic degradation of mono azo methyl orange (MO) and diazo Reactive Green 19 (RG19) in single and binary dye solutions. The adsorption capacity of MO and RG19 onto the TiO2 was 16.9 and 26.8 mg/g, respectively, in single dye solution, and reduced to 5.0 and 23.1 mg/g, respectively, in the binary dye solution. The data obtained for photocatalytic degradation of MO and RG19 in single and binary dye solution were well fitted with the Langmuir–Hinshelwood kinetic model. The pseudo-first-order rate constants of diazo RG19 were significant higher than the mono azo MO either in single or binary dye solutions. The higher number of sulfonate group in RG19 contributed to better adsorption capacity onto the surface of TiO2 than MO indicating greater photocatalytic degradation rate.  相似文献   

11.
Carbonised beet pulp (BPC) produced from agricultural solid waste by-product in sugar industry was used as adsorbent for the removal of Remazol Turquoise Blue-G 133 (RTB-G 133) dye in this study. The kinetics and equilibrium of sorption process were investigated with respect to pH, temperature and initial dye concentration. Adsorption studies with real textile wastewater were also performed. The results showed that adsorption was a strongly pH-dependent process, and optimum pH was determined as 1.0. The maximum dye adsorption capacity was obtained as 47.0 mg g?1at the temperature of 25 °C at this pH value. The Freundlich and Langmuir adsorption models were used for describing the adsorption equilibrium data of the dye, and isotherm constants were evaluated depending on sorption temperature. Equilibrium data of RTB-G 133 sorption fitted very well to the Freundlich isotherm. Mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of adsorption and potential rate-controlling steps. It was found that both external mass transfer and intra-particle diffusion played an important role in the adsorption mechanisms of dye and adsorption kinetics followed the pseudo second-order type kinetic model. The thermodynamic analysis indicated that the sorption process was exothermic and spontaneous in nature.  相似文献   

12.
用焦磷酸钠和盐酸纯化了地产凹凸棒粘土,SEM、XRD和FT-IR表征其结构。研究了凹凸棒粘土对亚甲蓝的吸附性能及热力学和动力学特征,考察了吸附时间、温度、初始浓度、pH和离子强度下对亚甲蓝吸附的影响。结果表明,不同实验条件下,吸附过程均符合准二级动力学特征。凹凸棒粘土对亚甲蓝是放热的物理吸附过程,吸附符合Langmuir模式,在303 K时最大吸附量为114.02 mg/g。与其他吸附材料相比,凹凸棒粘土对亚甲蓝有较快的吸附速率和较大的吸附量,可以作为价廉的吸附剂用于亚甲蓝的消除。  相似文献   

13.
This work presents the structural and adsorption properties of the CaCO3 ?-rich Corbicula fluminea shell as a natural and economic adsorbent to remove Cd ions from aqueous solutions under batch studies. Experiments were conducted with different contact times, various initial concentrations, initial solution pH and serial biosorbent dosage to examine the dynamic characterization of the adsorption and its influence on Cd uptake capacity. The characterization of the C. fluminea shell using SEM/EDX revealed that the adsorbent surface is mostly impregnated by small particles of potentially calcium salts. The dominant Cd adsorption mechanism is strongly pH and concentration dependent. A maximum Cd removal efficiency of 96.20 % was obtained at pH 7 while the optimum adsorbent dosage was observed as 5 g/L. The Langmuir isotherm was discovered to be more suitable to represent the experimental equilibrium isotherm results with higher correlation coefficients (R 2?>?0.98) than Freundlich (R 2?<?0.97).The correlation coefficient values (p?<?0.01) indicated the superiority of the Langmuir isotherm over the Freundlich isotherm.  相似文献   

14.

Purpose and aim

Amido Black 10B is an azo dye with very high toxicity. It is now established that the dye damages the reparatory system of humans and also causes skin and eye irritations. It is therefore considered worthwhile to develop a systematic procedure to eradicate Amido Black 10B from its aqueous solution using a waste material as adsorbent. Therefore, adsorption of the dye is achieved using hen feathers as adsorbent.

Materials and methods

Before using hen feather as adsorbent material, it is washed, cut into small pieces and activated using hydrogen peroxide. Detailed chemical and physical analysis of hen feather was also carried out by known analytical techniques. The adsorptive removal of the dye was made through batch experiments in 100 mL airtight flasks. The experiment is divided in three major categories, the preliminary investigations, adsorption isotherm measurements, and kinetic studies.

Results

Under preliminary investigations, the effect of pH, temperature, concentration of dye, and amount of adsorbent were carried out. It was found that with increase in pH, the adsorption of Amido Black 10B decreases; while with increasing the amount of hen feather, it increases. The isothermal studies indicate that the ongoing adsorption process is endothermic in nature and obeys Langmuir, Freundlich, Tempkin, and DubininRadushkevitch (D–R) adsorption isotherm models. The Gibb’s free energy and entropy of the adsorption were also calculated. The D–R isotherm model verified the involvement of chemisorption during the adsorption. The kinetic measurements indicate operation of pseudo second order process during the adsorption and dominance of film diffusion mechanism at all the temperatures.

Conclusions

The developed method is highly efficient and ecofriendly. It also ascertains a necessitous utilization of waste material hen feather for the benefit of the society.  相似文献   

15.
A batch adsorption process was applied to investigate the removal of manganese from aqueous solution by oxidized multiwalled carbon nanotubes (MWCNTs). In doing so, the thermodynamic, adsorption isotherm, and kinetic studies were also carried out. MWCNT with 5–10-nm outer diameter, surface area of 40–600 m2/g, and purity above 95 % was used as an adsorbent. A systematic study of the adsorption process was performed by varying pH, ionic strength, and temperature. Manganese-adsorbed MWCNT was characterized by Raman, FTIR, X-ray diffraction, XPS, SEM, and TEM. The adsorption efficiency could reach 96.82 %, suggesting that MWCNT is an excellent adsorbent for manganese removal from water. The results indicate that second-order kinetics model was well suitable to model the kinetic adsorption of manganese. Equilibrium data were well described by the typical Langmuir adsorption isotherm. Thermodynamic studies revealed that the adsorption reaction was spontaneous and endothermic process. The experimental results showed that MWCNT is an excellent manganese adsorbent. The MWCNTs removed the manganese present in the water and reduced it to a permissible level making it drinkable.  相似文献   

16.
The activated carbon was prepared using industrial solid waste called sago waste and physico-chemical properties of carbon were carried out to explore adsorption process. The effectiveness of carbon prepared from sago waste in adsorbing Rhodamine-B from aqueous solution has been studied as a function of agitation time, adsorbent dosage, initial dye concentration, pH and desorption. Adsorption equilibrium studies were carried out in order to optimize the experimental conditions. The adsorption of Rhodamine-B onto carbon followed second order kinetic model. Adsorption data were modeled using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacity Q0 was 16.12 mg g(-1) at initial pH 5.7 for the particle size 125-250 microm. The equilibrium time was found to be 150 min for 10, 20 mg l(-1) and 210 min for 30, 40 mg l(-1) dye concentrations, respectively. A maximum removal of 91% was obtained at natural pH 5.7 for an adsorbent dose of 100mg/50 ml of 10 mg l(-1) dye concentration and 100% removal was obtained when the pH was increased to 7 for an adsorbent dose of 275 mg/50 ml of 20 mg l(-1) dye concentration. Desorption studies were carried out in water medium by varying the pH from 2 to 10. Desorption studies were performed with dilute HCl and show that ion exchange is predominant dye adsorption mechanism. This adsorbent was found to be both effective and economically viable.  相似文献   

17.
A cost-effective biosorbent was prepared by a green chemical modification process from muskmelon peel by saponification with alkaline solution of Ca(OH)2. Its adsorption behavior for lead ions was investigated and found to exhibit excellent adsorption properties. Results showed that the optimal equilibrium pH range for 100 % adsorption is from 4 up to 6.4. Adsorption equilibrium was attained within 10 min. The adsorption process can be described well by Langmuir model and pseudo-second-order kinetics equation, respectively. The maximum adsorption capacity for lead ions was found to be 0.81 mol/kg. Pectic acid contained in the muskmelon peel is the main factor responsible for the uptake of lead ions onto the gel, and the chemical modification process presented in this study can be assumed effective to prepare other similar biomaterials. The large adsorption capacity and the fast adsorption rate indicated that chemically saponified muskmelon peel gel in present study has great potential to be used as a cost-effective adsorbent for the removal of lead ions from the water.  相似文献   

18.
镁盐改性活性炭对普拉红B的吸附性能研究   总被引:1,自引:0,他引:1  
运用化学沉淀-原位复合法制得氢氧化镁/活性炭复合材料(Mg(OH)2/AC),对其比表面积和XRD谱进行了表征,考察了该复合材料对普拉红B的脱色性能.结果表明,在293~313 K下,Langmuir模型和Freundlich模型都能很好地描述Mg(OH)2/AC对普拉红B的等温吸附过程,而Langmuir模型更为合适...  相似文献   

19.
In this study, activated carbon was prepared from waste tire by KOH chemical activation. The pore properties including the BET surface area, pore volume, pore size distribution, and average pore diameter were characterized. BET surface area of the activated carbon was determined as 558 m2/g. The adsorption of uranium ions from the aqueous solution using this activated carbon has been investigated. Various physico-chemical parameters such as pH, initial metal ion concentration, and adsorbent dosage level and equilibrium contact time were studied by a batch method. The optimum pH for adsorption was found to be 3. The removal efficiency has also been determined for the adsorption system as a function of initial concentration. The experimental results were fitted to Langmuir, Freundlich, and Dubinin–Radushkevich (D-R) isotherm models. A comparison of best-fitting was performed using the coefficient of correlation and the Langmuir isotherm was found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of uranium ions onto waste tire activated carbon was 158.73 mg/g. The thermodynamic equilibrium constant and the Gibbs free energy were determined and results indicated the spontaneous nature of the adsorption process. Kinetics data were best described by pseudo-second-order model.  相似文献   

20.
Bagasse fly ash (BFA, a sugar industrial waste) was used as low-cost adsorbent for the uptake of arsenate and arsenite species from water. The optimum conditions for the removal of both species of arsenic were as follows: pH 7.0, concentration 50.0 μg/L, contact time 50.0 min, adsorbent dose 3.0 g/L, and temperature 20.0 °C, with 95.0 and 89.5 % removal of arsenate and arsenite, respectively. The Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich adsorption isotherms were used to analyze the results. The results of these models indicated single-layer uniform adsorption on heterogeneous surface. Thermodynamic parameters, i.e., ΔG°, ΔH°, and ΔS°, were also calculated. At 20.0 to 30.0 °C, the values of ΔG° lie in the range of ?4,722.75 to ?4,878.82 and ?4,308.80 to ?4,451.73 while the values of ΔH° and ΔS° were ?149.90 and ?121.07, and 15.61 and 14.29 for arsenate and arsenite, respectively, indicating that adsorption is spontaneous and exothermic. Pseudo-first-order kinetics was followed. In column experiments, the adsorption decreased as the flow rate increased with the maximum removal of 98.9 and 95.6 % for arsenate and arsenite, respectively. The bed depth service time and Yoon and Nelson models were used to analyze the experimental data. The adsorption capacity (N o) of BFA on column was 3.65 and 2.98 mg/cm3 for arsenate and arsenite, respectively. The developed system for the removal of arsenate and arsenite species is economic, rapid, and capable of working under natural conditions. It may be used for the removal of arsenic species from any contaminated water resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号